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Abstract

Background: Bistability is ubiquitous in biological systems. For example, bistability is found in many reaction
networks that involve the control and execution of important biological functions, such as signaling processes. Positive
feedback loops, composed of species and reactions, are necessary for bistability, and generally for multi-stationarity, to
occur. These loops are therefore often used to illustrate and pinpoint the parts of a multi-stationary network that are
relevant (‘responsible’) for the observed multi-stationarity. However positive feedback loops are generally abundant in
reaction networks but not all of them are important for understanding the network’s dynamics.

Results: We present an automated procedure to determine the relevant positive feedback loops of a multi-stationary
reaction network. The procedure only reports the loops that are relevant for multi-stationarity (that is, when broken
multi-stationarity disappears) and not all positive feedback loops of the network. We show that the relevant positive
feedback loops must be understood in the context of the network (one loop might be relevant for one network, but
cannot create multi-stationarity in another). Finally, we demonstrate the procedure by applying it to several examples
of signaling processes, including a ubiquitination and an apoptosis network, and to models extracted from the
Biomodels database. The procedure is implemented in Maple.

Conclusions: We have developed and implemented an automated procedure to find relevant positive feedback
loops in reaction networks. The results of the procedure are useful for interpretation and summary of the network’s
dynamics.
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Background
Bistability, and multi-stationarity in general, is ubiquitous
in biological systems ranging from biochemical networks
to epidemiological and eco-systems [1-4]. It is considered
an important biological mechanism for controlling cellu-
lar and bacterial behaviour and developmental processes
in organisms, and it is closely linked to the idea of the
cell as a decision making unit, where a continuous input
is converted to an on/off response corresponding to two
distinct states of the cell [5,6].
The question of bistability therefore arises naturally in

many contexts. Many studies aim to demonstrate that in a
given biochemical system, bistability can or cannot occur
[2,3,7-10]. There are several methods that can be used to
address whether a network is multi-stationarity or not,
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see for example [11-19] and the references therein. Some
of these methods are implemented in the CRNT tool-
box [20] or in CoNtRol [21]. More general there has been
some interest in formal methods that connect the network
structure to the dynamic behaviour of the system, see e.g.
[15,22-27].
One qualitative network feature has in particular been

linked to multi-stationarity, namely the existence of a pos-
itive feedback loop. A positive feedback loop consists of a
sequence of species such that each species affects the pro-
duction of another species, either positively or negatively,
and such that the number of negative influences is even.
The idea of associating positive feedback loops with bista-
bility goes back to Jacob and Monod who introduced it in
the context of gene regulatory networks [28]. It was later
formalised by Thomas in the form of a conjecture [29],
which was finally proved by Soulé [30], see also [31,32].
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Soulé considers dynamical systems of the form

ẋ = f (x), x ∈ � ⊆ R
n, (1)

where x = x(t), x = (x1, . . . , xn) is the vector of species
concentrations, ẋ = dx/dt is the derivative of x with
respect to time t, and f is the so-called species-formation
rate function, which specifies the instantaneous change in
the concentrations.
The work of Soulé is based on the so-called interaction

graph [30]. This graph encodes how the variation of one
species concentration depends on the concentration of the
other species. It is built from the Jacobian matrix Jf (x∗) of
f evaluated at a point x∗, such that the non-zero entries
of Jf (x∗) correspond to directed edges of the graph and
the signs of the entries are edge labels. Soulé proved that
the existence of a positive feedback loop in the interaction
graph is a necessary condition for f (x) to have multiple
zeros. In other words, it is a necessary condition for multi-
stationarity to exist in the ODE system (1).
Soulé’s approach is often not useful for many reaction

networks, such as enzymatic signaling networks, because
the edge labels are not constant, but depend on the con-
centrations of the species, that is, for some concentrations
a label might be positive, for others it might be negative.
A refinement of Soulé’s work is based on the so-called
directed species-reaction graph (DSR-graph) [13,33-35].
If f in (1) is obtained from a reaction network, then it
decomposes in the form

ẋ = f (x) = Av(x), (2)

where A is the stoichiometric matrix of the network and
v(x) the vector of reaction rates. The DSR-graph uses this
particular structure.
The DSR-graph is a bipartite graph with nodes labeled

by the species and the reactions of the reaction network.
Labeled directed edges from species nodes to reaction
nodes and from reaction nodes to species nodes are
derived from the vector of reaction rates v(x) and the
stoichiometric matrix A, respectively. Compared to the
interaction graph, the DSR-graphmakes use of the explicit
decomposition (2) of f.
It has been shown that the existence of positive feedback

loops in the DSR-graph is a necessary condition for the
system (2) to admit multi-stationarity [34].
Based on these results it has become standard to high-

light positive feedback loops in multi-stationary reaction
networks, eg. [1,2]. The loops are typically found using
intuitive reasoning that might overlook the existence of
other relevant positive feedback loops or might select
positive feedback loops that are not related to the exis-
tence of multi-stationarity. Here we provide a method,
based on theoretical considerations, to classify all pos-
itive feedback loops of a multi-stationary network into
those that are related to the observed multi-stationarity

and those that are not. In other words, we determine the
positive feedback loops that when they all are broken,
multi-stationarity disappears.
The question needs to be understood in the context

of the whole network and not in isolation: a particu-
lar positive feedback loop that is responsible for multi-
stationarity in one network might appear in another net-
work that cannot have multiple steady states.
We present an automated procedure to determine

the positive feedback loops that contribute to multi-
stationarity. The procedure is based on various ideas from
previous work by us and others. In particular, it builds
on the injectivity property applied to an ODE system of
the form (2), as described in [13]. The procedure can
be applied to any network, provided that the compo-
nents of the vector v(x) are strictly monotone with respect
to all variables. This is a mild assumption that is ful-
filled for typical kinetics such as mass-action kinetics and
Michaelis-Menten kinetics.
In Methods, we introduce the necessary background

material. As part of this we explain why positive feedback
loops are necessary for multi-stationarity and how this
relates to the DSR-graph. In Results, we present the auto-
mated procedure and how it selects the relevant positive
feedback loops out of all positive feedback loops. We fur-
ther apply the procedure to examples of multi-stationary
reaction networks involved in cell signaling. We also con-
sider the networks in the Biomodels database [36] and
apply the procedure to all non-injective networks (injec-
tive networks cannot be multi-stationary, see below). This
provides an overview of the landscape of relevant pos-
itive feedback loops occurring in documented reaction
networks.

Methods
In this section we introduce the different ideas we need to
construct the automated procedure.We use the formalism
of Chemical Reaction Network Theory (CRNT) [37]. An
ODE system is built from a set of reactions and reaction
rates, which we explain in the section below.

Reaction networks
A reaction network, or simply a network, consists of a set
of species {X1, . . . ,Xn} and a set of reactions of the form:

rj :
n∑

i=1
αijXi →

n∑
i=1

βijXi, j = 1, . . . ,m (3)

where αij,βij are nonnegative integers, called the stoi-
chiometric coefficients of the reactants and the products,
respectively. As a running example we use the network in
Figure 1. It has three species, Xcyt, Xnuc, X∗

nuc, which are
different forms of the Cdk1-cyclin B1 complex, and four
reactions [1].
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Figure 1 Main example. The reaction network used in [1] as a toy
model to model the onset of mitosis. Here X is the complex Cdk1-
cyclin B1 formed by the cyclin dependent kinase Cdk1 and the mitotic
cyclin B1, “cyt” indicates that the species is in the cytoplasm, “nuc”
that it is in the nucleus, and X∗ is phosphorylated CdC1-cyclin B1.
Phosphorylation of Cdk1-cyclin B1 only takes place in the cell nucleus.

We denote the concentration of the species X1, . . . ,Xn
by lower-case letters x1, . . . , xn. The evolution of the
species concentrations with respect to time is modelled as
an ODE system in the following way. We let A = (aij) be
the stoichiometric matrix of the network:

aij = βij − αij,

that is, the (i, j)-th entry encodes the net stoichiomet-
ric coefficient of species Xi in reaction rj. The vector
(a1j, . . . , anj) is called the reaction vector of reaction rj.
The rate of reaction rj is a function vj : �v → R≥0,

where R
n
>0 ⊆ �v ⊆ R

n≥0 and �v is the set of pos-
sible species concentrations. A typical choice of v =
(v1, . . . , vm) ismass-action kinetics. In this case

vj(x) = κj x
α1j
1 · · · · · xαnj

n , x ∈ �v,

where κj is a positive reaction rate constant and 00 = 1 by
convention. Putting the pieces together provides a model
for the evolution of the species concentrations over time:

ẋ = Av(x), x ∈ �v. (4)

Returning to Figure 1, we let x1, x2, x3 be the concentra-
tions of Xcyt, Xnuc, X∗

nuc, respectively. Following [1], one
model of the network is:

ẋ1 = −κ1x1 + κ2x2

ẋ2 = κ1x1 − κ2x2 − x2(x2 + x3)4

K4 + (x2 + x3)4
+ κ4x3 (5)

ẋ3 = x2(x2 + x3)4

K4 + (x2 + x3)4
− κ4x3,

where κ1, . . . , κ4,K > 0 are parameters. It takes the form
(4) with

A =
⎛⎝ −1 1 0 0

1 −1 −1 1
0 0 1 −1

⎞⎠ , (6)

v(x) =
(

κ1x1, κ2x2,
x2(x2 + x3)4

K4 + (x2 + x3)4
, κ4x3

)
, (7)

and�v = R
n≥0. Observe that the phosphorylation reaction

Xnuc → X∗
nuc has a reaction rate that depends on both the

concentration of the reactant Xnuc and the concentration
of the product X∗

nuc.We also consider an alternativemodel
in which the rate of Xnuc phosphorylation depends on x2
only:

v(x) =
(

κ1x1, κ2x2,
x52

K4 + x42
, κ4x3

)
. (8)

This alternative model is also consistent with the set
of reactions in Figure 1, but the third reaction is now
independent of the amount of X∗

nuc.

Multi-stationarity
In general the trajectory of the ODE system (4) deter-
mined by an initial positive condition is confined to a
particular subset of Rn≥0, called a stoichiometric compati-
bility class [37]. For instance, in the running example, the
quantityT(x) = x1+x2+x3 is conserved through time and
determined by its value at time 0. This equation (called a
conservation law), and the value it takes, characterises the
stoichiometric compatibility class. Two trajectories with
different initial conditions but with the same value of T(x)
are confined to the same stoichiometric compatibility
class.
The stoichiometric compatibility classes are defined as

(see [37])

C0 = (x0 + im(A)) ∩ R≥0,

where x0 = x(0) in R>0 is the initial condition and
im(A) denotes the image of A. That is, the trajectories are
restricted to the space spanned by the reaction vectors.
Any trajectory that starts in the interior of C0, stays there,
but might be attracted towards the boundary.
A reaction network is said to bemulti-stationary if there

exist two distinct positive steady states in a stoichiomet-
ric compatibility class (but not necessarily in all classes)
[37]. Equivalently, if there exist distinct positive x, y ∈ R

n
>0

such that Av(x) = Av(y) = 0 and x − y ∈ im(A). A net-
work with one positive steady state and one steady state
at the boundary is therefore not multi-stationary in this
terminology.
The reaction network in Figure 1 is multi-stationary

for some choice of parameters with the rate vector in (7)
[1], but not with the rate vector in (8) for all choice of
parameter values (which will be shown later).
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Influence matrix
The concept of a positive feedback loop is associated with
structural network properties and qualitative features of
the reaction rates. Therefore, we assume some regular-
ity on the reaction rates which we will encode into an
abstract symbolic matrix, called the influence matrix [13]
(see also [35]). A feedback loop does not depend on spe-
cific parameters or the specific functional form of the
reaction rates.
To proceed, we assume that the function vj(x) is strictly

monotone in each variable xi and define the influence
matrix Z = (zij) as

zij =

⎧⎪⎨⎪⎩
γij if vj(x)increases in xi
−γij if vj(x)decreases in xi
0 if vj(x)is constant in xi,

(9)

where γij are symbolic variables.
The influence matrices associated with the two reaction

rate vectors in (7) and (8) are given by

Z1 =
⎛⎝ γ1,1 0 0 0

0 γ2,2 γ2,3 0
0 0 γ3,3 γ3,4

⎞⎠ , (10)

and

Z2 =
⎛⎝ γ1,1 0 0 0

0 γ2,2 γ2,3 0
0 0 0 γ3,4

⎞⎠ , (11)

respectively. In (10) and (11), all influences are zero or
positive.
In the following sections we will develop the graphi-

cal framework that we use to find the relevant positive
feedback loops. It builds on the DSR-graph [13] (see also
[34,35] for alternative definitions of the DSR-graph). Sub-
sequently, we define circuits and nuclei based on Soulé’s
work [30].

DSR-graph
We define the DSR-graph as a labelled bipartite directed
graph with node set {X1, . . . ,Xn, r1, . . . , rm} and such that:

(a) There is an edge from Xi to rj with label zij if zij �= 0.
(b) There is an edge from rj to Xi with label aij if aij �= 0.

We refer to the signed DSR-graph as the graph identi-
cal to the DSR-graph given by (a)-(b), but with the labels
replaced by their signs. The (signed) DSR-graph of the
running example with A as in (6) and Z as in (10) is shown
in Figure 2. The (signed) DSR-graph with Z as in (11) is
identical to that in Figure 2, with the edge from X∗

nuc to r3
removed.

Circuits and nuclei
The positive feedback loops of the DSR-graph are
instances of circuits, cycles of directed edges in a graph.
Formally, a circuit in a graph G is a sequence of distinct
nodes i1, . . . , iq such that there is a directed edge from ik to
ik+1 for all k ≤ q − 1 and one from iq to i1. A circuit must
involve at least one edge. The label of a circuit C, denoted
�(C), is the product of the labels of the edges in the circuit.
Two circuits are disjoint if they do not have any common
nodes. Three circuits are highlighted in Figure 2(A) (two
blue and one red), each involving two nodes.
A circuit with positive label is a positive feedback loop,

and similarly, a circuit with negative label is a nega-
tive feedback loop. The three positive feedback loops
of the running example are shaded in Figure 2B. They
correspond to shuttling of the complex between the
nucleus and the cytoplasm, activation and deactivation of
Xnuc, and self-activation of Xnuc (the rate of reaction r3
increases with x3, that is, the production of X∗

nuc increases
with the amount of X∗

nuc).
A k-nucleus is a collection of disjoint circuits which

involves k nodes [30]. The label �(D) of a k-nucleus D
is the product of the labels of the edges in the nucleus.
Let a1, a2 be the number of circuits in the nucleus that
have odd (resp. even) number of species nodes and let
a = a1 + a2. The sign of a k-nucleus is defined as σ(D) =
(−1)a2 . That is, if D = C1 ∪ · · · ∪ Ca is a disjoint union of
circuits, then

σ(D)�(D) = (−1)a2
a∏

i=1
�(Ci). (12)

In the DSR-graph, any circuit involves an equal number
of species and reaction nodes and, hence, an even number
of edges. We will consider nuclei with k = 2s edges, where
s is the rank of the matrix A. The reason for considering
k = 2s will become clear in the Section ‘The polynomial
and circuits’. Let D = C1 ∪ · · · ∪ Ca be a 2s-nucleus of
the DSR-graph. If none of the circuits are positive feed-
back loops, then the sign of σ(D)�(D) is (−1)s. Indeed, if
all circuits have negative labels, that is, �(Ci) has negative
sign for all i, then

sign(σ (D)�(D)) = (−1)a2+a = (−1)a1+2a2 = (−1)a1 .

Because D is a 2s-nucleus, it contains s species nodes.
Let ni be the number of species nodes in circuit Ci, such
that s = n1 + · · · + na. We have that ni is odd for a1 of the
circuits and even for a2 of the circuits. Therefore, (−1)s =
(−1)n1+···+na = (−1)a1 , and

sign(σ (D)�(D)) = (−1)s (13)

if there are no positive feedback loops in D. This result
is also in [35], where it is stated using a different
terminology.
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Figure 2 DSR-graphs of the running example. (A) The DSR-graph. There are two 4-nuclei corresponding to negative terms in the polynomial pA,Z1 :
each of them consists of the red circuit combined with one of the two blue circuits. Of these, the only positive feedback loop is the red circuit, which
is responsible for the observed multi-stationarity. (B) There are three positive feedback loops in the graph, marked with shades of grey. Only the
self-activation feedback loop (red circuit in (A)) is associated a term in the polynomial pA,Z1 , see (14). Hence the other two positive feedback loops
are not relevant for the observed multi-stationarity.

Wenext we introduce the concept of injectivity and then
link it to circuits and positive feedback loops in a separate
section.

Injectivity
In this section we study the injectivity of the function
x �→ Av(x), x ∈ C0 (4). The injectivity property has
been discussed in different contexts, see for example
[12,13,15,35,38,39]. We use here the approach given in
[13].
In the next section we link this injectivity property for all

positive stoichiometric compatibility classes to the non-
existence of positive feedback loops in the DSR-graph.
With other words, if all feedback loops are negative then
the function is injective on all positive stoichiometric
compatibility classes. In particular, there cannot exist two
distinct points x, y ∈ R

n
>0 in the same stoichiometric com-

patibility class such that Av(x) = Av(y) = 0, that is, the
network cannot be multi-stationary.

To decide whether the function Av(x) is injective on all
positive stoichiometric compatibility classes for any v(x)
with given influence matrix Z, we rely on a method pre-
viously developed by us [12,13]. We will now explain this
method.
Given a stoichiometricmatrixA and an influencematrix

Z, we define a polynomial pA,Z of degree s = rank(A),
in as many variables as there are non-zero entries of Z.
For this, let M = AZt and let {ω1, . . . ,ωd} be a basis of
im(A)⊥, which we assume to be Gauss-reduced. Further,
let i1, . . . , id be the indices of the first non-zero entries
of ω1, . . . ,ωd, respectively. We define a symbolic n × n
matrix, M̃, by replacing the ij-th row ofM with ωj (cf. [13],
Section 5). The polynomial pA,Z is defined as

pA,Z = det(M̃),

which can be written as a sum of terms depending on
the variables γij, by expanding the determinant. Each
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non-zero term is of the form c
∏s

k=1 γik jk where c is a coef-
ficient (positive or negative) and all ik , respectively jk , are
distinct.
It is a result of [12,13] that if pA,Z is not identically

zero and all non-zero coefficients of pA,Z have the same
sign, then the function Av(x) is injective on each positive
stoichiometric compatibility class and, hence, the net-
work cannot be multi-stationary. As a consequence, pA,Z
has coefficients of opposite sign whenever the network is
multi-stationary. If the coefficients do not have the same
sign, then the network might be multi-stationary, but it
cannot be concluded from the test.
Consider the matrix A given in (6) and Z1 in (10). We

choose {(1, 1, 1)} as a basis of im(A)⊥ and obtain

pA,Z1 = −γ2,2γ3,3 − γ1,1γ3,3 (14)
γ2,2γ3,4 + γ1,1γ2,3 + γ1,1γ3,4.

There are both positive and negative terms, hence
multi-stationarity cannot be excluded. For Z2 in (11), the
polynomial pA,Z2 is obtained from (14) by setting γ3,3 = 0,

pA,Z2 = γ2,2γ3,4 + γ1,1γ2,3 + γ1,1γ3,4. (15)

In this case all terms have the same sign and thus, the net-
work cannot bemulti-stationary. This holds for any choice
of rate functions with influence matrix Z2.

The polynomial and circuits
Finally, we link injectivity and the polynomial pA,Z to pos-
itive feedback loops. It is shown in [13] that each term
of the polynomial pA,Z can be identified with a collection
of disjoint unions of circuits in the DSR-graph G. Specif-
ically, given subsets I, J ⊆ {1, . . . , n} of cardinality s, let
Ds(I, J) be the set of 2s-nuclei of G with node set {Xi| i ∈
I} ∪ {rj| j ∈ J}. Then

pA,Z =
∑

I,J⊆{1,...,n}

∑
D∈Ds(I,J)

σ (D)�(D), (16)

where the sets I, J in the sum have cardinality s (cf. [13],
Section 11).
Let D ∈ Ds(I, J) be a 2s-nucleus. If none of the cir-

cuits of the nucleus are positive feedback loops then the
sign of σ(D)�(D) is (−1)s, see Section ‘Circuits and nuclei’
and (13). Hence if the DSR-graph contains a positive
feedback loop in a 2s-nucleus then the sign of σ(D)�(D)

must be (−1)s+1. This observation will be crucial for the
automated procedure.

Results
Webegin by summarising the key ingredients described in
Methods that lead to the proposed automated procedure.
The (computable) polynomial pA,Z might have positive
and negative terms. On one hand, each term in the poly-
nomial corresponds to a collection of nuclei, as described
in the Section ‘The polynomial and circuits’. Each of these

nuclei consists of circuits, some of whichmight be positive
feedback loops. A term of sign (−1)s+1 in the polynomial
necessarily corresponds to a collection of nuclei involv-
ing at least one positive feedback loop, see Section ‘The
polynomial and circuits’.
On the other hand, the network can only be multi-

stationary if the polynomial pA,Z has terms of opposite
sign. Consequently, if the network is multi-stationary,
then some terms of pA,Z have the sign (−1)s+1. Therefore
we conclude that (i) the network must contain positive
feedback loops in order to be multi-stationary and (ii) the
positive feedback loops underlying multi-stationarity can
be found by considering the terms with sign (−1)s+1 in
the polynomial. From these terms we identify the associ-
ated nuclei and extract the positive feedback loops in these
nuclei.
It is an empirical observation that in most realistic or

real reaction networks, the predominant sign of the coef-
ficients of pA,Z is (−1)s. Therefore, the number of terms
to inspect, that is, the number of terms with sign (−1)s+1,
is usually low. For this reason, we call the sign (−1)s+1 the
‘wrong sign’.
Based on these considerations, we develop a procedure

to extract the positive feedback loops that correspond
to terms with the wrong sign in pA,Z . The procedure is
based on the following steps. For a non-zero term with the
wrong sign, say

(−1)s+1c γi1,j1 . . . γis,js (17)

(c is positive) consider the following edges from species to
reactions

Xik
±γik ,jk−−−−→ rjk .

The 2s-nuclei corresponding to the term (17) must con-
tain these edges. Therefore, we add to these edges all
possible choices of s edges from reactions {rj1 , . . . , rjs} to
species {Xi1 , . . . ,Xis} such that the resulting graph is a 2s-
nucleus. We keep only the nuclei D for which the sign of
σ(D)�(D) is (−1)s+1. The positive feedback loops in these
nuclei are those that do contribute to the existence of mul-
tiple steady states. Indeed, if all these loops are broken,
then the network cannot be multi-stationary because the
polynomial will then only have terms of sign (−1)s. We
find these loops in the signed DSR-graph.
For example, consider the polynomial pA,Z1 in (14) and

the DSR-graph shown in Figure 2. In this case, the rank of
A is s = 2, and hence we focus on the negative terms since
(−1)s+1 = −1. These are γ2,2γ3,3 and γ1,1γ3,3. The cor-
responding 4-nuclei are depicted in Figure 2(A): there are
two 4-nuclei obtained as the union of the red circuit and
one of the two blue circuits. The only positive feedback
loop that appears is therefore the self-activation positive
feedback loop, and this is the only loop that is related
to the observed multi-stationarity. The other two positive
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feedback loops (termed the spatial and the activation loop,
respectively in Figure 2(B)) are therefore not relevant for
the observed multi-stationarity.
We next state the automated procedure.

Automated procedure
The procedure to select positive feedback loops that con-
tribute to multi-stationarity, applies to any reaction net-
work defined as in (4), which fulfils the monotonicity cri-
teria (9). This criterion states that the reaction rates v(x)
must be strictly monotone in each variable xj, otherwise
the influence matrix in not uniquely defined.
The procedure consists of the following steps.

1. For a network with stoichiometric matrix A of rank s
and influence matrix Z, compute pA,Z and select the
terms with sign (−1)s+1.

2. Construct the DSR-graph. For each selected term of
pA,Z with the wrong sign, determine the
corresponding 2s-nuclei of the DSR-graph that have
the wrong sign.

3. For each of the nuclei, select the connected
components that form positive feedback loops.

These steps have been implemented in Maple. The
Maple script is provided as Additional file 1. The proce-
dure might fail for practical reasons (such as lack of com-
putationalmemory) if the number of species and reactions
is too big. In our experience, this number depends heavily
on the sparsity of the influence matrix [12].
It is worth emphasising that the procedure is meaningful

only if we know that the input network is multi-stationary.
We might apply the procedure to a non-multi-stationary
network and obtain a list of positive feedback loops, but
these loops will lack proper interpretation.

Examples
We have applied the procedure to find positive feedback
loops that are responsible for multi-stationarity in several
reaction networks. These examples are also shown in the
Additional file 1, together with some other systems such
as the three-site phosphorylation system.

Ring1B/Bmi1 ubiquitination system
We consider an ODE model of histone H2A ubiquitina-
tion that involves the E3 ligases Ring1B and Bmi1 [3].
When degradation of species is not taken into account,
the model has 10 species and 15 reactions. We let B and
Bd
ub denote the protein Bmi1 in isolation and targeted for

degradation by ubiquitination, respectively. The protein
Ring1B is denoted by R, and Rub, Ra

ub, R
d
ub denote three

different forms of self-ubiquitinated R, with Rd
ub being the

form targeted for degradation. Bmi1 and Ring1B form a
complex Z, that also might be ubiquitinated, Zub. Finally,

Ring1B (either alone or in the complex Z) is responsible
for the ubiquitination of the histone H2A, with states H,
Hub.
The reactions describing the mechanism are [3]:

B
r1�
r2
Bd
ub R

r3�
r4
Rd
ub B + R

r5�
r6
Z

Z
r7�
r8
Zub Zub

r9�
r10
B + Ra

ub R
r11�
r12
Rub

Ra
ub

r13−→ R H
r14�
r15
Hub.

We let x1, . . . , x10 denote the concentrations of B, Bd
ub, R,

Rd
ub, Rub, Ra

ub, Z, Zub, H, Hub, respectively. The associated
reaction rates are [3]:

v1 = κ1x1 v2 = κ2x2

v3 = κ3x3 v4 = κ4x4

v5 = κ5x1x3 v6 = κ6x7

v7 = x7(κ7x7 + κ8x8) v8 = κ9x8/(κ10 + x8)

v9 = κ11x8 v10 = κ12x1x6

v11 = κ13x23 + κ14x3x5 v12 = κ14x5

v13 = κ15x6 v15 = κ19x10,

v14 = x9(κ16x5 + κ17x8 + κ18x6),

where κi > 0 are constants.
Self-ubiquitination of B is taken into account in the

rate functions v7 and v11 for reactions r7 and r11, respec-
tively. These incorporate a positive influence from the
reaction products. With these specific rate functions, the
system is multi-stationary for some values of the reac-
tion rate constants [3]. We apply the automated proce-
dure to find positive feedback loops that are responsible
for multi-stationarity and obtain the circuits depicted in
Figure 3(A). In [3], it is postulated that self-ubiquitination
of Z and R are crucial steps for the emergence of multiple
steady states, and we confirm the statement here.

Phosphorylation systems
We have analysed different networks of signal transmis-
sion based on phosphorylation. We consider models for
sequentially distributed phosphorylation and dephospho-
rylation cycles and some modifications of these, see e.g.
[10,40].
We consider first a two-site sequential phosphorylation

cycle for a substrate S, where phosphorylation of the two
sites is catalysed distributively by a kinase E, and dephos-
phorylation of the two sites uses different phosphatases
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Figure 3 Examples. (A) For the ubiquitination system two positive
feedback loops are found. The loops correspond to
self-ubiquitination of Z and R, respectively. (B) There are two positive
feedback loops. The right loop corresponds to the Michaelis-Menten
mechanism involving the two species E and ES1. The left loop has
four species nodes. The substrates S0 and S1 compete for the same
kinase E in a way that enhances the production of both substrates:
increasing S0, decreases the amount of E (reaction r1) which
decreases the rate of reaction r7, which in turn increases the amount
of S1. (C) Of the three positive feedback loops that are found, two
correspond to the Michaelis-Menten mechanism (right side). One
involves the kinase E and the complex ES0. The second is similar,
involving the kinase S1 of the second layer and the complex S1P0. The
left loop has five species nodes and illustrates P1-activation of the
kinase E. (D) The apoptosis system has two loops. The left loop occurs
because C8∗ in reaction r1 increases the amount of C3∗ , which in turn
increases the amount of C8∗ via reaction r2.

F1, F2. Assuming a Michaelis-Menten mechanism, the
reaction network consists of the following reactions:

E + S0
r1�
r2
ES0

r3−→ E + S1
r7�
r8
ES1

r9−→ E + S2

F1 + S1
r4�
r5
F1S1

r6−→ F1 + S0

F2 + S2
r10�
r11
F2S2

r12−→ F2 + S1

In S0, S1, S2 the subindex denotes the number of phos-
phorylated sites. With mass-action kinetics, this system
is multi-stationary for some choice of reaction rate con-
stants [2,10]. However, the positive feedback loops that
can account for the observed multi-stationarity are not
trivial.
We apply the automated procedure and obtain the pos-

itive feedback loops given in Figure 3(B). The first of the
two loops has two edges with negative labels. It implies
that S0 and S1 enhance their own production. Indeed,
because S0 and S1 both compete for the same kinase,
an increase in S0 increases the rate of reaction r1, which
in turn lowers the amount of available enzyme E. This
implies that reaction r7 slows down and hence S1 is con-
sumed at a slower rate. The circuit closes through the
reactions r4 and r6, which shows that an increase in S1
implies an increase in S0.
These type of loops are recurrent in phosphorylation

motifs. It is worth emphasising that the loops do not
have independent meaning outside the network. Another
network with the same positive feedback loop might
not be multi-stationary. For example, the second loop of
Figure 3(B) also occurs in the Michaelis-Menten mecha-
nism S0 + E � ES0 → S1 + E, but these reactions alone
are not multi-stationary.

Signalling cascades
We consider a 2-layer cascade with an explicit pos-
itive feedback. The first layer is a phosphorylation
cycle with kinase E, phosphatase F1, and phosphory-
lated and unphosphorylated substrate S0, S1. The second
layer has kinase S1, phosphatase F2, and phosphory-
lated and unphosphorylated substrate P0, P1. Assuming
a Michaelis-Menten mechanism, the reaction network
consists of the following reactions:

E + S0
r1�
r2
ES0

r3−→ E + S1

F1 + S1
r4�
r5
F1S1

r6−→ F1 + S0

S1 + P0
r7�
r8
S1P0

r9−→ S1 + P1

F2 + P1
r10�
r11
F2P1

r12−→ F2 + P0

P1
r13−→ E.
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This network is multi-stationary for some choice of
reaction rate constants. The automated procedure finds
three positive feedback loops, as shown in Figure 3(C).
The first loop is expected and appears because the prod-
uct of the second layer, P1, activates the kinase of the
first layer, E. The other two loops are similar to those in
Figure 3(C).

Apoptosis
We finally consider a basic model of caspase activation for
apoptosis [9]:

C8∗ + C3 r1−→ C8∗ + C3∗ C8
r6�
r7
0

C8 + C3∗ r2−→ C8∗ + C3∗ C3
r8�
r9
0

C3∗ + IAP
r3�
r14
Y r4−→ 0 IAP

r10�
r11
0

C3∗ + IAP r5−→ C3∗ r13−→ 0 C8∗ r12−→ 0.

With mass-action kinetics, this network is multi-
stationary for some choice of reaction rate constants [9]
and has two relevant positive feedback loops, Figure 3(D).
The second loop consists of two species, each with posi-
tive influence on a reaction rate, while at the same time,
decreasing the amount of the other.

Analysis of the Biomodels database
We investigated the models in the database PoCaB [41],
which consists of 365 models from the publicly available
database Biomodels [36] (see also the page http://www.
ebi.ac.uk/biomodels-main/). The database PoCaB con-
tains pre-computed stoichiometric matrices, mass-action
exponent matrices, and kinetic data from the selected
models.
In a previous paper [12] we extracted influence matrices

of the reported kinetics. Of the 365 networks, 323 have
strictly monotone kinetics such that the influence matrix
is well defined. On these 323 networks we ran the injectiv-
ity method and ended up with a total of 64 non-injective
networks, excluding 27 very large networks where the
injectivity method failed (as described in [12]). Non-
injectivity is a prerequisite for being multi-stationary.
We applied the automated procedure on the 64 net-

works to determine the positive feedback loops. We
obtained a total of 341 different positive feedback loops
with size distribution shown in Figure 4(C). Most loops
involve only 2 or 3 species (112 and 108 loops out of 341,
respectively). In Figure 4(A-B), we show the positive feed-
back loops involving one or two species and conclude that
all possible types occur in the database. However, for two
species, their frequencies vary from 9 to 35 (out of 108),
indicating that the motifs are not equally represented in
the database (Pearson’s chi-square test, p < 0.0005). For
one species, there appears to be no difference (p = 0.28).

We show in Table 1 the most frequent positive feedback
loops for different number of species nodes.

Discussion
We have presented an automated procedure to find the
positive feedback loops in a multi-stationary network that
are contributing to the multi-stationarity. The procedure
relies on structural and qualitative features of the network
together with a kinetics, and it is insensitive to the spe-
cific form of the rate functions. Only positive feedback
loops that are contributing to the multi-stationarity of the
network are reported, excluding those positive feedback
loops that are not relevant.
Whether a loop is relevant or not, depends on the

entire DSR-graph of the network (that is, the reactions
and the influence matrix) and not just on the loop itself.
In this sense, being a positive feedback loop related to
an observed multi-stationarity, is a context or network
dependent property. This fact has also been observed in
[33-35]. In these papers, it is shown that the existence of a
positive feedback loop fulfilling a certain extra condition is
a requirement for multi-stationarity to occur. Specifically,
the loop must either intersect another positive feedback
loop in a specific way (called an S-to-R intersection) or ful-
fil a certain condition on the labels (called an s-cycle). The
first possibility is network dependent. It is worth men-
tioning that there can be positive feedback loops that are
s-cycles or that intersect another positive feedback loop
in an S-to-R intersection without being relevant for the
observed multi-stationarity. This is the case for most of
the examples presented here. For example, the apoptosis
network has another positive feedback loop, Y→ r14 →
IAP → r3 →Y (all edges are positive), which intersects
the loop on the right side in Figure 3(D) in an S-to-R
intersection.
The property of network dependence is further illus-

trated in Figure 2(A)-(B), where the procedure is applied
to the reaction network in Figure 1 with influence matrix
given by (10). The network models translocation and
phosphorylation of a cyclin dependent kinase X in the
onset of mitosis. Only one of the three positive feed-
back loops shown in Figure 2(B) can be associated with
multi-stationarity in the model, namely the self-activating
loop that stimulates the creation of phosphorylated X∗

nuc
in the nucleus. In [1], it is argued by different means
than in this paper, that the spatial redistribution of the
cyclin dependent kinase is important for creating the
observed bistability. In contrast, our results suggest that
the observed bistability is due to the self-activation loop
of the phosphorylated complex in the nucleus.
The presented procedure cannot establish whether a

reaction network is multi-stationary or not. Other means
will here be required. If the procedure is applied to a reac-
tion network that might or might not be multi-stationary,

http://www.ebi.ac.uk/biomodels-main/
http://www.ebi.ac.uk/biomodels-main/
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Figure 4 Biomodels database. (A) The positive feedback loops with one species. Among the 32 loops with one species, the frequencies are 19 and
13. (B) The positive feedback loops with 2 species. Among the 108 loops with 2 species, the frequencies are (from top left, row by row): 35, 16, 9, 16,
13, 23. (C) The histogram shows the size (number of species) distribution among the 341 positive feedback loops found in the 64 models.

then the absence of positive feedback loops implies that
the network cannot be multi-stationary, whereas the
presence of positive feedback loops leaves the question
open.
Whether a positive feedback loop found by the proce-

dure is important in a biological or experimental context,
is not addressed in this paper, but must be established

in other ways, for example by experimental verification.
A reaction network might only be multi-stationary for
very specific choices of reaction rates, which might not be
relevant in a particular experimental setting. As the pro-
cedure is parameter independent, any such verification
and subsequent interpretation is beyond the scope of the
procedure.
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Table 1 Positive feedback loops

N Motif Frequency

2 (−,−,−,−) 23/112 = 0.21

(+,+,+,+) 35/112 = 0.31

3 (+,−,+,−,−,−) 19/108 = 0.18

(+,+,+,+,+,+) 18/108 = 0.17

4 (+,+,−,+,−,+,−,−) 15/68 = 0.22

(+,+,+,+,−,+,−,+) 15/68 = 0.22

(+,+,+,+,+,+,+,+) 14/68 = 0.21

5 (+,+,+,+,+,+,−,+,−,+) 9/25 = 0.36

(+,+,+,+,+,+,+,+,+,+) 7/25 = 0.28

6 (+,+,+,+,+,+,+,+,−,+,−,+) 6/28 = 0.21

(+,+,+,+,+,+,+,+,+,+,+,+) 7/28 = 0.25

7 (+,+,+,+,+,+,+,+,+,+,−,+,−,+) 14/41 = 0.34

For N=2,. . .,7 species nodes, the most frequent (>15%) positive feedback loops
for each N are shown, together with their frequencies. At most four negative
labels occur. Each cycle starts at a reaction node and the odd (even) labels
correspond to reaction (species) nodes. Note that, for example, (-, -, +, +, +, +)
and (+, +, -, -, +, +) are the same as they are permutations of each other.

Conclusions
It is well known that multistationarity requires the exis-
tence of a positive feedback loop. However, positive feed-
back loops are abundant in most biochemical reaction
networks and it remained unclear how to select the posi-
tive feedback loops that could be accounted for underlying
the observed multistationarity. In this work we have pro-
posed an automatised method to determine the relevant
positive feedback loops. The method is based on the
mathematical arguments underlying the proof that posi-
tive feedback loops are necessary for multistationarity to
occur.We have tested and illustrated themethod with sev-
eral reaction networks. An implementation of the method
in Maple is provided as supplementary material.

Additional file

Additional file 1: Maple Script contains the automated procedure as
well as examples.
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