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Abstract

Background: Given its recent rapid development and the central role that modeling plays in the discipline, systems
biology clearly needs methods for automated modeling of dynamical systems. Process-based modeling focuses on
explanatory models of dynamical systems; it constructs such models from measured time-course data and formalized
modeling knowledge. In this paper, we apply process-based modeling to the practically relevant task of modeling the
Rab5-Rab7 conversion switch in endocytosis. The task is difficult due to the limited observability of the system
variables and the noisy measurements, which pose serious challenges to the process of model selection. To address
these issues, we propose a domain-specific model selection criteria that take into account knowledge about the
necessary properties of the simulated model behavior.

Results: In a series of modeling experiments, we compare the results of process-based modeling obtained with
different model selection criteria. The first is the standard maximum likelihood criterion based solely on least-squares
model error. The second one is a parsimony-based criterion that also takes into account model complexity. We also
introduce three domain-specific criteria based on domain expert expectations about the simulated behavior of an
endocytosis model. According to the first criterion, 90 of the candidate models are indistinguishable. Furthermore,
taking into account the complexity of the model does not lead to better model selection. However, the use of
domain-specific criteria results in a remarkable improvement over the other two model selection criteria.

Conclusions: We demonstrate the applicability of process-based modeling to the task of modeling the Rab5-Rab7
dynamics in endocytosis. Our experiments show that the domain-specific criteria outperform the standard
domain-independent criteria for model selection. We also find that some of the model structures discarded as
implausible in previous studies lead to the expected Rab5-Rab7 switch behavior.
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Background
The area of computational systems biology aims at pro-
viding computational methods and tools that help in
the processes of modeling biological systems, simulat-
ing the resulting models, and analyzing their behavior.
The modeling process begins with formulating struc-
tural hypotheses, i.e., the knowledge-driven identification
of the constituent system entities and the interactions
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between them. There are many modeling formalisms for
systems biology that have been developed for the purpose
of transformation of structural hypotheses into inter-
pretable and executable models [1, 2]. Since systems biol-
ogy focuses on dynamical behavior at the molecular level,
where change of properties of molecular constituents is
observed through time, ordinary differential equations are
most commonly used to formulate mathematical models.
In order to refine a conjectured model structure into

a complete model, one has to estimate the values of the
model parameters. The parameter estimation task is often
formulated as a nonlinear optimization problem [3, 4],
where the aim is to minimize the discrepancy between
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the model simulation and the measured behavior of the
observed system. Many of the commonly used systems
biology tools, such as COPASI [5], CellDesigner [6] and
others, focus on the parameter estimation task, consid-
ering a single model structure provided by the human
modeler.
Recently, computational methods for automated mod-

eling that address both structure identification and
parameter estimation, have emerged. On the one hand,
probabilistic methods [7] are intrinsically slow and inef-
ficient when applied to large classes of complex model
structures. On the other hand machine learning meth-
ods for equation discovery [8] are applicable in complex
modeling scenarios [9]. A notable recent development
is process-based modeling that allows for the integra-
tion of knowledge and measured data into the process
of inducing mathematical models of dynamical systems
[10–12]. These approaches have already been successfully
applied in systems biology [13, 14] to the tasks of mod-
eling the structure and dynamics of biological networks
from time-course measurement data.
In this paper, we apply process-based modeling to endo-

cytosis, an indispensable part of the cell immune response.
Endocytosis is the target of many modeling efforts in sys-
tems biology. Del Conte-Zerial et al. [15] present such an
effort focusing on the early phase of endocytosis, i.e., the
conversion of Rab5 domain proteins to Rab7 domain pro-
teins. They consider a number of alternative model struc-
tures, perform careful and extensive comparative analysis
thereof and propose a particular cut-out switch structure
as the most appropriate model of the Rab5-Rab7 conver-
sion. In a follow-up paper, Tashkova et al. [16] address the
task of estimating the parameters in this single cut-out
switch model structure.

Process-based modeling
Process-based modeling is concerned with inducing
explanatory models of dynamical systems from data
(measurements of the behavior of the observed system)
and knowledge (about modeling systems from the given
domain). A process-based model describes a dynami-
cal system at two levels of abstraction. At the higher

abstraction level, the model is cast as a set of entities
(that correspond to system variables) and processes (i.e.
interactions between the entities). At the lower abstrac-
tion level, each process includes a set of differential
and/or algebraic equations, whichmodels the correspond-
ing interaction between the entities involved in the pro-
cess. While the higher level bears the explanatory power
of a process-based model, revealing the structure of its
interactions, the lower-level allows for automatic transfor-
mation of the model into a set of differential equations
that can be used to simulate the dynamical behavior of the
observed system.
ProBMoT [17] is a recent implementation of the

process-based paradigm for automated modeling of
dynamical systems from knowledge and data. It is imple-
mented in Java.
It is still under active development, with the most recent

version available for download at http://probmot.ijs.si.
A graphical description of the process of automated

modeling using ProBMoT is presented in Fig. 1. ProBMoT
takes as input time-series data, i.e., measurements of the
dynamical behavior of the observed system. It also takes
as input modeling knowledge about the studied domain,
represented as a library of template model components,
i.e., entities and processes. Finally, it takes as input a set of
constraints, i.e., an incompletemodel, that correspond to
the particular modeling assumptions made for the specific
task at hand.
The library of domain knowledge is a collection of

template entities and processes that represent generic
components for building models of dynamical systems
in the domain of interest. For a particular model-
ing task, the user specifies an incomplete model that
includes a set of entities in the observed system and
constraints on the possible interactions between them.
The specific entities in the modeling task are instances
of the generic template entities in the library. Using
them, ProBMoT can enumerate all possible instances
of process templates in the library. Following the con-
straints from the incomplete model, ProBMoT com-
bines these process instances into candidate model
structures.

Fig. 1 The process of automated modeling with ProBMoT

http://probmot.ijs.si
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For each candidate model structure, parameter esti-
mation is performed to obtain a set of point estimates
of the unknown model parameters that most adequately
explains the observed system behavior. To achieve this,
parameter estimation in ProBMoT minimizes an objec-
tive function that measures the difference between the
observed and the simulated behavior. To this end, ProB-
MoT employs various meta-heuristic optimization meth-
ods from the jMetal framework [18] and the SUNDIALS
suite for simulating ordinary differential equations [19].
The output of the parameter estimation task represents a
candidate model. After the parameter values for all candi-
date model structures have been estimated, the resulting
candidate models are ranked by the minimized value of
the objective function. Finally, the ranked list of candidate
models represents the output of ProBMoT.

Model selection
Given the output of ProBMoT, i.e. a ranked list of can-
didate models, we face the model selection problem
of selecting the most appropriate candidate model. By
default, the top-ranked model is selected that corre-
sponds to the maximum likelihood criterion for model
selection; it only takes into account the least-squares
fit to the observed data. However, for the task at
hand, the limited observability of protein concentra-
tions and the noise in the measurements pose seri-
ous challenges to this default model selection method
[16, 20], and the selected model often overfits the
observed data.
To address this problem, various model selection cri-

teria have been considered in systems biology [7]. Many
of them follow the parsimony principle by combining
the least-squares model error with the complexity of the
model structure. In addition to this general criterion for
model selection, we consider here domain-specific criteria
that take into account the expected and necessary prop-
erties of model simulations in the particular context of
endocytosis. We conjecture that these task-specific cri-
teria for model selection will outperform the other two,
general criteria.
Note that the model selection problem is especially

important in the context of automated modeling, where
large classes of candidate models are being considered.
Few computational tools that address the structure iden-
tification task (e.g., ABC-SysBio) recast model selection
into a parameter estimation task [21]. However, this refor-
mulation requires the user to specify a list of candi-
date models, a demanding and tedious task for a human
modeler. In contrast, process-based modeling offers a
more flexible formalism for specifying complex spaces of
candidate model structures. Additionally, ProBMoT can
consider arbitrary objective functions that correspond to
various model selection criteria.

Methods
First, we are going to cast the task of modeling the
Rab5-Rab7 conversion in endocytosis as a process-based
modeling task. Then, we are going to formally define the
three model section criteria used in the study. Finally, we
are going to introduce the experimental setup used for
the empirical evaluation and the performance compari-
son of themodels obtained using differentmodel selection
criteria.

Process-based modeling of endocytosis
Process-based modeling formalizes domain-specific
knowledge describing entities, that correspond to the
variables of the dynamic systems in the domain at hand,
and processes, that correspond to interactions between
entities. In the particular context of modeling endocyto-
sis, entities correspond to protein domains and processes
refer to biochemical interactions between them. The
structure of the library is based on a modular formulation
of the system of differential equations for modeling the
conversion between the Rab5 and Rab7 protein domains
[15] of the form:

dr5
dt

= K1 − (k1 + GEF5(R5,R7)) · r5 + GAP5(R5,R7) · R5

dR5
dt

= GEF5(R5,R7) · r5 − GAP5(R5,R7) · R5

dr7
dt

= K2 − (k2 + GEF7(R5,R7)) · r7 + GAP7(R5,R7) · R7

dR7
dt

= GEF7(R5,R7) · r7 − GAP7(R5,R7) · R7

(1)

where the variables r5 and r7 represent the concen-
trations of GDP-bound (passive state) Rab5 and Rab7
domain proteins, whileR5 andR7 represent the concentra-
tions of GTP-bound (active state) proteins. Furthermore,
the parameters Ki and ki represent GDP Dissociation
Inhibitor (GDI) association rates and GDI dissociation
fluxes respectively. The Rab5-Rab7 interactions labeled
with GEF represent activating reactions which catalyze
the GDP/GTP exchange by guanine nucleotide exchange
factors, while the GAP interactions represent reactions
which catalyse the GTP hydrolysis by means of GTPase-
activating proteins. The rates of both (GEF and GAP)
interactions depend on (are functions of) the GTP-bound
state concentrations of Rab5 and Rab7.
Figure 2 provides a graphical representation of the

model structure [15], where the dashed lines repre-
sent optional interactions between the Rab5 and Rab7
protein domains, while the solid lines represent non-
optional (mandatory) interactions. The pointed arrows
represent the catalisation (activation) of the correspond-
ing exchange or hydrolysis, while the inhibition of the
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Fig. 2 A graphical representation of the Rab5-Rab7 interaction model structure as considered by del Conte-Zerial et al. [15]

GDP/GTP exchange by the GEF5Exchange Inhibitor is
represented by a truncated line. del Conte-Zerial et al.
[15] consider a different set of functional forms for mod-
eling each of the four (GEF and GAP) interactions; the
combinations of the different functional forms they con-
sider result in only 54 different model structures from the
possible 126.
Based on the model structure, we start the development

of the process-based library for modeling endocytosis by
encoding a single template entity, presented in Table 1,
that refers to a general protein domain. The first two
variables in the template represent the concentrations of
the active-state (GTP_bound_state) and passive-state
(GDP_bound_state) proteins. The template includes
declarations of two constant parameters that correspond
to the dissociation flux and the association rate of the
protein molecules in the domain. Note that the tem-
plate entity from Table 1 represents an arbitrary protein
domain. In the particular model of endocytosis from Eq. 1,
the template entity instantiates into the two specific enti-
ties of Rab5 and Rab7. In the process-based formalism,
the variable Rab5.GDP_bound_state_conc, i.e.,
the GDP_bound_state_conc of the entity Rab5,
corresponds to the model variable r5. Similarly,
Rab7.GDI_dissociation_flux corresponds to the
model constant parameter k2.

Table 1 Part of the developed library of domain knowledge.
Definition of the template entity Protein

template entity Protein {
vars:

GDP_bound_state_conc {range:<0,2>},
GTP_bound_state_conc {range:<0,2>},
GEF, GAP, t;

consts:
GDI_dissociation_flux {range: <0.001, 4>},
GDI_association_rate {range: <0.001, 4>};

}
// ...

When it comes to the process templates, the ProBMoT
library, depicted in Fig. 3, closely follows the general struc-
ture of the endocytosis model from Fig. 2. Each node
in Fig. 3 corresponds to a template process, where the
top node label denotes the template name, while the fol-
lowing lines within the node correspond to subprocesses.
The template process Root specifies the way that the
models of individual subprocesses are being combined
into the system of differential equations presented in
Eq. 1.
The hierarchy of process templates specifies the

mutually exclusive alternatives for modeling individual
subprocesses in terms of the functional forms of the
kinetic laws that govern the observed interaction. For
example, the process template GDI_GDP_membrane_
interaction refers to the interactions between
the protein domains and GDI; it contains two
subprocesses of Association_with_GDI and
Disassociation_with_GDI. The two corresponding
process templates specify the specific mass action kinetic
laws used in the model. While each of these two process
templates specifies a single kinetic law, the two process
templates of GAPProcess and GAPProcessPlus spec-
ify two and three alternatives for modeling the hydrolysis
of GAP7 and GAP5 respectively. These include an
Intrinsic_Hydrolysis process whichmodels a sim-
ple non-catalyzed hydrolysis from the active to the passive
state of the protein domain and a Michaelis_Menten
process in which the active state of the opposing pro-
tein catalyzes the hydrolysis, a process described by a
Micaelis-Menten rate. The GAPProcessPlus defines
an additional alternative in the form of a Sigmoidal
process which describes the catalysis using a kinetic rate
following a sigmoidal function.
Similarly, the GEFProcess template describes the

three alternatives for modeling the GEF5 interaction. Two
of them describe the auto-catalysis of the exchange, while
the Exchange_Inhibition process describes an alter-
native of the interaction where the second protein inhibits
the exchange. Table 2 presents a snippet from a process-
based library for modeling endocytosis that illustrates the
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Fig. 3 A schematic representation of the process hierarchy in the library. The label of each node denotes the process name, each line in the content
of the node denotes a subprocesses

formalization of individual process templates. It contains
specifications of the three mutually exclusive modeling
choices for the GEF5 interaction (i.e., the GEFProcess
process template).
Finally, the GEFCombined template describes the

seven alternatives for modeling the GEF7 interaction.
Note that this process has two components (represented
by two arrows in Fig. 2): auto-activation and activation by
the second protein, both of which catalyze the exchange

between the active and the passive state of the concerned
protein. Therefore, some of the alternatives contain sub-
processes which account for the auto-catalysis component
and have the same functional forms as the auto-activating
alternatives for the GEFProcess template.
The whole process-based library for modeling endo-

cytosis, the incomplete model and the task description
that have been used to perform all the modeling experi-
ments elaborated later in the empirical part of the paper is

Table 2 Part of the developed library of domain knowledge. Definition of interaction processes with alternative forms

template process GEFProcess(p1: Protein, p2: Protein){
consts: ke{range:<0.001,4>},kf{range:<0.001,4>},kg{range:<0.001,4>},

km{range:<0.001,4>},ki{range:<0.001,4>};
}
template process MMKinetics : GEFProcess {

equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}
template process Sigmoidal_response : GEFProcess {

equations:
p1.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf);

}
template process Exchange_inhibition : GEFProcess {

equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(km*(1+p2.GTP_bound_state_conc/ki)

+ p1.GTP_bound_state_conc);
}
// ...
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available in Additional file 2. Given the library of domain
knowledge, ProBMoT enumerates 126 candidate model
structures for the particular endocytosis model of interac-
tion between the two protein domains of Rab5 and Rab7.
These 126 model structures correspond to the combi-
nations of modeling alternatives specified in the library;
the library specifies 2, 3, 3 and 7 alternatives for the
four subprocesses of GAPProcess, GAPProcessPlus,
GEFProcess and GEFCombined respectively, leading
to 2 · 3 · 3 · 7 = 126 combinations. Note that the candi-
datemodel structures considered by ProBMoT include the
54 structures analyzed by del Conte-Zerial et al. [15]. In
addition, ProBMoT considered 72 model structures that
the authors of [15] dismissed in their manual modeling
experiment as trivial and/or structurally flawed. In our
automated modeling experiment, we decided to minimize
the apriori modeling assumptions and consider all 126
model structures as valid alternatives. The distribution of
structure components in all 126 models can be seen in
Additional file 1: Figure S1.
Note finally, that the ranges specifying possible values

of the model parameters in the library closely follow the
ones used in previous studies: [ 0, 2] for the initial values
of the system variables (R5, R7, r5 and r7), [ 5, 195] for the
parameter td in the root process template, and [ 10−3, 4]
for all the other model parameters. We used the same
parameter estimation setting as the ones found to be most
suited to the endocytosis modeling task by Tashkova et al.
[16], i.e., the optimization method of Differential Evolu-
tion [22] with population size of 81, strategy rand/1/bin,
differential weight (F) of 0.942 and crossover probability
(Cr) of 0.915. The limit on the number of evaluations of
the objective function is 20 thousand times the number
of parameters, which amounts to about half a million of
evaluations per model structure.

Model selection
The standard approach to parameter estimation is the
one of least-squares, where we look for values of the con-
stant parameters that minimize the sum of squared errors
between the simulated model output and the observed
system behavior. In other words, we minimize a function
based on the sum of squared errors, which in the par-
ticular case of modeling endocytosis is calculated as the
average relative root mean squared error over the two
observed variables

E(m) = 1
2

·
⎛
⎝

√√√√∑
i(Rab5,i − R̂ab5,i)2∑
i(Rab5,i − Rab5)2

+
√√√√∑

i(Rab7,i − R̂ab7,i)2∑
i(Rab7,i − Rab7)2

⎞
⎠

(2)

where Rab5,i,Rab7,i and R̂ab5,i, R̂ab7,i denote the mea-
sured and simulated (using the model m) total concen-
trations of the corresponding Rab domain proteins at the
i-th time point, while Rab5,Rab7 denote the mean mea-
sured values of the corresponding concentrations across
all time points. The E measure normalizes the root mean
squared error, so that the value of 1 corresponds to the
error of a simple baselinemodel predicting the samemean
measured value of the output at each time point.
Note, however, that a sum of squared errors based crite-

rion might not be appropriate for use as a model selection
criterion for two main reasons. One is the limited observ-
ability of the system variables, which does not provide
enough information to discriminate among the different
model structures in the space of model structures. The
other reason is the risk of over-fitting the noisy data.
To address these two issues, we employ three additional
model selection criteria.
The following two are domain-dependent criterion

that take into account the desired behavior of the two
system variables that correspond to the concentrations of
the active-state Rab domain proteins in the endocytosis
model. Namely, when modeling endocytosis, the models
of cargo transport through conversion from Rab5 to Rab7
[15, 23] show that the dynamics of the system is con-
trolled by the active, GTP-bound state of the Rab domain
proteins, while the concentration of their inactive GDP-
bound state remains primarily constant throughout the
conversion. Therefore, one would expect that the simu-
lated concentration of the active-state Rab proteins should
be highly correlated to the corresponding model output
of total (active– and passive-state) protein concentration.
Given this expectation about the simulated model behav-
ior, one possible approach is to fit the concentrations of
the active-state Rab proteins against the data on total con-
centrations. This approach was used as an analysis tool
for the visual inspection of the model simulation against
observed behavior by del Conte-Zerial et al. [15]. How-
ever, Tashkova et al. [16] show that this approach fails for
parameter estimation, leads to over-fitting of the model to
the measured data, and poorly explains the true behavior
of the passive state Rab proteins. Here, we first propose an
alternative criterion formodel selection that discriminates
models based on the correlation between the simulated
values of the active-state Rab concentrations (̂R5, R̂7) with
the observed total concentrations (Rab5 and Rab7). In
particular, we measure

R(m) = 1
2

· (min(1 − r(̂R5,Rab5), 1)

+ min(1 − r(̂R7,Rab7), 1)),
(3)

where r(X,Y ) denotes the Pearson’s correlation coeffi-
cient between the time-series X and Y . The R measure
takes values in the range [ 0, 1]. The value indicates the
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degree of fit to the desired behavior of the hidden system
variables, where lower values indicate better correlation
between active-state and total protein concentrations.
Based on the same assumption, we introduce a second

domain-dependent criterion based on the time when the
switch between concentrations of Rab5 and Rab7 occurs:

X(m) = |ts − t̂s|
tmax − t0

(4)

where ts and t̂s are the switch time points observed in
the measured data and the model simulation respectively,
while t0 and tmax correspond to the first and the last
time point. Since we normalize the distance between the
switching point in the simulation and in the measured
data by the length of the entire observed time interval, the
X measure takes values in the range [ 0, 1].
We also consider a combination of the domain-

dependent criteria R(m) and X(m):

RX(m) = 1
2

· (R(m) + X(m)) (5)

To explore the trade-off between the error E(m) and
the different domain-dependent criteria, we introduce the
combined criteria,

ER(m) = α · E(m) + (1 − α) · R(m), (6)
EX(m) = α · E(m) + (1 − α) · X(m), (7)

ERX(m) = α · E(m) + (1 − α) · RX(m), (8)

where α is a trade-off parameter in the range [ 0, 1]. The
value of 0 leads to model selection based purely on the
domain-dependent criteria, while the value of 1 leads to
model selection based purely on the error E(m).
Finally, we also consider a general, domain indepen-

dent criterion commonly used to avoid overfitting, based
on the parsimony principle. Following this principle, from
a number of models with comparable error, we select
the simplest one. Model selection approaches that follow
the parsimony principle, such as the Akaike informa-
tion criterion or minimal description length [24], deal
with finding a trade-off between the model error and the
model complexity. In the particular case of process-based
models, we measure the complexity of a model as the
number of processes in the model structure, i.e., C(m) =
#processes(m). In turn, we introduce the β parameter
to trade-off between the model error (degree-of-fit) and
complexity, as follows:

EC(m) = β · E(m) + (1 − β) · C(m), (9)

where the value of the trade-off parameter β is in the range
of [ 0, 1].
A more complicated, domain-dependent, version of

this criterion can be derived from equations 6-8
and equation 9, which trade-off between the domain-
dependent criterion (instead of the error E(m)) and the

model complexity C(m)

ERC(m) = β · ER(m) + (1 − β) · C(m), (10)
EXC(m) = β · EX(m) + (1 − β) · C(m), (11)

ERXC(m) = β · ERX(m) + (1 − β) · C(m). (12)

For example, as ER(m) combines E(m) and R(m), ERC(m)

combines E(m), R(m), and C(m). When α = 1, R(m) is
not taken into account and the ERC(m) model selection
criterion becomes the (domain-independent) trade-off
between the model error and complexity, i.e., EC(m).

Evaluation of modeling performance
Before we test our central hypothesis that the domain-
specific model selection criteria are best suited for mod-
eling endocytosis, we define the metrics that we use to
measure the modeling performance of ProBMoT.
The first performance metric describes the ability of the

model selection method to discriminate between the 126
model structures considered by ProBMoT. Tomeasure the
discriminative power of a particular model selection cri-
terion, we run a ProBMoT experiment where the given
criterion is used to rank the models. We then depict the
error profile, i.e., plot the value of the given criterion for
each model against the increasing model rank; see Fig. 4
for an example. Furthermore, we refer to the initial flat
region of the error profile as the plateau; its length equals
the number of models it contains. A simple heuristic for
detecting the plateau is the test whether there is more than
10% error difference between two consecutive points. The
first such difference indicates the end of the plateau. For
example, the plateau of the error profile in Fig. 4 con-
tains 62models. Note that the plateau represents the set of
top-ranked model structures that are indistinguishable in
terms of the model selection criterion used to rank them.
The fewer models in the plateau, the better the perfor-
mance of the model selection criterion, i.e., its ability to
discriminate between the candidate model structures.

0 20 40 60 80 100 120
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Fig. 4 Error profile. Sorted ranking of the 126 models according to the
estimated values of the ER criterion. The trade-off parameter setting is
α = 0.5. Two long and two short plateaus can be identified in this
error profile
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Second, we compare the model structures in the first
plateau with the three groups of the models that have
been identified and grouped by their ability to produce
bistable behavior [15]. The first group includes 26 mod-
els that can reproduce the bistable switch behavior from
Rab5- to Rab7-dominated steady states, some of them fol-
low a toggle switch, others a cut-out switch. We will refer
to this first group of models as COT. The second group
includes 18 models that follow an in-phase switch; we
will refer to this second group of models as IP. The third
groups includes 10 models that can not reproduce a bi-
stable switch behavior; we will refer to this third group
of models as NOBS. For the model structures in the first
plateau, we are going to investigate the average rank of the
models in each of these three groups as an indicator of the
performance of our approach. We expect higher average
rank and number of models in the first plateau that belong
to the COT and IP groups, and relatively smaller aver-
age rank and number of models from the NOBS group. In
order to make a fair evaluation of the performance of our
approach and the chosenmodel selection criteria we com-
pletely exhaust all previously identified structural possi-
bilities. Since stability analysis has not been performed on
the remaining 72 model structures, we consider them to
be in a separate fourth group.
Third, we analyze the structure and behavior of the best

models. We aim at identifying the structure patterns for
the models in the first plateau: to this end, we analyze
the frequencies of the different modeling choices in the
first-plateau models for the four functions of GEF5, GAP5,
GEF7 andGAP7.We also report the structure and the sim-
ulated behavior of the top-ranked model. We repeat this
analysis for the models in the first plateau that also belong
to the COT and the IP groups.
Finally, we consider the problem of practical parameter

identifiability, i.e. the uniqueness of the estimated param-
eters for a candidate model given the available measured
data. A systematic study of a large number of systems biol-
ogy models [25] and previous studies of the problem of
identification of the model of the Rab5-Rab7 switch in
endocytosis [16], indicate identifiability problems: Param-
eters in models from the area of systems biology are
uncertain in general and the model proposed in the orig-
inal study has specific practical parameter identifiability
problems. Nevertheless, we investigate the possibility of
further discrimination of the models based on this prop-
erty, and the possible improvement of the identifiability
given the best found combination of domain-dependent
and independent criteria for optimization.
We follow the bootstrap method, proposed by Joshi

et al. [26], to perform the parameter identifiability analy-
sis, choosing it for several reasons. First, it provides more
reliable estimates of the parameter confidence intervals
compared to, for example, the Fisher-Information-Matrix

based method. Second, it is better suited for highly non-
linear models with high parameter-value uncertainties.
Third, the same method was used to perform parameter
identifiability of an endocitosys model [16]. Note however,
that the bootstrap method comes with a high computa-
tional cost since it requires a large number of parameter
estimations on the same model structure using different
data set with added random noise at a certain noise level.
The obtained parameter estimates are then used to ana-
lyze the distribution of the values of individual parameters
and the corresponding confidence intervals. We perform
the parameter identifiability for the three selected models:
the top-ranked model, the top-ranked COT model, and
the top-ranked IP model.

Ethics approval
No aspect of this study required ethics approval.

Results
In the experiments, we vary the values of the trade-off
parameters α and β in the range [ 0, 1] with a step of 0.1.
For each pair of values, we perform a single modeling
experiment by running ProBMoT with the correspond-
ing model selection criterion. We analyze the results of
the experiments in terms of the performance metrics
presented in the previous section.

Data
The data set used in the experiments of modeling endo-
cytosis is derived from the measurements used by del
Conte-Zerial et al. [15] and is available in Additional
file 3. These include measurements collected by tracking
early endosomes in three independent experiments that
lead to 28 time courses of Rab5 and Rab7 intensity. The
data from different experiments and time courses were
then aggregated by carefully performed manual scaling
and averaging into two time-series of length 10,571 time
points along the time interval of [-5, 300] seconds, where
the time point 0 corresponds to the Rab5-Rab7 conversion
switch point [15]. Finally, to use the same alignment of the
data against the model simulation as in previous studies
[15, 16], we shifted the time axis using the transformation
t ← t + 828.56.
Note that, due to the limitation of the measure-

ment equipment, only the total (that is active– and
passive-state) concentrations of the Rab5 and Rab7
domain proteins are observed: The observed values at
each time point correspond to Rab5 = R5 + r5 and
Rab7 = R7 + r7, respectively. Recall from Equation (1)
that R5,R7 and r5, r7 correspond to the concentrations
of the active (GTP-bound) and passive (GDP-bound)
state of the Rab domain proteins, respectively. To
deal with the limited observability of the system
variables in the ProBMoT model, we define its outputs
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as (rab5.GDP_bound_state_conc + rab5.GTP_
bound_state_conc) * K and (rab7.GDP_
bound_state_conc + rab7.GTP_bound_state_
conc) * K, where K denotes a scaling factor that allows
for proper matching of the measured data against the
simulated model outputs. Note that the range of values of
K considered by ProBMoT is [ 103, 105] [16].

Domain-independent model selection
We start by analyzing the modeling results obtained with
the default ProBMoT selection criterion of E, which cor-
responds to the setting of the trade-off parameters α = 1,
β = 1. As expected, all model errors are in a very narrow
range, shown in the plateau and box-plot in Fig. 5. The
plateau of size 113 shows that almost 90 % of all candidate
models are indistinguishable in terms of the E criterion.
One of the approaches to distinguish between model

structures is to performmodel selection using both model
error and complexity, i.e., using the EC model selection
criterion. The distribution of the complexity of the mod-
els is shown in Additional file 1: Figure S2. Figure 6
shows the influence of the β trade-off parameter on the
plateau size (black line-points) and the average ranks of
the COT (green line-points), IP (yellow line-points) and
NOBS models (red line-points). Note that small β values
lead to short plateaus including only the simplest model
structures, i.e., those including six processes, indicating
a strong preference towards simple models. The simu-
lated behavior of these models differs significantly from
the expected bi-stable switch behavior. On the other hand,
high β values lead to modeling performance comparable
to or worse than the model selection criterion E.

Domain-dependent model selection
In a similar manner, we explore the performance of
the ER, EX and ERX model selection criteria that
trade-off between model error and model fit to the
desired behavior of the hidden system variables. We find

that the domain-dependent criteria lead to remarkable
improvement in discriminative power over the domain-
independent model selection criteria.
Figure 7 shows the influence of the change of the trade-

off parameter α on the plateau size and the average ranks
of the COT, IP and NOBS models in the list of models
ranked using the ER criterion. Small and large values of α

lead to large plateaus, with a significant drop of the plateau
size for α = 0.4 and a minimum at α = 0.5. Note that this
value also leads to the smallest average ranks of the plausi-
ble model structures. Additional file 1: Figure S3 provides
further details on the results of the modeling experiment
using the ER criterion with α = 0.5. The size of the plateau
is 62, i.e., less than 50 % of all the candidate models; a
significant improvement in discriminative power over the
90 % obtained with E. Out of these 62 models, 13 have
structures belonging to the COT group, 8 to the IP group,
and 6 to the NOBS group. The range of errors is tight
with a mean value of 0.42, a median of 0.45 and a stan-
dard deviation of 0.04. Note that the obtained behavior
of some of the models in the first plateau can be consid-
ered as unsatisfactory, for example, the simulation of one
of the active-state concentrations of the proteins can be
uncorrelated to the corresponding measured density even
though the correlation is taken into account within the ER
criterion during optimization. We believe that this is due
to the strong influence of the E component in the used cri-
terion, combined with the imperfect optimization and the
identifiability issues presented below.
Figure 8 shows the influence of the α value on the

plateau size and the average ranks of the COT, IP and
NOBS models in the list of models ranked using the EX
criterion. The curve corresponding to the plateau size has
a similar saddle-like shape as the one for the ER crite-
rion from Fig. 7. The smallest plateau size is obtained for
α = 0.9. The size of the plateau is 42, reducing the per-
centage of candidate models in the plateau to 33 %, which
represents a further improvement over the ER criterion.

Fig. 5 Error profile and a box plot of the error obtained using the criterion E. Sorted ranking of the 126 models according to the estimated values of
the E criterion
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Fig. 6 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion EC. The plot is obtained by varying the values of the β trade-off parameter in the range [ 0, 1] with
an increment of 0.1

Fig. 7 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ER. The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1] with
an increment of 0.1

Fig. 8 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion EX . The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1] with
an increment of 0.1
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Additional file 1: Figure S4 provides details on the results
of the modeling experiment using the EX criterion with
α = 0.9. For values of α = 0.7 and α = 0.9, we find no
structures belonging to the NOBS group in the plateau. In
the smallest plateau, out of the 42 models, 15 have struc-
tures belonging to the COT group, 11 to the IP group
and none to the NOBS group. The range of errors is
significantly wider in comparison to the best case using
the ER criterion with a mean equal to 0.65, a median
of 0.73 and a standard deviation of 0.33, which leads to
the overall conclusion of significantly improved discrim-
inative power. In contrast to the experiments using the
ER criterion, the behavior of the models in the plateau,
regarding the optimized point of switch, is within the
boundaries of the expected, i.e. there is no unsatisfactory
behavior.
Combining the two domain-dependent criteria brings

further improvements. Figure 9 shows the influence of α

on the plateau size and the distribution of the ranks of the
plausible model structures in the plateau using the ERX
criterion. We observe a smooth saddle like shape of the
plateau size as a function of α. The smallest plateau size is
obtained for α = 0.5. The size of this plateau is 33, reduc-
ing the percentage of candidate models in the plateau
down to 26 %. Additional file 1: Figure S5 provides details
on the results of the modeling experiment using the ERX
criterion with α = 0.5. There are no structures shown to
not achieve bistable behavior in the plateau for values of
alpha larger than 0.3 and smaller than 1.0. In comparison
to using the EX criterion, the use of the combined ERX
criterion leads to a slightly smaller number of models that
have been shown to reproduce bistable behavior, slightly
tighter range of error values and improved overall qual-
ity of the models regarding their fit to the data and the
dynamic behavior of the components of the system. In the
smallest plateau, out of the 33 models, 10 have structures
belonging to the COT group, 7 to the IP group and none

to the NOBS group. The range of errors has a mean equal
to 0.47, a median of 0.44 and a standard deviation of 0.27.
Using the combined criterion, no models in the plateau
produce unsatisfactory behavior.
Going one step further, we combined the best perform-

ing domain-dependent criterion ERX (for α = 0.4) with
the normalized model complexity, to experiment with the
combined ERXC criterion. Figure 10 shows the results
of the experiments with varying values of the trade-off
parameter β . They are similar to the case of using the EC
criterion.
For the problem of modeling the Rab5-Rab7 switch in

endocytosis, no further improvements of discriminative
power can be achieved by considering the complexity of
the model structure for model selection. The optimized
values for each of the used criteria are uncorrelated to
the complexity of the model structures. The distribution
of errors for each criterion for each possible complexity
of the model structures can be seen in Additional file 1:
Figure S6.
Overall, the comparisons of the modeling results

obtained using different values of α and β reveal that the
ERX modeling criterion with α = 0.5 has the best ability
to discriminate between the candidate model structures.
For completeness of the results, Additional file 1:

Table S1 presents the values of all the components of
the combined ERX criterion, i.e., E, R and X for the 33
models in the first plateau of the ERX error profile from
Additional file 1: Figure S5. Additional file 1: Table S2
presents the values of all the components of the ERX
criterion for the least complex and the most complex
models.

Analysis of the obtainedmodels
We begin the analysis of the best obtained models, i.e.,
those in the first plateau of size 33, by analyzing the
distribution of the components of their structures. The

Fig. 9 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ERX . The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1]
with an increment of 0.1
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Fig. 10 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ERXC. The plot is obtained using the value α = 0.5 and by varying the values of the β trade-off
parameter in the range [ 0, 1] with an increment of 0.1

distribution is shown in Fig. 11. For the entire plateau
of models, it can be seen that there is a major shift
in distribution for the GEF5 functional forms in favor
of the Sigmoidal response, which is even more obvious
when considering the distribution in the major classes of

bistable models in the plateau. A minor shift in distri-
bution is present in the GAP5 functional forms favoring
the Sigmoidal response, which can be also observed in
the distribution for the major classes of bistable models.
In general, the evidence is in favor of positive regulation
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Fig. 11 Distribution of the structural components of the models in the plateau using the ERX criterion with α = 0.5. The distribution of the
components of all models (top left), the distribution of the components of the models in the plateau belonging to the COT group (bottom left) and
the distribution of components belonging to the IP group (bottom right)
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of the hydrolysis of active-state to passive-state Rab5 via
Rab7 as opposed to no regulation (intrinsic hydrolysis).
While there is no significant shift in distribution for the

GEF7 and GAP7 functional forms in the entire plateau,
there are important differences in the specific groups of
models. For the GEF7 process inmodels of the COT group
an auto-catalytic process of exchange must be present.
We observe a more frequent Sigmoidal than Michaelis-
Menten response to the active-state Rab7. Inmodels of the
IP group, the requirement for an auto-catalytic process is
not apparent. If it is present, however, it takes the form of
a Michaelis-Menten response to the active-state Rab7. It
can be also seen that the exchange of passive– to active-
state Rab7 is positively regulated by active-state Rab5 in
all cases.
For the GAP7 process, for both COT and IP group,

the Intrinsic hydrolysis alternative for the GAP7 process
is favored. This is indicative of an absence of regulation
of the hydrolysis of active-state to passive-state Rab7 via
Rab5, which is especially clear in the case of models from
the IP group.
We next take a closer look at a sample of three endocyto-

sis models from the plateau. We consider the top-ranked
model overall and the best locally ranked models in the
first plateau from each class of models.
Figure 12 depicts the structure of the top-ranked model

overall, its simulated output behavior compared with the
measurements, and the simulated behaviors of the hid-
den system variables (R5, R7, r5 and r7) representing the

concentrations of the active and passive states of the pro-
tein domains. The simulation of the total densities of the
protein domains has a reasonable fit to the measured data.
The structure of the model leads to a switch behavior due
to the strong influence of Rab5. However, there is no feed-
back mechanism which will allow for transition from one
to another stable behavior.
Figure 13 depicts the structure of the top-ranked model

having a structure belonging to the COT group. It is
ranked as fourth overall. The simulation of the total densi-
ties has a good fit to the measured data, both qualitatively
and quantitatively indistinguishable from the simulation
of the top-ranked model. The simulation of the active and
passive components of both protein domains achieve the
expected behavior. The dynamics of the active states of the
protein domains drives the dynamics of the system and
their switching time corresponds to the switching time
observed in the measurements. The passive state concen-
trations remain stable throughout the time of simulation.
The structure of the model allows for a cut-out switch

behavior due to the strong positive influence of Rab5 on
the exchange of passive to active-state Rab7 combined
with auto-activation of the exchange, which overpowers
the influence of Rab5 on the hydrolysis of Rab7 on one
hand, and the negative feedback fromRab7 to Rab5, which
leads to low concentrations of active-state Rab5 on the
other.
Figure 14 depicts the structure of the top-ranked model

having a structure belonging to the IP group. It is ranked

Fig. 12 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the top-ranked model, obtained using the ERX criterion with α = 0.5. The model has an error ERX = 0.126



Tanevski et al. BMC Systems Biology  (2015) 9:31 Page 14 of 17

Rab5-GDP Rab5-GTP
Exchange, GEF

Hydrolisis, GAP

Rab7-GTP Rab7-GDP
Exchange, GEF

Hydrolisis, GAP

Rab5-GDI Rab7-GDI

k1
K1

k2

K2

GEF5 Sigmoidal GEF7 Michaelis-Menten

GEF7 Michaelis-Menten

GAP7 Michaelis-MentenGAP5 Michaelis-Menten

850 900 950 1000 1050 1100 1150

0
1

2
3

4

Time (s)

C
on

ce
nt

ra
tio

n 
(m

ol
/l)

R5 R7
r5 r7

850 900 950 1000 1050 1100 1150

0
10

00
0

30
00

0
50

00
0

Time (s)

D
en

si
ty

 (
a.

u.
)

Rab5

Rab5^
Rab7

Rab7^

Fig. 13 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the best ranked model from the COT group, obtained using the ERX criterion with α = 0.5. The model is ranked fourth overall and has an error
ERX = 0.129

fifth overall. As with the previous models, the simulation
of the total densities has a good fit to the measured data.
The simulation of the active and passive state component
concentrations is qualitatively like the one of the previ-
ously discussed model. The structure reveals the reason
for the similar behavior.
Compared to the best COT model, the best IP model is

missing only a GAP7 interaction. The other present inter-
actions have the same functional forms. The dynamics
and the bistable behavior arise from the same sources dis-
cussed above, lacking only the negative feedback from the
active-state Rab5 via GAP7.
The practical parameter identifiability analysis per-

formed on the selected model structures shows, as

expected, parameter identifiability problems. Although
there is a slight improvement in the relative size of the
confidence interval to the mean and the estimates for all
models, overall the conclusions from our results corre-
spond with the conclusions from previous experiments
[16] on a related model.
The summarized statistics of the identifiability analysis

for each model can be seen in Additional file 1: Tables
S3–S5. The uncertainties (length of the 95 % confidence
interval) are large for a significant number of parame-
ters values for all functions, independent of the functional
alternative in the selected models.
The shape of the distribution of the parameters dif-

fers significantly in most of the cases from the normal
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Fig. 14 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the best ranked model from the IP group, obtained using the ERX criterion with α = 0.5. The model is ranked fifth overall and has an error
ERX = 0.129
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distribution, indicating non-linearity of the systems with
respect to their corresponding parameter values; see the
histograms shown in Additional file 1: Figures S8, S10
and S12. This difference is most evident in the top-ranked
model belonging to the IP group in contrast to the shapes
of the distributions of parameter values of the top-ranked
model structure. For the majority of the parameters, their
values were most frequently estimated to be in close
proximity to the bounds of the allowed range.
The correlation matrices for all model structures

(Additional file 1: Figures S7, S9 and S11) show high abso-
lute correlation values for certain sets of parameters. In
all three models, we observe high correlation of the asso-
ciation rate and the dissociation flux of the proteins with
GDI.
In the top-ranked model, there is high correlation

between the estimated values of the parameters of the
auto-catalysis component of GEF7 and between the
estimated values of the GAP7 intrinsic hydrolysis rate and
the maximum rate parameter in the Michaelis-Menten
term. There is a high positive correlation between the
estimated initial values of the active and passive states of
Rab5 and a high negative correlation between the esti-
mated initial values of the active and passive states of
Rab7.
In the top ranked model from the COT group, we

observe a high correlation between the intrinsic hydrolysis
rate and the maximum rate parameter in the Michaelis-
Menten term values in both the GAP5 and the GAP7
functions. As for the top-ranked model, there is a high
positive correlation between the estimated initial values of
the active and passive states of Rab5 and a high negative
correlation between the estimated initial values of the
active and passive states of Rab7.
In the top ranked model from the IP group, we observe

high correlation between all of the parameters of the
GEF5 and GAP5 function. There is a positive correla-
tion between the estimated initial values of the active and
passive states of Rab5.

Discussion
The combination of limited noisy observations, on one
hand, and the expectations about the behavior of the
unobserved system variables, on the other, poses a diffi-
cult model selection problem. We approach this problem
by combining several criteria for model selection. Two are
the standard model selection criteria of model error and
simplicity and three are based on the expected behavior of
hidden system variables.
The comparison of different criteria shows that the

simplicity-based criterion leads to little or no improve-
ment of discriminative power; the majority of the model
structures remain indistinguishable. This is also evident
from the low correlation of the optimized values for each

of the used criteria and the complexity of the model struc-
tures. The plateaus are not a result of over-fitting and
cannot be avoided by considering the principle of parsi-
mony. On the other hand, a combination of a domain-
independent least-squares based optimization criterion
with a simple problem-specific criterion is better suited
to the real-world problem at hand than the simplicity-
based criterion. In our experiments, the combination
of the domain-independent criterion with two different
domain-dependent criteria leads to additional improve-
ment. The introduction of domain-specific criteria leads
to significantly improved selectivity of the process-based
modeling algorithm. In the case of modeling endocyto-
sis, this improvement is evident from the absence of those
models which have been previously shown to havemonos-
table behavior (NOBS group), whose average rank (or lack
thereof) in the plateau we show in red color in the plots
for each criterion.
The simulation of the dynamics of both the observed

total density and the unobserved states of the protein
domains provides a good fit to the measured data and
expected dynamical behavior of the components of the
system. This property is consistent in the best ranked
models. Due to the existing parameter identifiability prob-
lems in all selected representative models, further dis-
crimination (based on the identifiability) cannot be made.
A number of models in the first plateau (even in the

experiment using the combination of criteria that has the
highest selectivity) do not belong to any of the COT,
IP or NOBS groups. Among these, there are some that
might be considered as structurally flawed under some
expectations for structural mechanisms as is the case
with the missing feedback mechanism in the top-ranked
model. The presence of these structures may be (in part)
a result of overfitting due to the complex representation
of processes, the number of free parameters, the limited
observability, and the quality of the data. Nevertheless,
some of these previously identified (but not considered)
models, given their performance, might lead to the recon-
sideration of parts of or their complete structure in further
studies.
We consider the introduction of domain-specific cri-

teria and the performed comparison to be an important
step towards improved automated modeling approaches
and a solution of the model selection problem. The major-
ity of model selection criteria employed in the domain
of systems biology are based either on likelihood, on
the Bayesian principle or a combination of the previ-
ous [7], due to their well-established reputation in other
areas. Most of them have the principle of parsimony
implicitly encoded. On the other hand, in biology, the
principle of parsimony should be sometimes set aside
in favor of selecting better (although more complex)
explanatory models [27]. We argue that knowledge-based,
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domain-specific criteria for model selection should be
considered prior to or in conjunction with approaches
based on the parsimony principle. These criteria can
offer solid alternative solutions for the model selec-
tion problem in scenarios with limited observability and
noisy data.
However, domain specific criteria for model selection

should always be carefully chosen, based on solid back-
ground, and their influence on the final selection deci-
sion should be carefully weighted. Combined with global
heuristic parameter estimation approaches, as used in
this study, inattentively chosen criteria might shift the
solution to an unwanted direction. Incorrect weight-
ing, on the other hand, might aggravate the selection
problem by under– or over-fitting of the candidate
models.

Conclusion
We have demonstrated the applicability of the automated
modeling tool ProBMoT to the real-world problem of
modeling the Rab5-Rab7 conversion switch in the impor-
tant cellular process of endocytosis. By using ProBMoT,
we improve upon the classical modeling approach by
using domain-specific knowledge, good practices, and
automation. While the applicability of ProBMoT and
other modeling approaches has been illustrated before
[13], this is the first study focusing on the problem of
model selection. In these terms, we go beyond the work
of Čerepnalkoski et al. [17] and Tashkova et al. [16] and
make a step further towards elucidating the problem of
model selection in the context of automated modeling of
dynamical systems.
Furthermore, we show that ProBMoT is able, in an auto-

mated fashion and using a combination of knowledge–
and data-driven modeling, to solve a complex, relevant
and challenging problem from the domain of systems biol-
ogy. We analyze its utility by comparing the results of
automated modeling with the ones obtained in a man-
ual modeling experiment. In this way, we evaluate both
the automated approach and the manual modeling pro-
cess. The results show that ProBMoT is able to recon-
struct the results of the manual experiment by using
limited and noisy observations of the modeled system.
The modeling experiments presented here confirm the
finding that a group of model structures able to achieve
a cut-out or toggle switch behavior explains the avail-
able data. We also show that another group of model
structures (IP group), previously considered less plausible,
and a number of previously not considered model struc-
tures, are still equally capable of reproducing the obser-
vations and expectations and should still be considered
as relevant.
We identify several points for further work. Addi-

tional criteria, more complex than the considered one,

which complement the information about the model
fit to the measured data should be considered. Such
criteria can be based on the properties of the model
structure: Del Conte-Zerial et al. [15] perform e.g. bifur-
cation and phase plane analysis on each model structure,
after which they dismiss the structures that lack certain
properties.
A similar effect can be achieved by apriori filtering

of candidate model structures based on their structural
properties. The constraining of the domain knowledge
based on valid assumptions and the introduction of spe-
cific knowledge related to the problem at hand, will result
in a reduced number of candidate models to be fitted. This
will reduce the computational time needed for the exper-
iments and facilitate the model selection problem. How-
ever, as shown trough our experiments, with the use of
a domain-specific criteria, the automated process-based
modeling achieves high selectivity even in the presence of
unfiltered model structures.
Finally, the automated modeling approach can be used

to gain knowledge about other dynamical systems, i.e.,
other parts of the endocytic pathway. The gained knowl-
edge can contribute to the development of a complete
explanatory model of endocytosis. By performing exper-
iments on other real-world problems, additional insight
into the process of automated modeling can be obtained.
This will further improve the used approaches, which can
in turn be used to discover better explanatory models.
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measurements used for fitting the model structures.
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17. Čerepnalkoski D, Taškova K, Todorovski L, Atanasova N, Džeroski S. The
influence of parameter fitting methods on model structure selection in
automated modeling of aquatic ecosystems. Ecol Model. 2012;245:
136–65. doi:10.1016/j.ecolmodel.2012.06.001.

18. Durillo JJ, Nebro AJ. jmetal: A java framework for multi-objective
optimization. Adv Eng Softw. 2011;42:760–71.

19. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE,
Woodward CS. SUNDIALS: suite of nonlinear and differential/algebraic
equation solvers. ACM Trans Math Softw. 2005;31(3):363–96.
doi:10.1145/1089014.1089020.

20. Tanevski J, Todorovski L, Kalaidzidis Y, Džeroski S. Inductive process
modeling of Rab5-Rab7 conversion in endocytosis. In: Proceeedings of
the sixteenth international conference on discovery science. Berlin:
Springer; 2013. p. 265–80.

21. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate
Bayesian computation scheme for parameter inference and model
selection in dynamical systems. J R Soc Interface. 2009;6:187–202.

22. Storn R, Price KV. Differential evolution: A simple and efficient heuristic
for global optimization over continuous spaces. J Glob Optim.
1997;11(34):341–59.

23. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of
progression from early to late endosomes. Cell. 2005;122:735–49.

24. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning,
2nd edn. Berlin: Springer; 2009.

25. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP.
Universally sloppy parameter sensitivities in systems biology models.
PLoS Comput Biol. 2007;3(10):. doi:10.1371/journal.pcbi.0030189.

26. Joshi M, Seidel-Morgenstern A, Kremling A. Exploiting the bootstrap
method for quantifying parameter confidence intervals in dynamical
systems. Metab Eng. 2006;8(5):447–55. doi:10.1016/j.ymben.2006.04.003.

27. Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma
M, Bruggeman FJ, Dunn W. Systems biology: the elements and principles
of life. FEBS Lett. 2009;583(24):3882–890.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Process-based modeling
	Model selection

	Methods
	Process-based modeling of endocytosis
	Model selection
	Evaluation of modeling performance
	Ethics approval

	Results
	Data
	Domain-independent model selection
	Domain-dependent model selection
	Analysis of the obtained models

	Discussion
	Conclusion
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

