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Abstract

Background: Understanding the mechanisms by which hundreds of diverse cell types develop from a single
mammalian zygote has been a central challenge of developmental biology. Conrad H. Waddington, in his metaphoric
"epigenetic landscape” visualized the early embryogenesis as a hierarchy of lineage bifurcations. In each bifurcation, a
single progenitor cell type produces two different cell lineages. The tristable dynamical systems are used to model the
lineage bifurcations. It is also shown that a genetic circuit consisting of two auto-activating transcription factors (TFs)
with cross inhibitions can form a tristable dynamical system.

Results: We used gene expression profiles of pre-implantation mouse embryos at the single cell resolution to
visualize the Waddington landscape of the early embryogenesis. For each lineage bifurcation we identified two
clusters of TFs — rather than two single TFs as previously proposed — that had opposite expression patterns
between the pair of bifurcated cell types. The regulatory circuitry among each pair of TF clusters resembled a
genetic circuit of a pair of single TFs; it consisted of positive feedbacks among the TFs of the same cluster, and
negative interactions among the members of the opposite clusters. Our analyses indicated that the tristable dynamical

the single cell resolution.

Single cell analysis

system of the two-cluster regulatory circuitry is more robust than the genetic circuit of two single TFs.

Conclusions: We propose that a modular hierarchy of regulatory circuits, each consisting of two mutually inhibiting
and auto-activating TF clusters, can form hierarchical lineage bifurcations with improved safeguarding of critical early
embryogenesis against biological perturbations. Furthermore, our computationally fast framework for modeling and
visualizing the epigenetic landscape can be used to obtain insights from experimental data of development at
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Background

More than six decades ago, Conrad H. Waddington por-
trayed a conceptual landscape of development (Fig. 1a). In
his “epigenetic landscape” a ball that indicates the whole
or part of an egg or an embryo is rolling down a sloping
and undulating surface with several valleys that represent
distinguished organs or tissues [1]. Beyond its deceptive
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simplicity, the epigenetic landscape has entailed numerous
embryogenesis facts: (i) decreased differentiation potency
during development as illustrated by tilt of the landscape;
(ii) the epigenetic barriers between sharply distinct cell
fates, depicted as the hills between the valleys; (iii) deriv-
ation of distinct cell types from identical cells, portrayed
as bifurcated valleys.

Waddington’s innovation suggested that genetic inter-
actions were the major determinants of a landscape’s
shape [1, 2]. In support of this idea, a genetic circuit of
two TFs each stimulating itself (auto-activation) and
repressing the activity of the other (mutual inhibition)
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Fig. 1 Waddington landscape of the mouse preimplantation embryo. a The original artwork of Waddington (we have added the arrows and the
labels). b Principal component analysis (PCA) of the mouse preimplantation embryo gene expression profiles. Each point represents one cell, and
the color of each point shows the developmental stage of the cell. ¢ Schematic representation of mouse preimplantation embryonic development.
d The computational Waddington landscape of the mouse early development based on the gene expression profiles. Each ball represents a
single cell. PC: Principal component, ICM: Inner cell mass, TE: Trophectoderm, PE: Primitive endoderm, EPI: Epiblast

has been shown to form a tristable dynamical system [3].
This system can model a lineage bifurcation, which is
the differentiation of two distinct cell types from the
common progenitor. The triple stable steady states or
“attractors” represent the progenitor and two bifurcated
lineages. In the progenitor cell state both TFs are
expressed at balanced rates. In either of two bifurcated
cell states, one TF is active or highly expressed whereas
the other TF is silent or slightly expressed.

An example of the mutual-inhibition and auto-activation
circuit between two TFs is the Gatal versus Pu.1 circuit,
which has been proposed to govern the bifurcation of
common myeloid progenitors (Gatal+/Pu.1+) to either
erythroids (Gatal+/Pu.1-) or myeloids (Gatal-/Pu.1+)
[3]. Other examples of two-TF regulatory circuits sug-
gested for lineage bifurcations are provided in Table 1.
Furthermore, a hierarchy of mutual-inhibition and
auto-activation circuits among several pairs of TFs is
suggested for the hierarchy of cell type bifurcations
during early development [4, 5] and pancreatic differ-
entiation [6].

As a major drawback, the two-TF circuit is highly
dependent on the concentrations and functions of a pair
of TFs. In this model, a genetic or environmental per-
turbation that affects one of the TFs can change the
behavior of the circuit and result in a deficient lineage
bifurcation. Some experimental studies, however, show
the cell differentiation is more robust.

For instance, the recent finding that the inner cell
mass (ICM) is formed after complete inactivation of
Oct4 expression [7] rejects the hypothesis that ICM vs.
trophectoderm (TE) bifurcation is switched solely by the
Oct4 versus Cdx2 circuitry.

Here we introduce a computational framework for
modeling the epigenetic landscape. Using the single cell

resolution gene expression profiles of preimplantation
mouse embryonic cells [8] we visualize the Waddington
landscape of early development. After analysis of the ex-
pression patterns of the key TFs that are suggested to
form early lineage bifurcations, we provide an extended
form of hierarchical regulatory circuitry in which each
bifurcation is decided by two clusters of TFs, rather than
two single TFs. We show this extended circuitry is more
robust against perturbation, which suggests it can better
safeguard the development.

Results
The Waddington landscape of a preimplantation embryo
We constructed the epigenetic landscape of mouse pre-
implantation embryonic development using the expres-
sion profiles of 48 genes — mostly TFs — in 442 single
pre-implantation embryonic cells [8]. For this purpose,
we quantified three axes: cell type (x-axis), time of devel-
opment (y-axis), and pseudo-potential function (z-axis,
see methods for more details). Time of development was
quantified according to the developmental stage of each
cell in the dataset. We used principal component ana-
lysis (PCA) [9] to project the expression profiles of
the cells into a two-dimensional space (Fig. 1b), in
which the cells with similar fates during embryonic de-
velopment (Fig. 1c) were clustered together. The angu-
lar coordinates of the cells in the PCA plot were used
to put them across the x-axis of the epigenetic land-
scape. In this way the cells were sorted along the
x-axis according to their types. We also defined a
pseudo-potential function using the Gaussian mixture
model and Boltzmann distribution, and computed the
z-coordinates accordingly.

The result is shown in Fig. 1d. Each ball represents a
single embryonic cell. The y-axis (back-to-front) shows

Table 1 Examples of two-TF regulatory circuits that are suggested for lineage bifurcations

TF1 TF2 Progenitor Lineage 1 Lineage 2 Ref.
(TF1=TF2) (TF1>TF2) (TF1 <TF2)

Gatal Pu.1 Common myeloid progenitor Erythroid Myeloid [3]

Oct4 Cax2 Totipotent embryonic cells Inner cell mass Trophectoderm [12]
Nanog Gata4/6 Inner cell mass Epiblast Primitive endoderm [13]
Sox10 Phox2b Bipotential neural progenitor Glia Neuron [54]
Ptfla Nkx6 Pancreatic progenitor Exocrine cells Endocrine cells [55]
Pax3 Foxc2 Dermomyotome progenitor Myogenic cells Vascular cells [55]




Sharifi-Zarchi et al. BMC Systems Biology (2015) 9:23

different developmental stages from 1-cell (zygote) to
64-cell (blastocyst). The height of each region shows the
pseudo-potential function level, which reflects both sta-
bility and differentiation potency. There is a single valley
from the 1- to 16-cell stages that shows no significant
difference between single embryonic cells at these stages.
The first bifurcation appears at the 32-cell stage, where
ICM is distinguished from TE. At the 64-cell stage the
ICM cells undergo a second bifurcation that discriminates
epiblast (EPI) from primitive endoderm (PE).
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Regulatory circuitry of two transcription factors (TFs) can
form lineage bifurcations

In order to inspect how the epigenetic landscape bifur-
cations were formed we examined the expression levels
of four key TFs of preimplantation development: Oct4,
Cdx2, Nanog and Gata4. These TFs were selected due to
their known critical functions in the formation of early
embryonic cell types [10, 11]. Our analysis shows that
Oct4 is expressed in ICM and its sub-lineages, but be-
comes silent in the TE valley (Fig. 2a). In contrast, Cdx2
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Fig. 2 Expression levels of four key transcription factors (TFs) in early embryogenesis. a The gene expression levels of Oct4, Cdx2, Nanog and
Gata4 in the single cells of preimplantation embryos. The cells with the highest expression level of each TF are depicted in red, while the
intermediate and the lowest expression levels are shown as white and blue, respectively. b The regulatory circuitry between Oct4 and Cdx2
(left), and Nanog and Gata4 (right). Green and red arrows show positive and negative regulatory interactions, respectively. TE: Trophectoderm,

PE: Primitive endoderm, EPI: Epiblast
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is overexpressed in the TE, and underexpressed in the
ICM and its sub-lineages. Both Nanog and Gata4 are
underexpressed in the TE valley, but have a sharp contrast
in ICM sub-lineages. Nanog is overexpressed in the EPI
and underexpressed in the PE cells, while Gata4 is overex-
pressed in the PE and underexpressed in the EPI valley.
Competition in expression of Oct4 and Cdx2 is sug-
gested to arise from the particular form of regulatory
circuitry between them [12]. While binding of Oct4 to
its own promoter has a positive regulatory effect, its
binding to the Cdx2 promoter is suppressive. Similarly,
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Cdx2 activates itself but inhibits Oct4 (Fig. 2b, left).
The regulatory circuitry between Nanog and Gata4/6
has a similar structure (Fig. 2b, right) [13, 14].

A set of ordinary differential equations (ODEs) are pre-
viously used to model the regulatory circuitry between
two generic TFs, such as A and B, with auto-activation
and mutual inhibitions [12] (see Methods section for more
details). Such ODEs form a tristable dynamical system that
can be visualized in a force-field representation (Fig. 3a).
Each grid point of the plot represents one system state
with certain concentration levels of the TFs A and B,
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Fig. 3 Attractor states of the two-TF regulatory circuitry. a Force-field representation of the dynamical system of a regulatory circuitry consisting
of two TFs with auto-activation and mutual-repression interactions. b Regulatory states of the TFs in the three enumerated attractor states. Highly
expressed TFs and strong interactions are shown as thick lines, whereas thin lines represent intermediate expressions or interactions. Null expressions
or interactions are depicted as dashed-lines. ¢, d Phase space representations of the two-TF circuits. Red regions represent the highly stable states. (c)
Both TFs have equal degradation rates. d The degradation rate of the transcription factor A is increased by 50 % (denoted by A¥)
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which are specified as the point dimensions. For each grid
point, an arrow shows the direction of changes in the TF
concentrations after a short period of time. The areas with
longer arrows, in violet, represent the system states with
higher tendency to change. In contrast, the shorter red ar-
rows represent the more stable states of the system.

In the attractor 1, as enumerated in Fig. 3a, A is highly
expressed and B is silent, and this state is maintained
through the positive and negative feedback loops (Fig. 3b,
top). The same conditions hold for the attractor 3 in
which dominant expression of B suppresses expression
of A and maintains a high abundance of B (Fig. 3b, bot-
tom). In attractor 2, however, both TFs are expressed at
lower and balanced rates (Fig. 3b, middle). In the same
attractor, the positive feedback each TF receives from
auto-activation forms equilibrium with the negative
feedback from the other TF. The attractor 2 represents a
progenitor cell type, while 1 and 3 denote two bifurcated
cell lineages.

Two-cluster regulatory circuitry can resist perturbations
Although the two-TF regulatory circuitry could account
for a developmental bifurcation, we conjectured that this
type of regulatory circuitry would be too sensitive. In
other words, genetic mutations or environmental pertur-
bations that affect the concentration or function of ei-
ther TF could influence the bifurcation and the ratios of
the cells that differentiate into either lineage, or even
lead some cell type to completely vanish.

To test this conjecture, we computationally examined
the effect of an increased degradation rate of one TF. As
shown in Fig. 3c, the original two-TF circuit with similar
degradation rates of both TFs forms three attractor
states indicated by red areas surrounded by the green
epigenetic barriers. Increasing the degradation rate of
the protein A by 50 % in the ODE model significantly
changes the position of the stable states (Fig. 3d, the
more degradable form of protein A is denoted by A*).
While the attractor 1 remains isolated, the attractors 2
and 3 fuse together. As a result, it would be more likely
for the progenitor cells in attractor 2 to differentiate into
the attractor 3 rather than 1 during the lineage
bifurcation.

We hypothesized that the regulatory circuitry would
be more robust against perturbations or noise if there
were more TFs involved in the formation of either
branch of the bifurcation. To check this hypothesis we
designed a new ODE system that represented a regula-
tory circuitry consisting of two clusters, with a couple of
TFs in each cluster. The TFs of the same cluster have
positive mutual regulatory interactions, whereas the TFs
of opposite clusters inhibit each other (Fig. 4a).

To show a 4-dimentinal (4D) expression-space of the
4 TFs as a 2D plot, we assigned the total expression of
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the TFs in each cluster to one axis (Fig. 4b). The
pseudo-potential function of the two-TF cluster circuitry
shows a tristable system, which is very similar to the
two-TF model. Both TFs A and C that belong to the
same cluster are highly expressed in the attractor 1,
whereas B and C are silent. In contrast, B and D are
overexpressed in the attractor 3, while A and C are si-
lent. The progenitor attractor state 2 represents the
equilibrium in which all TFs are expressed at balanced
rates.

In the two-cluster circuit, we analyzed the effect of a
50 % increase in the degradation rate of protein C
(Fig. 4c, d). The attractor areas are slightly moved in the
perturbed model (Fig. 4d) compared to the original two-
cluster model (Fig. 4b). In particular, attractor 2 is
slightly closer to attractor 3, due to the decreased con-
centration of protein C in the equilibrium state. How-
ever all three attractors are maintained and none them
are fused together.

To have a quantitative insight into the robustness, we
simulated the differentiation of four cell populations,
each population having one of the regulatory circuitries
shown in Fig. 3¢, d and Fig. 4a, c (see the Methods sec-
tion and the Additional file 1 for more details). We
forced the cells to leave the progenitor state (the at-
tractor 2 in Figs. 3 and 4) and differentiate into the at-
tractor states 1 or 3. This was performed by gradually
decreasing the auto-activation strengths of the TFs, as
previously suggested [15].

In both two-TF and two-cluster circuits, the number
of cells that differentiate into the attractors 1 and 3 are
very similar (maximum 1 % difference), when there is no
perturbation. After increasing degradation rate of one
TE, only 3 % of the cells with two-TF circuit differentiate
to the attractor 1. Nevertheless, the fraction of the cells
with two-cluster circuit that differentiate to the attractor
1 is significantly higher (24 %). This simulation shows
that one cell lineage (attractor 1) is almost vanished
when the two-TF circuit is perturbed, while the two-
cluster circuit is significantly more robust and safeguards
differentiation into both lineages.

Early developmental bifurcations are switched by two
clusters of TFs

We sought to determine whether the hypothesized TF
clusters existed in the regulatory circuitry of the early
embryogenesis. For this reason, we analyzed the expres-
sion profiles of the single mouse blastomeres at the
64-cell stage (Fig. 1b, ¢). Our analysis indicates three
clusters of genes, which are mostly TFs (Fig. 5). The ex-
pression profiles of the genes in the same cluster are
highly correlated, but lower or negative correlations are
observed among the genes of different clusters. The
first cluster consists of 17 genes, including Cdx2, Eomes
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and Gata3, which are highly expressed in TE. The sec-
ond cluster includes 10 genes such as Gata4, Gata6
and Sox17 that mark PE cells. The 12 genes of the third
cluster, including Nanog, Fgf4 and Sox2, are overex-
pressed in EPI cells. The genes of the TE cluster show
lower coexpression with the genes of the other clusters.
Some EPI genes are highly coexpressed with PE genes,
which might reflect the limited time passed from the
bifurcation of EPI and PE cell types at 64-cell stage.
Through a literature search we revealed the experimen-
tally validated regulatory interactions among the genes
that pioneer early lineage bifurcations [8, 13, 16-27].
There are reports of positive interactions among Tead4,
Eomes, Gata3, Cdx2, EIf5S and a number of other genes
that are upregulated in TE cells (Fig. 6). The regulatory
effects among Pou5fI1(Oct4), Nanog, Sox2 and Sall4, as
key TFs of the ICM cells, are also positive. However,
the TFs in one cluster have been shown to repress the
TFs in the other cluster. This finding is in agreement
with the structure of the two-cluster circuitry. A similar

regulator pattern can also be observed among the PE
markers Gata4, Gata6, Sox17 and Sox7 in one cluster,
and EPI markers Nanog, Sox2 and Oct4 in the other
cluster. Assigning the color of the cells on the epigen-
etic landscape based on the average expression level of
each cluster confirmed the proposed TF clusters ex-
perimentally (see the Additional file 2).

Discussion

We computationally visualized the Waddington land-
scape of mouse preimplantation development using the
experimental data and depicted the differentiation of cell
lineages as bifurcations of the valleys. In this study, we
modeled the dynamical system of a regulatory circuit
consisting of two individual TFs with auto-activation
and mutual inhibitions, which has been proposed for
lineage bifurcation [5, 15, 18]. This circuit formed a tris-
table dynamical system with clear borders of epigenetic
barriers among them. An increased degradation rate of
one TF caused the epigenetic barriers between the
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progenitor and one of the lineage committed cell states
to be broken. This experiment showed that the circuit of
two individual TFs is not very robust, and the ratios of
the cells that commit to each lineage may be signifi-
cantly affected by perturbations.

We investigated whether the presence of more TFs in
the regulatory circuitry that governs a developmental bi-
furcation could lead to a more robust system. Extension

of the initial circuit to a pair of clusters with multiple
lineage-instructive TFs in each cluster, which activated
themselves and inhibited the other cluster members, re-
sulted in another tristable dynamical, similar to the one
formed by the two-TF circuit. In the extended network,
however, the epigenetic barriers were not vastly affected
by increased decay rate of one TF, which was quantita-
tively confirmed by a simulation.
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The positive feedbacks from the other TFs of the same
cluster could buffer the effect of perturbations on a par-
ticular TF. This buffering property is somehow similar
to the Waddington’s original idea of “canalisation” — the
capability of the system to recover after slight perturba-
tions [1]. We expect this property would be even stron-
ger in larger clusters of TFs having more positive
feedback loops. This is in agreement with a suggestion
by Waddington in the same book: “canalisations are
more likely to appear when there are many cross links
between the various processes, that is to say when the

rate of change of any one variable is affected by the con-
centrations of many of the other variables” [1]. As the
second property, the total expression of one TF cluster
can overcome and inhibit the expression of the other TF
cluster. We call these properties together as the collect-
ive decision-making of the TFs.

The extended regulatory circuitry was further illus-
trated by our analysis of the expression profiles of key
TFs in mouse blastocysts. We indicated three clusters of
genes (mostly TFs) that represented the EPI, PE and TE
cell types (Fig. 5). A literature review of regulatory
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interactions among members of each cluster confirmed
the structure of two-cluster regulatory circuitry and its
role during early development (Fig. 6).

The proposed concept of two-cluster circuitry can be
extended in a modular way to form a hierarchy of devel-
opmental bifurcations (Fig. 7). Early stages of develop-
ment involve minimal cell quantity, and a small change
in the fate of each single cell will pass on to a large num-
ber of offspring cells. Thus stronger safeguarding against
perturbations is more crucial in the early development.
This can be achieved by the presence of more TFs in
each cluster and/or stronger feedback loops. The later
developmental bifurcations are less sensitive and might
rely on smaller clusters or even individual TFs.

To identify the TF clusters of each bifurcation circuit
we suggest assigning the expression profiles of embry-
onic and adult cell types to the network of differenti-
ation [28]. Then we can look for the differentially
expressed TFs and chromatin remodelers between a pair
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of cell types and offspring lineages, which are bifurcated
from the common progenitor cells. This can be a sys-
tematic method to identify cocktails essential for cell
type conversions such as reprogramming and transdif-
ferentiation [29].

While the proposed hierarchical regulatory circuitry
provides a basis for better understanding and analysis of
developmental bifurcations, we do not exclude more
complicated mechanisms such as the role of signaling
networks and morphogens. For example, during embry-
onic stem cell differentiation, Oct4 and Sox2 have mutual
positive feedbacks and belong to the same cluster of up-
regulated TFs in the ICM and EPI. The repressive effects
of Wnt3a and activin on Sox2, and also inhibition of Oct4
by Fgf and retinoic acid result in asymmetric upregulation
of Sox2 in the mesendoderm and Oct4 in the neural ecto-
derm [30]. This example lends support to the concept that
signaling cascade forces dominate regulatory interactions
of TFs, and will eventually cause the TF cluster to split.

Lateral plate
Mesoderm

{ mesoderm

Hemanbioblasts
Somatic
mesoderm

endoderm

Mesoderm

intermediate
Mesoderm

Fig. 7 Developmental bifurcations are governed by a hierarchical regulatory circuitry. Each circuit consists of two clusters of transcription factors
(TFs), with positive feedbacks within each cluster and negative feedbacks between the two clusters. Prior to each developmental bifurcation, the
TFs of both corresponding clusters are expressed at a balanced state. In each post-bifurcation branch, one cluster is downregulated while the
other is upregulated. This triggers the competitive expression of clusters that switch later bifurcations

Meso-
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A second example of the cryptic mechanisms in bifur-
cation regulation is the presence of master and support-
ive TFs. In the symmetric computational model, we have
assigned identical effects to different TFs of the same
cluster in determining the cell lineage. This can be fur-
ther extended to an asymmetric model where one, or a
small number of TFs in each cluster are the master
lineage indicators and the other members support their
expression and function. The latter suggests inactivation
of different TFs in the same cluster will have different ef-
fects on formation of the corresponding cell lineage,
which is supported by experimental evidences [11].

There are even more aspects of the cell biology that
are critical for understanding development and differen-
tiation. While gene-to-gene interactions are essential for
the cells to differentiate, cell-to-cell communications are
crucial for the embryo to balance the required quantity
of each cell type, and to develop tissues and organs. As
an example, the ICM and EPI cells secrete the Fgf4 sig-
nal, which binds to the Fgfi2 receptor on the membrane
of TE and PE cells (Figs. 5 and 6). The development of
TE and PE cells are significantly influenced by this signal
[31, 32]; for instance the increased Fgf4 concentration
results in enhanced PE and diminished EPI cells [33]. As
a result, the proportion of the cells that differentiate into
either EPI or PE would be balanced, which is another
mechanism of developmental robustness. In absence of
signals and intercellular communication, development
would terminate in a salt-and-pepper mixture of differ-
entiated cell types without any pattern.

Cell division and epigenetic mechanisms such as DNA
methylation and histone modifications are the other cru-
cial factors that influence the starting point and shape of
the epigenetic landscape for each cell. To address these
biological aspects, we suggest assigning individualized epi-
genetic landscapes to different cells, which are dynamically
changed by the inherited parental cytoplasm and epigen-
etic modifications, the environmental signals and the other
mechanisms of intercellular communication [34-38].
Hence the cells that are divided from the same parent or
the adjacent cells would have similar epigenetic land-
scapes, which bias their differentiation towards particular
cell types of the same tissue. We expect that this com-
prehensive approach to the Waddington landscape will
provide new insights to the developmental biology.

Conclusions

In this work we presented a framework for modeling
the epigenetic landscape of the single cell resolution
gene expression profiles. We visualized the epigenetic
landscape of mouse preimplantation embryogenesis
based on the expression profiles of 48 genes in 442 em-
bryonic cells [8], which resembled the original meta-
phoric Waddington landscape of cellular differentiation
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[1]. Next we scrutinized to determine the regulatory
circuitry that governs each developmental bifurcation.

We examined, through an ODE based model, the two-
TF genetic circuits, which were previously suggested to
regulate lineage bifurcations [5]. Perturbation, in form of
increased decay rate of one TF, severely changed the
shape and position of the attractor states. It could be
concluded that any factor that has the potential to affect
the expression or function of those TFs, such as genetic
mutations, extrinsic stimuli and intrinsic noise, could
deviate the corresponding cell fate decision.

Next we developed a hierarchical regulatory network
consisting in pairs of auto-activating and mutual-
inhibiting clusters of TFs. Our analysis showed the en-
hanced buffering capacity of the two-cluster regulatory
circuitry against biological perturbations, due to the
collective decision-making of TFs. Our finding can be a
further explanation for the determinism and robustness
of the embryonic development.

Methods

We employed two different approaches to model the cell
differentiation processes. In the first approach we used
the experimental data to visualize the Waddington land-
scape of early mouse embryogenesis and identified the
clusters of the genes differentially expressed in each de-
velopmental bifurcation. In the second approach, we
theoretically compared the dynamical systems generated
by the smaller (two-TF) and the extended (two-cluster)
regulatory circuitries, using ODE based models.

Waddington landscape: preprocessing of the
experimental data

We obtained the expression profiles of 48 genes in 442
single mouse embryonic cells from zygote to 64 cells stage,
that were generated by the TagMan qRT-PCR assay [8].
These genes were selected after analyzing the expression
levels of 802 TFs, due to differential expression in blasto-
meres or known function in early development. The initial
Ct values ranged from 10 to 28, and the expression values
were assigned by subtracting the Ct values from the base-
line value of 28 (see the Additional file 3). PCA was per-
formed using the mean-subtracted expression values.
Correlation heatmap of the genes was generated based on
pairwise Spearman correlations of the expression profiles
of the cells in the 64-cell stage.

Axes of Waddington landscape

In order to visualize the Waddington landscape of the
preimplantation development, we needed to define each
dimension and compute it. There are three axes (dimen-
sions) in the epigenetic landscape, as illustrated in Fig. la:
(i) The x-axis (left-right) through which distinct cell fates
are shown as different attractors (valleys). (i) The y-axis
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(back-front) that shows time of development, as early and
late developmental stages are located in backward forward
of the landscape, respectively. (iii) The z-axis (down-up)
that represents a potential function, which integrates both
differentiation potency and stability [39]. The totipotent
cells (zygotes) are posed at the highest valley. As the cells
undergo more differentiation into pluripotent, multipotent
and then unipotent cells, they go towards the deeper and
lower valleys. Furthermore the stable cell states (attractors)
are distinguished as valleys from the instable and transient
cell states that form hills.

It was straightforward to assign the y-axis of the cells
since the time of development was available for each
cell. To establish the x-axis of the epigenetic landscape,
we computed the principal components PC1 and PC2
of the gene expression profiles (Fig. 1b). The coordi-
nates origin was slightly moved into a cell-free region
(PC1 =-0.5, PC2 =0) to ensure all the cells of the same
fate are located in the same side of the origin and have
close angular coordinates. Then the x-dimension of
each cell was computed as its angular coordinate
around the origin. Through this dimension reduction —
from the initial gene expression profiles consisting of
48 dimensions into a single axis — we aimed to preserve
the similarities and differences of the cells.

Pseudo-potential function of the Waddington landscape
We needed to define a form of potential function from
the experimental data. The closed form of a potential
function is restricted to the gradient systems with
stringent mathematical conditions that usually do not
hold in biological systems [40]. As a result, most of
the previous studies have defined pseudo- or quasi-
potential functions based on many different methods: the
ODEs with path integration [15, 40], Fokker-Planck equa-
tion [41, 42], Langevin dynamics [43], Hamilton-Jacobi
equation [44], drift-diffusion models [45], Boltzmann
distribution [46] and stochastic simulation [47]. Signal-
ing network entropy, as a measure of promiscuity or
undetermined lineage, is the other framework used to
define a pseudo-potential function based on the experi-
mental data [48].

In this study we employed the Boltzmann (Gibbs) dis-
tribution, which models the probability distribution of
the particles in a system over various states with differ-
ent energy levels [49]. It makes a connection between
the energy levels and the probabilities of the particles
being in each state. The Boltzmann distribution is
expressed as the following equation:

P(A) — ¢ ME/,T
P(B)

where A and B are two different states, P(x) is the
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probability of a particle to be in state x, AE is the en-
ergy difference that a particle should absorb/release to
change its state from A to B, kg is the Boltzmann con-
stant, and T is the system temperature. By taking the
logarithm of two sides we have:

P(A) -AE

Inoa =tz — EA)EB)

= —kgT(In(P(A))-In(P(B)))

in which E(x) is the energy of a particle in state x. Tak-
ing the state B as the pseudo-potential reference results
in:

UA)=-p In(P(A)) + o

where U is the pseudo-potential function. Both p and
w are constant values that scale the landscape and can
be omitted in visualization. To compute the pseudo-
potential function we should determine the probability
of the cells to be in each state, as follows.

Probability distribution of the cell states
At each developmental stage we assumed the expres-
sion profiles of the cells of the same type were nor-
mally distributed along the x-axis after the dimension
reduction. To check this assumption we produced the
Q-Q plots of each developmental stage for the angular
coordinates of the cells in the PC1-PC2 plane (see the
Additional file 4). Up to the 16-cell stage the points
are almost fitting a single trend line. In the 32-cell
stage there are two distinguished segments, discrimin-
ating ICM and TE cells. Each of three segments in 64-
cell stage fit a different trend line, which shows this
stage is a mixture of three normal distributions, repre-
senting EPI, PE and TE lineages. Furthermore we per-
formed the Shapiro-Wilk normality test [50], that
confirmed the normality of several segments of different
stages.

As a result we considered a cell population including m
different cell types would have a mixture of m normal
distributions. By assuming 7; as the probability of a cell be-

longing to the k -th cell type (1<k<m, 1,20, Zrk =1),
k=1

the mixed probability distribution function is:

flx) = zm:fk@k Y7y

k=1

where p; and X; are the mean and covariance matrix of
all the cells of the k -th cell type, and @y is a Gaussian
function defined as:
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From the above equations we could calculate the pseudo-
potential function:

U(x) == In(f(x))

where x is any point on the x-axis of the epigenetic land-
scape (projection of the gene expression profiles) at some
particular developmental time. The mixed distribution
and the pseudo-potential function were recalculated for
each developmental stage with the available experimental
data. A linear interpolation was used to fill the gaps be-
tween consecutive developmental stages. The landscape
was visually tilted to show the reduced differentiation
potency during development.

Selecting the number of different cell types and
assigning each cell to one of cell types can be done
either manually (supervised) or computationally (unsuper-
vised). To have an objective and automated framework,
we used the unsupervised approach, using the “mclust”
package [51] of R statistical language. The projected ex-
pression profiles were given to the package to compute
the probabilistic model parameters, including the number
of cell types (clusters), the mean and covariance values,
based on a maximum likelihood criterion. For additional
details, one may refer to the “mclust” package reference
manual.

Oy (xi | yes Zk) e'%("""‘k) "5 (i)

Dynamical modeling: Phase space representation of the
regulatory circuitry of two transcription factors (TFs)

For the dynamical system analysis of the two-TF regu-
latory circuitry, we employed the following set of
ODEs [3, 39]:

du . u" +B s" 3
dt s+ u” sn+ Y
dv V" ny s" y
2 _
dt s+ v "+ u Y

where u and v are concentrations of the pair of opposite
TFs, and a and f§ are the strengths of the positive and
negative regulatory interactions, respectively. For simpli-
city we used the same protein degradation rate y for
both TFs. The term 5%— (ve{u, v}) is a sigmoid function
that has 0 value at x =0, increases to 0.5 at x=s, and
asymptotically approaches 1 at the large values of x. It
resembles the positive auto-activation regulatory effect
of each TF. The steepness of the sigmoid function is de-
fined by the power 7. On the other hand, 7%= is a de-
creasing sigmoid function that starts from 1 at x =0 and
approaches 0 at large x values, which resemble the mu-

tual inhibitory effects.

Page 13 of 16

In order to model the perturbation in the form of in-
creased decay rate of a particular protein, we increased
the degradation rate of the TF u by 50 %, as denoted
by y*:

du’ u” s
dt as”—l—u” +/35” +vn

n
*

y u

Phase space representation of the regulatory circuitry of
two clusters of transcription factors (TFs)

To analyze the dynamical system of a gene regulatory
circuitry consisting in two clusters of TFs we generalized
the previous two-TF model by using the following
equations:

dr _dw  duy

dt  dt = dt
:17(1417,1/!2,,1/1,,1/2,}/)+I7(M277M1,,V2,,V1,)’)

dy _dni  dv

dt dt dt

= }1(1/17:1/277”177”27}/) + U(V27,V177142a7u17}’)

where u; and u, are the concentrations of two proteins
of the first cluster, v; and v, denote the second cluster
protein concentrations, and x=u; +u, and y=v;+v,
are the total concentrations of the proteins in clusters 1
and 2, respectively. We defined the generic function
n(a, b,c,d,y) to compute the concentration rate of any
protein a based on the concentration values of the TFs a
and b in one cluster, and ¢ and d in the other cluster, as
follows:

a"+b" s"

b,c,d,y) = -
77(5[; Gy ,}/) asn+an+b”+ﬁsn+cn+dn

ya

For the perturbation analysis, we used the increased
degradation rate y* for the TF u,:

dx _duy  du;

dt dt ' dt
= ’7(14177“2:;‘/1’71/2:}/) + ’7(”277141771/27’1/17)/*)

In both models we used the following parameters:
n=4,s=05,a=15 =1, y=1and y*=1.5. The sam-
ple space of (u, v) = [0, 3]* was used for analyzing the
two-TF model, and (x, v, uy,v;) = [0,3]* for the two-
cluster model.

Simulation of the cell differentiation in absence or
presence of perturbation

For each of the four different regulatory circuitries
depicted in Fig. 3¢, d and Fig. 4a, b we simulated the
differentiation of 1000 cells. The initial expression rates
of the TFs in each cell were assigned from a normal
distribution with g =1.5 and sd = 1. With this selection
of parameters, the majority of the cells were initially in
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proximity of the progenitor state (the attractor 2 of
Figs. 3 and 4).

Each simulation continued 100 steps, in which the ex-
pression rates of the TFs in each cell were slightly chan-
ged, based on two factors: the dynamical system forces
(differential equations above) and a standard Gaussian
noise (4 =0, sd =1). The strengths of these factors were
tuned by two coefficients: the force field coefficient had
a constant value of 0.2 during the simulation; and the
noise coefficient that started with 0.5 and gradually re-
duced during the simulation (multiplied by 0.98 in each
step) to ensure the convergence of the experiment.

The auto-activation strength o was 1.5 at the beginning
of each simulation, but gradually reduced (multiplied by
0.98 in each step). In this way, we forced the cells to leave
the progenitor state 2 and differentiate into the attractor
states 1 or 3. During this process, the stability of the at-
tractor 2 was gradually decreased and resulted in a bistable
system with only attractors 1 and 3. In each attractor of
the bistable system, one TF was silent and the other was
expressed at a slightly lower rate than the initial circuit
configuration, due to the lower value of a.

Implementation

The code was implemented in R statistical language
[52]. We used the packages “mclust” to generate the
mixed Gaussian model, “rgl” for 3D visualization of the
Waddington landscape, “ggplot2” for 2D visualization of
the data [53], and “pheatmap” for visualization of the
correlation heatmap. We also used the packages “grid”,

“gplots”, “ Hmisc”, and “Biobase”.

” o«

plyr”,

Advantages and limitations

Our method of visualizing the Waddington landscape
enables the application of the experimental data at single
cell resolution for this purpose. While we used the gene
expression profiles of early embryonic cells, our method
can be generalized for analysis of the high-throughput
DNA methylation, histone modifications and non-coding
RNA expression profiles. It is computationally fast and
can be used for whole-genome scale of data and a large
number of single cells. By application of time-course data,
the same method can be applied for visualizing the land-
scape of reprogramming, transdifferentiation or stem cell
differentiation.

Our method interpolates the developmental time be-
tween each pair of successive sampling time points;
hence the closer the sampling time points, the more
realistic the resulting landscape. The valley depth in this
method mainly represents the number of cells assigned
to the corresponding attractor state. This requires the
data to be generated by random sampling of different
cell types. For study of distant cell types, the quantity of
cells and the depth of attractors can be influenced by
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cell division rates. In this case we suggest combining our
method with an indicator of differentiation potency or
stability, such as the cellular network entropy [48].

Availability of supporting data

The preprocessed single-cell resolution gene expression
profiles of mouse preimplantation embryonic cells [8]
are provided in the Additional file 3. We have also pro-
vided in the same additional file the complete source
code of this study in R programming language.

Additional files

Additional file 1: The simulation results of the differentiation of
1000 cells with two-TF (plots 1 and 2) or two-cluster regulatory
circuitries (plots 3 and 4).

Additional file 2: The expression profiles of the TF clusters in the
embryonic cells. We computed the average expression levels of the TFs
of each cluster in each cell, and colored the cell accordingly. The cells
with the highest expression level of each cluster are depicted in red,
while the intermediate and the lowest expression levels are shown in
white and blue, respectively. Three TF clusters responsible for EPI, PE and
TE differentiation are shown.

Additional file 3: The complete source code of the study, in R
programming language, and the preprocessed data.

Additional file 4: The Q-Q plots of the angular coordinates of the
gene expression profiles in the (PC1, PC2) plane.
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