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Abstract

Background: Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When
the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation
rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns.
It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at
distinguishing which regime a considered gene regulatory network is in from their phenotypic variations.

Results: We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide
range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on
understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching
rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers
corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after
which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states.
The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of
intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in
different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state
theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation
experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than
the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response
behavior with respect to the switching rates perturbations.

Conclusions: We proposed a simulation experiment to distinguish the slow, intermediate and fast regimes, which is
the main point of our paper. In order to achieve this goal, we systematically studied the essential dynamics of gene
expression system when the switching rates are in different regimes. Our theoretical understanding provides new
insights on the gene expression experiments.
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Background
Stochasticity is an inherent property of living cells.
Stochastic perturbation comes not only from the noisy
environment that cells live in, but also from all pro-
cesses going on inside cells [1]. Especially when the copy
number of molecules like mRNA or protein gets smaller,
stochastic fluctuations can have significant effect on the
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behavior of a cell. There have been many studies focused
on discovering the effect of noise in living systems [2, 3],
and some of the results show that cells do not only evolve
to resist noise perturbation better, but also form mas-
sive mechanisms which are the benefits of stochasticity
[4, 5]. Genetic switching is a typical example of noise-
driven cellular behavior which can be performed sponta-
neously under particular conditions in living cells, such as
the switch of lac operon in Escherichia coli [6], the forma-
tion of biofilm [7], and the entrance into competence state
[8] in Bacillus subtilis, etc.
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Several recent studies discovered strong connections
between noise and gene regulation mechanisms through
measuring variability in protein and mRNA levels
[9, 10]. Both experimental and theoretical results sug-
gested that the switching rates of gene between its active
and inactive states have significant effects on the noise
of gene expression [11, 12] and are highly responsible
to different gene expression dynamics. Previous theo-
retical studies mainly focused on the regime with fast
switching rates [13–15], however, recently some unique
phenomena are observed especially when switching rates
are slow, either due to the chromatin remodeling pre-
cess [16] or the transportation of transcription factor
into nucleus [17]. Thus, it is important and desirable to
provide an approach which can effectively identify the
key dynamical features of gene expression system when
switching rates are slow, and to distinguish the regime
of gene regulatory networks from different phenotypic
variations.
In this paper, we aim at providing a method to

distinguish the rates of genetic switches from pheno-
typic variations. First, we systematically investigated the
dynamical and stochastic properties of different genetic
regulatory models in a comparative way when biochem-
ical rates for gene activation/inactivation, transcription,
translation, and mRNA/protein degradation vary over a
wide range. We focused on a two-state gene-expression
model with positive feedback loop, which is simplified
from a four-state gene-expression network taking account
of chromatin opening/closing step and regulatory protein
binding/unbinding step [16, 18]. In the regime when the
rates of gene activation/inactivation are relatively small
compared with the synthesis/degradation rates of mRNAs
and proteins, we found that the effective dynamics can be
reduced to independent evolutions on two separate lay-
ers. We reconstructed the energy landscape of the system
through Gaussian mixture approximations, and it is qual-
itatively different from the previously known picture in
[15, 19]. In the regime with relatively fast switching rates,
we briefly discussed about the system based on our previ-
ous study with large deviation theory [15]. In the regime
with intermediate switching rates, we utilized the mean
switching time (MST) to investigate the stability of the
system in different parameter ranges. In the following
paragraphs, we will call these three regimes as slow, fast,
and intermediate regimes for convenience. Finally, based
on our theoretical understanding of the essential dynam-
ics of the slow, intermediate and fast regimes, we designed
a simulation experiment to distinguish the three regimes.
We identified the intermediate regime from the fact that
cellular memory is much weaker in this regime than the
other two regimes. And we distinguished the slow and fast
regimes through their different response behavior with
respect to switching rates perturbations. Our study gives

a global characterization of the genetic switching dynam-
ics in various cells and has potential guidance in real
experiments.

Methods
We consider a four-state gene-expressionmodel with pos-
itive feedback loop (Fig. 1a). Proteins are self-activators
in this system, since they can bind to DNA and acti-
vate the transcription step. Chromatin opening becomes
relatively easy when DNA is bounded by a monomer
regulatory protein. Open chromatin structure is permis-
sible for transcription whereas closed chromatin is not.
The rate of mRNA production reaches its maximum on
the bounded and open state of DNA. Additionally, pro-
teins and mRNAs are subject to degradation, which is not
shown in Fig. 1a. Assuming that binding and release of
regulatory proteins are in fast equilibrium [20, 21], this
four-state model can be simplified into a two-state model
(Fig. 1b) through the quasi-steady-state approximation
(QSSA) (see Additional file 1 for derivation details)
[22, 23]. We will say that the gene is open (closed) when
the chromatin is open (closed), and the system switches
between open and closed gene states through gene
activation/inactivation steps.
In the two-state model, there are six reactions occur-

ring among four chemical species. All of the reactions
involved in this system are summarized in Table 1. Here
m and n are the numbers of protein molecules and
mRNA molecules, respectively. The jump rate into the
open state and the transcription rate are controlled by
the relative occupancy of protein at DNA binding site
(i.e. OP), whereas the jump rate into the closed state is
not affected by the number of proteins. OP has the form
OP = n/(n + K), where K is a constant by reduction
and represents the strength of positive feedback. It is
actually the conditional probability of state (iv) in Fig. 1a
given that the chromatin is open. The rates kGOP + kG0
and kROP + kR0 characterize the gene activation and
mRNA synthesis, which are dependent of the number of
proteins. The constants dG, kP, dR and dP correspond to
the rates of gene inactivation, protein synthesis, mRNA
and protein degradation. In fact, if we assume that dimer
proteins (or other multimer-type of proteins) regulate the
gene instead of the monomer protein, OP will have the
form OP = nk/(nk + Kk). The value of k will not influ-
ence the essential dynamics of the gene expression model,
on condition that we choose proper range of parame-
ters with respect to different k. Under some reasonable
assumptions, most of the derivations and results in the
next section are still correct (see Additional file 1 for
details).
Due to the intrinsic noise, the dynamics of the system

can be described by the chemical master equation (CME)
[1, 24–27] as
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Fig. 1 Schematic representation of the genetic switching model with positive feedback. a Four-state model. A single regulatory protein can bound
to the DNA and improve the efficiency of chromatin opening. When the chromatin is open, mRNA is synthesized and will later be translated into a
regulatory protein. The four states of DNA are (i) closed and unbounded, (ii) closed and bounded, (iii) open and unbounded, (iv) open and bounded.
The switches between the adjacent states are reversible. b Simplified two-state model. Binding/unbinding is reduced through the QSSA

dP0(m, n)

dt
= −

(
kG0 + kG

n
n + K

)
P0(m, n)

+ dGP1(m, n) + kP[P0(m, n − 1) − P0(m, n)]

+ dR[ (m + 1)P0(m + 1, n) − mP0(m, n)]

+ dP[ (n + 1)P0(m, n + 1) − nP0(m, n)] ,
(1)

Table 1 Reactions in the two-state gene expression network
with positive feedback

Number Reaction

1 DNAopen
dG−−−−−−−−→ DNAclosed

2 DNAclosed
kGOP+KG0−−−−−−−−→ DNAopen

3 DNAopen
kROP+KR0−−−−−−−−→ DNAopen+m

4 m
kP−−−−−−−−→ n

5 m
dR−−−−−−−−→ ∅

6 n
dP−−−−−−−−→ ∅

dP1(m, n)

dt
=

(
kG0 + kG

n
n + K

)
P0(m, n)

− dGP1(m, n) + kP[P1(m, n − 1) − P1(m, n)]

+
(
kR0 + kR

n
n + K

)
[P1(m − 1, n)− P1(m, n)]

+ dR[ (m + 1)P1(m + 1, n) − mP1(m, n)]
+ dP[ (n + 1)P1(m, n + 1) − nP1(m, n)] ,

(2)

where Pα(m, n) stands for the probability that there arem
mRNA molecules and n protein molecules in the system
when the gene is open (α = 1) or closed (α = 0). One
possibility to study the behavior of the system is to numer-
ically solve Eqs. 1-(2) by truncating the domain and setting
the boundary conditions Pα(m, n) = 0 whenm � M, n �
N (M,N is large enough, α = 0, 1). But simply obtaining
this solution does not mean we understand the essential
mechanism of the dynamics, and the computational effort
may be huge when the mean number of molecules is quite
large in this system. Thus, we aim to find other ways to
learn about the dynamics.
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We define a key parameter κ to compare two char-
acteristic timescales of the problem: the timescale d−1

P
on which the gene state changes and the timescale d−1

G
on which the number of protein and mRNA molecules
changes, where d−1

P is the lifetime of a single protein
and d−1

G is the lifetime of the open gene state. The ratio
κ = dG/dP can take any positive value, which will lead
to notable differences in the dynamics. Small ratios (κ �
0.01) describe long timescales of the change in gene states,
compared with the timescale on which mRNA and pro-
tein numbers change. In this regime, there is enough
time for the system to reach a steady state when gene is
either open or closed. Transition from one steady state
to another always occurs immediately after the genetic
switches. Large values of the ratio (κ � 1) indicate that
the gene states change very rapidly, whereas the synthesis
and degradation of protein and mRNA molecules are rel-
atively slow. As κ goes to infinity, the system exhibits the
deterministic features [13, 15].When κ is neither large nor
small enough, genetic switches, transcription and transla-
tion will take place on the same timescale. The dynamics
is complicate in this regime, and analytical results are
hard to reach. So we resort to numerical simulations and
extract useful information. In all of the three regimes,
metastable states may occur with proper choice of param-
eters. Indeed, we will utilize a set of biologically relevant
parameters in later computations (see Additional file 1 for
details). For convenience, we will call the steady state with
relatively large number of proteins as on state, whereas the
steady state with relatively small number of proteins is off
state.

Results
Case A: slow regime
We first consider the slow regime where the gene states
change very slowly compared with the synthesis and
degradation of proteins and mRNAs. We start from con-
structing the energy landscape, which is a useful way to
illustrate the dynamics of the system. We simply take the
definition of the potential as U(m, n) = − lnP(m, n),
which is commonly used by Wang et al. [14, 28, 29]. Here
P is the invariant distribution with the form P(m, n) =
P0(m, n)+P1(m, n). Solving the CME of the system (1)-(2)
with brutal force, we get the energy landscape as shown in
Fig. 2a. It contains two attracting basins, among which the
one with large number of molecules is related to the open
state, whereas the other one located at the origin is related
to the closed state. As the global energy landscape reflects
the steady state distribution of the system, it can not tell us
non-equilibrium information. Below we will address this
issue by reducing the dynamics and revealing the essential
nature of the system.
A careful observation shows that the gene will stay on a

single state for a very long time and then make transition

to another state. So we decouple the landscape into two
separated layers according to the gene state (Fig. 2b). The
upper layer stands for the open state, whereas the lower
layer stands for the closed state. Transitions between
two layers do not often occur. Each layer has only one
steady state, which can be found through deterministic
rate equations

dm
dt

=α

(
kR0 + kR

n
n + K

)
− dRm,

dn
dt

=kPm − dPn,
(3)

where α takes value 0 if the gene is closed and value 1 if the
gene is open. The steady states of Eq. 3 when α = 0 and
1 characterize the attraction points in the overall energy
landscape and the relaxation from one steady state to the
other corresponds to the transition paths. If the noise
effect can not be neglected, we can further get the dif-
fusion approximation beyond Eq. 3 (see Additional file 1
for details). When the system size is large, the dynamical
process on each level can be approximated by diffusion
process [30–32]. We consider the concentration variables
x = m/V , y = n/V on the lattice N2/V , where V is the
volume size. Define x = (x, y), then the first and second
moments of the process satisfy

ẋ = c(α, x(t)),
σ̇ = σ (t)JT (α, t) + J(α, t)σ (t) + 2D(α, x(t)),

(4)

where c(α, x) and D(α, x) have the form

c =
[

−dRx + α
(
kR0 + kR y

y+k

)
kPx − dPy

]
,

D = 1
2

[
dRx + α

(
kR0 + kR y

y+k

)
0

0 kPx + dPy

]
.

(5)

J(α, t) is the Jacobian of c(α, x(t)), and σ (t) is the covari-
ance matrix of the system. Thus, given α = 0 or 1,
the dynamics of the system can be well approximated by
the time evolution of the moment Eqs. 4 and the tran-
sition paths mainly follow the solution of the ODEs (3)
(Fig. 2a, b). This is verified by Gillespie’s stochastic simula-
tion algorithm and the results are shown in Fig. 2c, d. The
darkness of the shading points represents the number of
visits for transition paths, and the fitted curve shows nice
coincidence with the deterministic path, which strongly
supports our methodology.
This understanding can also be utilized to get a sim-

ple approximation of the invariant distribution. When the
rates of genetic switches are extremely slow, the system
will mainly stay in closed-state basin or open-state basin
with rare transitions. So we have κ ≈ 0, and we can
approximate the steady state distribution Pssα by simple
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Fig. 2 Illustrations of the energy landscapes and transition paths with slow switching rates. a A global view of the quasi-potential energy landscape
of the genetic switching system. Switching paths from off to on state (purple solid curve) and from on to off state (red solid curve) are deterministic
paths between two stable fixed points. We call the steady state with relatively large number of proteins as on state, whereas the steady state with
relatively small number of proteins is off state. b The two-layer decomposition of subfigure A. Jumps between two layers are rare events compared
with reactions on each individual landscape. c, d Averaged switching trajectories from simulations. We take the two stable fixed points in the
deterministic dynamics as the starting and ending points. Darkness of the shading points represents the average duration time on reactive
trajectories. We keep track of the trajectories from the time that gene states change to the time that the system reaches new stable state. We use
principal curve to characterize the averaged switching trajectories (green dashed curves). The results suggest that the average switching paths are
along deterministic paths. The parameters are KR = 100, KR0 = 0.1, kP = 51.5, dR = 0.7, dP = 1.4, dG = 0.0014, kG = 0.028, kG0 = 0.00028, and
K = 3000

Gaussian distributionN(xssα , σ ss
α ), where xssα and σ ss

α are the
corresponding steady state solution of Eq. 4. Furthermore
we can combine the two distributions to depict the invari-
ant distribution of the whole system through a Gaussian
mixture model

Pss(x) ≈ wN(xss0 , σ
ss
0 ) + (1 − w)N(xss1 , σ

ss
1 ), (6)

where the mixture weight w is the proportion of time that
the system stays on the closed layer. Since the mean time
that gene stays on the open layer is d−1

G , and the mean
time that gene stays on the closed layer is approximately
k−1
G0 (the steady state OP = 0 on this layer), the value of w
satisfies

w
1 − w

≈ kG0
dG

. (7)

Solve it and we get w = kG0/(kG0 + dG). This simple
Gaussian mixture approximation is shown and compared
with the accurate distribution in Fig. 3a, b. The approx-
imation seems to fit the solutions of Eqs. 1-(2) well,

especially around the steady point. But some details cor-
responding with the switching paths are neglected, which
makes some difference with the accurate solutions.
When the rates of genetic switches are relatively slow

but not extremely slow, we can refine the approximation
(Eq. 6) by taking into account the transition path informa-
tion. On the open layer, we solve Eq. 4 with initial values
(xss0 , σ ss

0 ) to get solutions (xt1, σ t
1). Then we use the time-

average of Gaussian distributions to approximate Pss1 (x),
i.e.

Pss1 (x) ≈ 1
T1

∫ T1

0
p(x, t)dt, (8)

where p(x, t) is the probability distribution density of
N(xt1, σ t

1), and T1 is the average time that system keeps
staying on the open layer. The same approach applies to
the approximation of Pss0 (x). Then we combine Pss0 (x) and
Pss1 (x) to get

Pss(x) ≈ wPss0 (x) + (1 − w)Pss1 (x), (9)
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Fig. 3 Illustrations of the simple Gaussian mixture approximation and the modified Gaussian mixture approximation to the accurate energy
landscape in the regime of slow switching rates. a The solution of CME which we take as the accurate energy landscape. b Illustration of the simple
Gaussian mixture approximation. c Illustration of the modified Gaussian mixture approximation. d, e, f The relative errors of two approximation
methods on the open layer, closed layer and global energy landscape. Dashed lines correspond to the simple Gaussian mixture approximation and
solid lines correspond to the modified approximation. We use the KL divergence (i.e. Kullback-Leibler divergence) to measure the difference
between two approximations and the accurate solution of CME. To make the KL divergence well defined, we assume that the minimum value of the
distributions in the truncated domain is 10−16 (i.e. replace the values which are less than 10−16 with 10−16). From the quantitative comparisons, we
find that the modified approximation is superior than the simple approximation since more detailed information are encoded. Parameter values are
the same with those in Fig. 2

where the value of w remains the same. We call Eq. 9 the
modified Gaussianmixture approximation and compare it
with the accurate distribution in Fig. 3c. Indeed, Eq. 6 is
the limit of Eq. 9 when κ → 0.
We also compute the relative errors of the two approx-

imations and find that the modified Gaussian mixture
approximation is superior than the simple Gaussian
mixture approximation nearly in the whole slow regime
(Fig. 3d, e, f). On both the open and the closed layers,
the modified Gaussian approximation performs better
than the simple Gaussian approximation. When the
switching rates are extremely slow, the two approx-
imations perform equally well. When κ is not very
small but still belongs to the slow regime, the simple
Gaussian approximation on the closed layer which is
a single-point delta distribution, deviates far from the
accurate solution. This is the main reason that simple
Gaussian mixture approximation has relatively large
errors.

Case B: fast regime
We now consider the case that genetic switches are much
faster than the other reactions in the system. In this
regime, the effective synthesis rate of mRNA is (kROP +
kR0)kon/(kon +koff ) according to the QSSA, where kon and
koff stand for the gene activation and inactivation rates.

The deterministic mean-field description of this model
yields the ODEs:

dm
dt

=
(
kR0 + kR n

n+K

) (
kG0 + kG n

n+K

)
(
dG + kG0 + kG n

n+K

) − dRm,

dn
dt

= kPm − dPn.

(10)

This system has two stable fixed points and one sad-
dle in physically reasonable parameter regime. These two
stable fixed points correspond to the expressed and unex-
pressed states at which the copy number of proteins is at
high or low state, respectively. As shown in the previous
section, the global energy landscape of the slow regime
also has two basins, which looks like the fast case in the
first sight. But the essential nature is totally different. The
bistability of the system in the slow regime originates from
the simple two-layer dynamics induced by genetic switch-
ing, whereas the bistability in the fast regime is from an
adiabatic reduction of the switching dynamics. The previ-
ous work of the authors has established a good framework
to understand the metastability based on large deviation
theory for Markov processes [15, 33]. In this frame-
work, we assume that the steady state distribution Pss(x)
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satisfies Pss(x) ∝ exp(VS(x)), where S(x) is the global
quasi-potential function that we focus on, and the vol-
ume size V is inversely proportional to the noise strength.
FromWKB asymptotics [13] or the large deviation theory
[15, 33], we know that S(x) satisfies the Hamilton-Jacobi
equation H(x,∇S) = 0 from the leading order analysis
for the corresponding CME, where H is the Hamiltonian
of the system. However, solving the Hamilton-Jacobi
equation is not an easy task, and we utilize an alterna-
tive efficient optimization approach to obtain S(x). We
define the local quasi-potential S(x; x0) with respect to a
metastable state x0 as

S(x; x0) = inf
T>0

inf
φ,φ(0)=x0,φ(T)=x

∫ T

0
L(φ, φ̇)dt, (11)

where L is the Lagrangian, which is the Legendre trans-
form of the Hamiltonian H, and the path φ are all possible
continuous connections from x0 to x within time T. From
classical mechanics, the double minimization problem
(11) can be transformed to a single minimization with

respect to the intrinsic representation of the curves φ(s)
by Maupertuis’ principle [15, 34] as

S(x; x0) = inf
φ(0)=x0,φ(1)=x

H(φ,p)=0,Hp(φ,p)=λφ′

∫ 1

0
p(s) · dφ(s), (12)

where p(s) and λ are determined from the constraints for
each φ(s). This minimization problem can be efficiently
solved by using the geometric minimum action method
(gMAM) [15, 34]. S(x) can be obtained from its local ver-
sion S(x; x0) by a suitable sticking procedure [15, 33].With
this approach, we can construct the global quasi-potential
energy landscape S(x) and obtain the most probable tran-
sition paths between two metastable states. More details
can be referred to [15].
With proper values of parameters, the system has two

metastable states and the global quasi-potential energy
landscape can be constructed as shown in Fig. 4a. The
landscape looks similar with Fig. 2, but transition paths
between two basins show different features. In the slow

Fig. 4 Illustrations of the energy landscapes and transition paths with fast switching rates. a The global quasi-potential energy landscape of the
genetic switching system. The most probable switching paths from off to on state (purple solid curve) and from on to off state (red solid curve) both
pass through the saddle point. b Details of subfigure A. c, d The principal curves (green dashed curves) fitted from shading points obtained by
Gillespie’s algorithm compare with the optimal transition paths. The result shows good matching between the fitted curves and the theoretical
results. The parameters dG = 140, kG = 2800, kG0 = 28, and the others are the same with those in Fig. 2
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regime, the transition paths are characterized by the solu-
tions of deterministic ODEs (3) and they do not intersect
at any point. In the fast regime, the most probable transi-
tion paths of on-to-off switching and off-to-on switching
are not identical, either. They intersect at an unique point,
i.e. the saddle point of the deterministic ODEs (10), but
they do not cross over each other (Fig. 4a, b). We also
present the results by Gillespie’s algorithm and compare
the theoretically predicted optimal transition paths and
the fitted curves in Fig. 4c, d. The comparison shows
good matching between the fitted curves and the theoret-
ical transition paths. Our results are consistent with the
previous studies [15, 35].

Case C: intermediate regime and comparisons
In both the fast and slow regimes, we have already illus-
trated some analytical approaches to quantitatively under-
stand the global energy landscape and transitions between
metastable states in gene expression model with positive
feedback. But in the intermediate regime, where all of
the reactions are on the same time scale, these analytical
methods fail, since it is difficult to find the appropri-
ate deterministic equations and hard to know whether
steady states exist in the system. Thus we compute the key
properties in the intermediate regime through Gillespie’s
algorithm and compare the results with the slow and fast
regimes.
We simulate the mean switching time (MST) with dif-

ferent parameters. TheMST is the average transition time
between two basins on the global energy landscape, which
is often used to characterize the stability of the attrac-
tors. Figure 5 shows the MST with respect to different
κ and positive feedback strength K. When κ increases
from 10−5 to 105, the gene activation rate changes from
slow to fast regimes. Since we focus on switching times

between metastable states, the value of K should be cho-
sen to guarantee that bistability always exists in the system
with respect to all the possible values of κ . We define
the existence of bistability as that the system stay at each
metastable state with probability more than 0.01. In the
slow regime, bistability always exists for any positive K. In
the intermediate and fast regimes, we find two boundary
values of K, which are K = 2754 and K = 3211. When
K < 2754, the system will stay at the off state with proba-
bility less than 0.01, whereas when K > 3211, the system
will stay at the on state with probability less than 0.01. The
smaller K is, the larger positive feedback strength is.
In the slow regime, the MST can be characterized by

the waiting time for transitions to occur, so the MST
decreases as κ increases. In this regime, K has little
effect on MST, which is consistent with our analysis in
Case A that the MST of on-to-off and off-to-on transi-
tions is approximately d−1

G and k−1
G0 , respectively. When

κ increases to a value between 10−2 and 10−1, the MST
decreases to its global minimum point, and a neighbor-
hood of this point is corresponding to the intermediate
regime. Then the MST goes up with κ increasing, and
finally reaches a stable value in the fast regime. In the
fast regime, when K changes from 2754 to 3211 (i.e. the
strength of positive feedback decreases), the MST of off-
to-on switch increases by a factor of about 10, whereas
theMST of on-to-off switch decreases by a factor of about
103. Thus, if the positive feedback becomes stronger, the
system will be more probable to stay at the on state,
with shorter off-to-on switching time and longer on-to-off
switching time.
Longer MST indicates that metastable states are more

stable. Thus, our results in Fig. 5 show that the slow and
fast regimes perform better in stability, whereas in the
intermediate regime, genetic switches, transcription and
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Fig. 5 The mean switching time (MST) as a function of κ with different positive feedback strength. aMST curve of off-to-on switch. bMST curve of
on-to-off switch. Parameters are the same with with Fig. 2 except dG , kG , kG0, and K. When κ changes, dG should change simultaneously to keep
dG/kG , dG/kG0 locked (these ratios are the same with Fig. 2). We use different strength of positive feedback for simulations, which is K = 2754 (green
dashed lines with square markers), 3000 (black solid lines), 3211 (red dashed lines with triangular markers). All of the results are obtained from
Gillespie’s algorithm
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translation are on the same time scale, which contributes
to large fluctuations of molecule numbers and relatively
short MST. These properties remain the same with differ-
ent positive feedback strength. Furthermore, we also did
some interesting simulations to study the change of tran-
sition paths as a function of κ (see Additional file 1 for
details).
We should mention that the above points are direct

observations from numerical results, which are hard to
be proven analytically. However, we can confirm from the
derivations in Case A that when κ is extremely small,
the MST of on-to-off and off-to-on transitions is approxi-
mately d−1

G and k−1
G0 . That is to say, the downward-sloping

shapes of the left parts of the MST curves are qualitatively
robust. Besides, when κ goes to infinity, theMST will con-
verge to some constant values [15]. So the flat parts on
the right of the MST curves are also theoretically sup-
ported. The existence of “valleys” in the MST curves is in
accordance with the intuition, but it is difficult to give a
rigorous proof. To investigate the robustness of the whole
qualitative shape of the MST curve with respect to dif-
ferent feedback actions, we simulated all the results with
OP = n2/(n2 +K2), and found that the shapes of the MST
curves are almost the same as in Fig. 5. We may reason-
ably infer that all results still hold assuming that OP is a
Hill function and the bistability exists in both slow and
fast regimes (see Additional file 1 for more details). These
results suggest a natural methodology to distinguish the
different genetic activation/inactivation rates in the cellu-
lar phenotype observations, which is described in detail in
the continued text.

Distinguishing the three regimes
In molecular experiments, it is hard to directly measure
the switching rates of the active or inactive gene state.
Based on the obtained results, we propose a method to
distinguish which regime the considered system falls in.
Consider a gene expression circuits with the positive feed-
back in a eukaryotic cellular system (Fig. 1), such as the
yeast or the immune cell etc, we can observe the level of
proteins through fluorescence or other markers by flow
cytometry. Below we will show how to take advantage
of these perceivable data and related analysis to make
corresponding distinction.
First let us introduce how to identify the intermediate

regime. We utilize the strength of cellular memory as the
index, andmore concretely, we sort the cells by the protein
level and observe how long the sorted cells will take to
reach the original invariant distribution of proteins. The
detailed flow cytometry procedure of our experiments in
silico is stated in the following two steps.

• Step 1: Sorting the cells by the protein levels. For
example, we choose n = 400 as the threshold of

classification in our model setup, where n is the
number of protein molecules in a cell. We call the
cells with large number of proteins (n > 400) as P+
cells, and the cells with small number of proteins
(n � 400) as P− cells. We define the fraction of P+
cells in a cell group as the P+ fraction. Figure 6a
illustrates the numerically sorted results of the
system, including 50,000 sample points which are
randomly selected according to the invariant
distribution, and P+/P− cells are classified by the
protein level in each cell. To apply this approach to
the gene regulatory network with different
parameters, one need to choose an appropriate
threshold according to the real situation, which needs
to lie between two metastable states.

• Step 2: Culturing the sorted P+ and P− groups of cells
separately, and recoding the changes of P+ fractions
in each group. Figure 6b, c show the simulation
results of the P+ and P− groups respectively. The
evolution of the protein distributions of the sorted P+
group is simulated and illustrated in Fig. 6g, including
results of the slow, intermediate and fast regimes.
The sorted P+ group of cells in the intermediate
regime can be observed to evolve quickly to its initial
equilibrium state. In the third day, a large percent of
P+ cells in the intermediate regime have evolved to
the P− group, whereas the P+ cells in the slow and
fast regimes have little change. This suggests that
cellular memory is much stronger in the slow and fast
regimes compared with the intermediate regime.

In the real experiments, we do not know whether the
time for an appreciable change of protein levels is long
or short without reliable reference. But the MST in the
intermediate regime is approximately the time for cells to
reach a metastable state after leaving another metastable
state, thus we can use it as a reference time. We define T
as the on-to-off (or off-to-on) transition time, which does
not contain the dwell time at the on (or off ) state. Since
the synthesis and degradation rates of mRNAs and pro-
teins can be estimated through experimental approaches,
we can theoretically figure out the time that the system
will spend to reach the off state after leaving the on state.
That is to say, T can be roughly estimated a priorily. So
we make experiments like Fig. 6g for a period of time
which is close to T. If the value of P+ fraction changes evi-
dently towards the equilibrium level, we will know that the
system belongs to the intermediate regime.
Second we try to identify the fast and slow regimes

through the perturbation-response behavior of changing
κ . As shown in Fig. 5a, the MST becomes larger and
larger when κ approaches to zero, but it increases and
gradually stays close to a fixed value when κ is large.
Thus, if we perturb κ through injection of particular
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Fig. 6 Amethod we propose to distinguish the slow, intermediate and fast regimes. (a) 50,000 sample points are selected randomly according to the
invariant distribution solved from the CME, i.e. 50,000 cells are selected randomly from a cell population. Then the cells are classified by the number
of proteins. We call the cells with large number of proteins (n > 400) as P+ cells, and the cells with small number of proteins (n � 400) as P- cells. We
define the fraction of P+ cells in a cell group as P+ fraction. b, cWe simulate the evolution of the two groups for a long time with Gillespie’s algorithm.
The change of P+ fractions are recorded in solid lines and the final values of P+ fractions are drawn in dashed lines. It is obvious that cells of the
intermediate regime have shorter memory, for they rapidly recover to the origin unsorted state (invariant distribution). d, e, f If we perturb κ (through
changing dG and keeping the ratios dG/kG , dG/kG0 and other parameters unchanged), the lines of P+ fractions are shifted in different ways with
respect to different regimes. In the slow regime (κ = 0.001), P+ fraction changes more quickly when κ increases, whereas in the relative fast regime
(κ = 2, 50), the time spent for cells to recover to the invariant distribution is longer or unchanged when κ increases. g The evolution of distributions
in the view of protein molecules. These are detailed data of subfigure B which illustrate our thought clearly. h Comparison of the slow, intermediate
and fast regimes. Using this method, we successfully distinguish the three regimes. The parameters are the same with Fig. 5 in all the figures above

chemicals, cells in the two regimes will perform differ-
ently in the experiments we designed above. Figure 6d,
e, f illustrate the results of corresponding numerical
simulations. In the slow regime (κ = 0.001), P+ frac-
tion changes more quickly when κ increases, whereas
in the relatively fast regime (κ = 2, 50), the time for
cells to recover to the invariant distribution is longer

or unchanged when κ increases. With this perturbation-
response approach, the slow and fast regimes can also
be distinguished from each other (Fig. 6h). When the
positive feedback strength K takes the boundary values
mentioned in case C, the simulation experiments above
still work well (see Additional file 1 for details). This
proposal, based on our theoretical understanding of the
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feature of the three regimes, is yet to be justified by
experimentalists.

Discussion
Understanding the dynamical features and the energy
landscapes of the gene regulatory network is an interest-
ing and challenging topic in quantitative biology. Some
approaches focused on the regime of fast switching
rates have been developed in recent years, whereas the
slow regime which many eukaryotic cells correspond to
attracts less attention. In this paper, besides the theoretical
analysis of the essential dynamics in the slow, interme-
diate and fast regimes, we provide a method to distin-
guish these three regimes. The result is meaningful and
enlightening for the design of corresponding biological
experiments.
With regard to a previous work about stochastic dynam-

ics of single regulating genes [19], we provide a systematic
study to understand the genetic switching dynamics when
the switching rates are in different regimes. Although the
global quasi-potential energy landscape and other prop-
erties of the system can be obtained from brutal force
through numerical simulations, the theoretical reduc-
tions can reveal the intrinsic mechanisms. We analyze the
model theoretically in the slow and fast regimes and suc-
cessfully reconstruct the global energy landscape which
reflects the inherent pattern of system behavior. But we
obtain little theoretical results in the intermediate regime,
since the nonexistence of time-scale separationmakes this
problem more challenging. Recent new ideas proposed
in this field may be helpful in the study of this regime
[36, 37].
A related but different concept with multi-layer land-

scapes for the DNA fast switching case was mentioned in
a recent literature [36]. However, we are mainly concerned
with the two-layer case when the system is in slow regime.
Besides understanding the system as decoupled layers,
we further study the properties about transition paths
and average switching time, and we construct the global
potential energy landscape through simple Gaussian mix-
ture and modified Gaussian mixture approximations.
These pictures are quite different from the case of fast
regime.
The MST is a key characterization of gene regulatory

networks and has been studied analytically with respect
to different genetic switching rates in [38]. Compared
with the detailed theoretical analysis for a typical one-
dimensional self-activating switch model, we can not give
fully theoretical results in the fast regime, i.e. the strictly
adiabatic regimes considered in [38], since our model
involves both mRNA and protein explicitly. However, we
present efficient numerical methods to make the quanti-
tative estimates. The results for the extremely slow regime
are also consistent with those obtained for non-adiabatic

regime (i.e. Eq. 7). We also suggested the landscape as an
intuitive tool to understand the essential dynamics of our
model. Overall, the shape of the MST curve we obtained
as a function of κ is qualitatively similar as in [38] as well.
The proposed quasi-potential energy function S(x) in

the fast regime has close connection with the poten-
tial function considered in previous studies. In Wang
et al’s approach [14, 39], they proposed to define the
energy landscape as U(x) = − lnPss(x), where Pss(x)
is the steady state distribution. We have the connection
that S(x) = limV→∞ V−1U(x) [15, 40] since U(x) itself
depends on the system size V. We also note that the pro-
posed quasi-potential S(x) satisfies the same Hamilton-
Jacobi equation as the potential defined in [41, 42] in the
diffusive approximations. But in addition, we provided a
variational minimization approach to explicitly construct
the S(x). Nonetheless, this construction is only valid for
the fast regime and it is quite different from the picture we
showed in the slow regime.
Although our four-state genetic switching model is

based on chromatin remodeling, this is no longer
expressed in the final simplified two-state model. In fact,
some prokaryotic cells also have similar gene regulatory
networks like Fig. 1b [17]. Our studymainly focuses on the
two-state model, which can be suitable for a wide variety
of cellular systems rather than the motivating chromatin
remodeling process. Our simulation experiment to dis-
tinguish the slow, intermediate and fast regimes is an
important point of the paper. So far, we are not able to
perform real experiments to make the verification. The
real experimental systems may be also more complicated
than themodel considered here. But our simulation exper-
iment is logically true and self-consistent, and there have
been related experiments performing well in Th2 cells
[16]. Finding suitable system and validating our proposal
will be an interesting task in the future.
Our study has potential application in single-cell experi-

ments [43–45]. In the single-cell gene expression analysis,
the protein level of each cell at different time points can
be obtained through tracking and recording the behavior
of each cell by fluorescence microscopy. With these data,
one can obtain the switching time as the time difference
between two consecutive states of a cell. Thus the MST
can be roughly estimated. Similar as the procedure in flow
cytometry experiments, the information about MST can
be utilized to identify the intermediate regime, and the
fast and slow regimes can be distinguished by perturb-
ing κ . However, these points remain to be investigated in
detail in the follow-up researches.

Conclusions
In this paper, we proposed a methodology to distinguish
the regime of genetic switching rates from phenotypic
variations in a simulation experiment. To accomplish this
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task, we put forward different reduction and investiga-
tion methods to reveal the essential dynamics of the
genetic switching system when the switching rates are
relatively slow, fast, or medium compared with the degra-
dation rates of proteins. Although in the fast and slow
regimes, the observed steady state distributions of the
mRNAs and proteins are similar, we showed that the
underlying mechanisms are qualitatively different. Based
on our results, we provided a simulation experiment to
distinguish these three regimes. The intermediate regime
can be identified from the fact that the strength of cel-
lular memory is lower than the other two cases, and
the fast and slow regimes can be distinguished by their
different perturbation-response behavior with respect to
the switching rates perturbations. We also discussed the
robustness of our results with respect to different choices
of parameters and feedback function forms. This study
provides insights to the experimental analysis of the gene
expression system. It will be interesting to investigate
similar problems in different experimental setups in the
future.
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