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The organization of domains in proteins
obeys Menzerath-Altmann’s law of language

Khuram Shahzad1, Jay E. Mittenthal2 and Gustavo Caetano-Anollés1,3*
Abstract

Background: The combination of domains in multidomain proteins enhances their function and structure but
lengthens the molecules and increases their cost at cellular level.

Methods: The dependence of domain length on the number of domains a protein holds was surveyed for a set of
60 proteomes representing free-living organisms from all kingdoms of life. Distributions were fitted using non-linear
functions and fitted parameters interpreted with a formulation of decreasing returns.

Results: We find that domain length decreases with increasing number of domains in proteins, following the
Menzerath-Altmann (MA) law of language. Highly significant negative correlations exist for the set of proteomes
examined. Mathematically, the MA law expresses as a power law relationship that unfolds when molecular persistence
P is a function of domain accretion. P holds two terms, one reflecting the matter-energy cost of adding domains and
extending their length, the other reflecting how domain length and number impinges on information and biophysics.
The pattern of diminishing returns can therefore be explained as a frustrated interplay between the strategies of
economy, flexibility and robustness, matching previously observed trade-offs in the domain makeup of proteomes.
Proteomes of Archaea, Fungi and to a lesser degree Plants show the largest push towards molecular economy, each at
their own economic stratum. Fungi increase domain size in single domain proteins while reinforcing the pattern of
diminishing returns. In contrast, Metazoa, and to lesser degrees Protista and Bacteria, relax economy. Metazoa achieves
maximum flexibility and robustness by harboring compact molecules and complex domain organization, offering a
new functional vocabulary for molecular biology.

Conclusions: The tendency of parts to decrease their size when systems enlarge is universal for language and music,
and now for parts of macromolecules, extending the MA law to natural systems.
Background

“Life is a relationship between molecules, not a
property of any one molecule”
Emile Zuckerkandl and Linus Pauling [1]

Early last century, Paul Menzerath proposed a generality
for language constructs [2]. He found that longer syllables
contained shorter articulated sounds and later revealed that
words with more syllables were phonetically shorter. He
summarized his findings with the motto: “the greater the
whole, the smaller its constituents” (“Je größer das Ganze,
desto kleiner die Teile”) [3]. These qualitative statements
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were later elaborated mathematically by Gabriel Altmann
[4] and supported by statistical analyses of many languages
and linguistic and phonetic relationships of many types.
One general formulation of the accepted Menzerath-
Altmann’s (MA) law that adds the effect of hierarchy in the
makeup of parts [4] follows eq. (1)

y xð Þ ¼ Axbe−cx ð1Þ

with y(x) being the length of the parts, x representing
the length of the system (or constructs of parts), and A, b
and c fitting parameters. x can also represent a discrete
variable describing the number of parts that make up the
system. A more general formulation adds dependences on
additional variables [5]. y(x) is generally measured by
counting parts defined at a deeper level of the system’s
organization (e.g., amino acids of domains). This general
formulation of the law accommodates the effects of multi-
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level structure that is typical of language. Two special
cases of the equation occur when b = 0 or c = 0. The first
mathematical formulation describes how the length or size
of parts y(x) decreases monotonically with the length or
size of systems. However, the second formulation, eq. (2)

y xð Þ ¼ Axb ð2Þ

is the most commonly used equation of the MA law, since
it enables computation of fitting parameters in log-log
plots. This equation delimits a curve of a general two-
parameter power law form.
Language-like behavior has been extended to music

[6] and recently to genomes [7–10], making the MA law
a generality of both natural and human-made systems.
In biology, Menzerath’s tendency of the mean size of the
parts to decrease as the number of parts increases in a
system was shown to be expressed at the cellular and
biomolecular level as negative correlations between the
mean chromosome length and the number of chromo-
somes or the size of genomes [7, 8] and mean exon size
and the number of exons [9]. Very recently, quantitative
linguistic distribution models and statistical analyses have
also been used to explore the self-organization of coding
and non-coding genomic components [11] and amino acid
length distributions of proteins [12]. Here we report that
the organization of structural domains in proteins obeys
the MA law at the proteome level.
Protein molecules are eminently modular [13]. Recurrent

substructures appear in different molecular contexts. This
is particularly evident when considering the structural
domains of proteins. Domains are 3-dimensional (3D)
atomic arrangements of elements of secondary structure
that fold into well-packed structural units [14, 15] and are
evolutionarily conserved [16–18]. They fold and function
largely independently and contribute to overall protein
stability by establishing a multiplicity of intramolecular
interactions [19]. In evolution, domains combine in multi-
domain proteins by fusion or excise by fission processes,
driven mostly by the forces of genome rearrangement [20].
Consequently, the resultant ‘architectures’ afford functional
diversity drawn from both domain structure and domain
organization [21]. This fact is made evident by wide co-
option of ancient enzymatic activities in metabolic
networks [22]. The dynamics of the complex evolutionary
mechanics of domain combination results in global patterns
of domain gain and loss that materialize differently in the
proteomes of the three superkingdoms of life, Archaea,
Bacteria and Eukarya [23]. Moreover, phylogenomic ana-
lyses of protein domain structures in hundreds of pro-
teomes have shown that the bulk of multidomain proteins
appeared explosively quite late in evolution [20]. The rise
of domain organization possibly impacted constraints
imposed on early proteins by folding speed and protein
flexibility [24]. Domain combinations also affected the
length of domains and proteins [25, 26], with younger
domains exhibiting simpler and smaller structures [27].
Multidomain proteins, which globally make a significant

minority (26–32 %) of proteins in proteomes (they are
highly represented in eukaryotes), have on average substan-
tially smaller domains than single domain proteins [25].
This trend persists despite proteins of bacterial and
archaeal microbes evolving reductively relative to those
of eukaryotes by significant shortening of non-domain
linker sequences that do not affect domain length. Here
we explore how the number of domains in proteins impacts
the length of domains. Using a selected set of proteomes
sampled from the three superkingdoms we dissect sig-
nificant law-abiding reductive patterns operating at the
proteome level. Our results uncover the important role
of cellular economy, as it imposes strong evolutionary
pressure on domain structure and organization and biases
trade-off relationships needed for organismal persistence.

Results and discussion
The longer the protein the smaller its structural domains
We studied the dependence of the average domain length
(zk) of a protein on the number of protein domains it holds
(k) for a set of 60 proteomes representing organisms in
superkingdoms Archaea and Bacteria and kingdoms
Metazoa, Fungi, Plants and Protista of superkingdom
Eukarya. Each and every one of the 60 proteomes exam-
ined showed a significant negative correlation between
average domain lengths and numbers of domains in
proteins, both in logarithmic scale, when using a weighted
nonlinear least-squares curve fitting approach (Table 1). To
avoid fitting artifacts due to a small minority of proteins
harboring high number of domains, we excluded the ter-
minal outliers while retaining an average of 99.44 % (±0.91
SD) (range 96.8–100 %) of entries. Figure 1 shows an ex-
ample plot describing tight correlation in the proteomic
data of Homo sapiens. The linear regression lines in the
log-log plots showed high coefficients of determination (R2)
with values ranging 0.85–1.00 and significant F test-derived
correlations (F test; F = 11.5-2714; p < 0.0001-0.133; only 3
proteomes had p-values higher than 0.05) (Table 1). Since
R2 > 0.85 values are assumed to indicate satisfying fits
and F-test outliers may result from methodological
weaknesses of the regression statistics [27], both statis-
tics support in concert significant goodness of the re-
gression fits over ranges of k. In all cases, domain length
decreased monotonically with number of domains in
proteins, delimiting a MA law for proteomes. Slopes (b)
in the log-log plots ranged −0.113 to −0.404 (Table 1),
making explicit the negative correlation typical of the
MA power law.
Following elaborations by Meyer [28], we consider two

levels i and j of a system to be ‘MA-related’ when (i) the



Table 1 Summary table of correlation data for the 60 proteomes examined

No Kingdom Genus/Species G.a. Total proteins Selected proteins % data selected Slope (b) (± SE) Intercept (A) (± SE) R2 Genome size (kb) L* Le F-value p-value

1 Metazoa Homo sapiens hs 30610 30516 99.69 –0.354 (± 0.055) 199.555 (± 14.935) 0.91 3080436 522 286 106.83 <0.0001

2 Metazoa Apis mellifera ai 15858 15708 99.05 –0.308 (± 0.061) 212.979 (± 16.299) 0.91 200000 467 281 85.95 <0.0001

3 Metazoa Branchiostoma floridae bf 33445 33346 99.7 –0.404 (± 0.075) 197.516 (± 21.842) 0.91 480405 505 267 181.82 <0.0001

4 Metazoa Caenorhabditis elegans cl 14297 14224 99.49 –0.351 (± 0.037) 224.737 (± 6.234) 0.93 100272 530 286 116.85 <0.0001

5 Metazoa Danio rerio da 23072 22978 99.59 –0.374 (± 0.071) 206.682 (± 17.610) 0.92 1700000 504 285 147.17 <0.0001

6 Metazoa Gallus gallus gg 14376 14302 99.49 –0.304 (± 0.027) 203.088 (± 6.813) 0.95 1000000 573 295 251.53 <0.0001

7 Metazoa Lottia gigantea gy 12223 12162 99.5 –0.345 (± 0.087) 198.757 (± 20.942) 0.93 359500 441 253 143.64 <0.0001

8 Metazoa Ciona intestinalis is 11913 11773 98.82 –0.336 (± 0.051) 215.482 (± 12.309) 0.92 116700 497 285 78.86 <0.0001

9 Metazoa Xenopus laevis xl 23167 23151 99.93 –0.324 (± 0.020) 196.487 (± 4.213) 0.9 205432 456 262 100.49 <0.0001

10 Metazoa Daphnia pulex d7 11750 11705 99.62 –0.252 (± 0.045) 191.214 (± 9.103) 0.92 197300 437 242 100.8 <0.0001

11 Plants Arabidopsis thaliana at 15858 15856 99.99 –0.256 (± 0.067) 215.928 (± 12.090) 0.92 119707 470 271 68.11 0.0002

12 Plants Carica papaya r6 12095 12091 99.97 –0.149 (± 0.030) 190.871 (± 1.098) 0.9 271733 401 236 36.23 0.0038

13 Plants Chlamydomonas reinhardtii cy 7132 7073 99.17 –0.156 (± 0.059) 192.702 (± 8.648) 0.89 100000 581 234 16.59 0.0553

14 Plants Chlorella sp h2 6153 6147 99.9 –0.205 (± 0.034) 200.449 (± 5.810) 0.9 40000 473 248 45.33 0.0011

15 Plants Cyanidioschyzon merolae ya 3152 3127 99.21 –0.255 (± 0.041) 225.731 (± 7.531) 0.99 16520 525 281 158.93 0.0062

16 Plants Medicago truncatula mw 15858 14899 93.95 –0.045 (± 0.018) 183.279 (± 2.804) 0.97 500000 410 225 103.26 0.002

17 Plants Oryza sativa os 15858 15773 99.46 –0.121 (± 0.056) 206.214 (± 9.984) 0.85 420000 579 284 11.46 0.0773

18 Plants Physcomitrella patens pw 13310 13280 99.77 –0.178 (± 0.065) 205.616 (± 10.894) 0.93 453929 441 261 38.61 0.0084

19 Plants Vitis vinifera vt 17268 17241 99.84 –0.124 (± 0.035) 210.018 (± 5.922) 0.93 504600 461 274 38.68 0.0084

20 Plants Populus trichocarpa pt 15858 15857 99.99 –0.113 (± 0.027) 194.256 (± 1.770) 0.83 550000 454 244 24.91 0.0041

21 Fungi Ashbya gossypii go 2908 2897 99.62 –0.257 (± 0.061) 233.156 (± 14.176) 0.98 9200 532 293 136.05 0.0014

22 Fungi Candida glabrata gl 3155 3143 99.62 –0.267 (± 0.094) 235.165 (± 20.535) 0.92 12280 548 296 34.59 0.0098

23 Fungi Kluyveromyces waltii kw 3106 3094 99.61 –0.257 (± 0.153) 230.109 (± 28.805) 0.93 11000 509 286 37.22 0.0088

24 Fungi Laccaria bicolor lo 7148 7133 99.79 –0.164 (± 0.040) 208.118 (± 7.009) 0.95 58683 469 255 52.15 0.0055

25 Fungi Neurospora crassa ns 4745 4723 99.54 –0.271 (± 0.126) 239.997 (± 26.390) 0.93 37097 586 297 38.55 0.0084

26 Fungi Saccharomyces cerevisiae xs 3517 3503 99.6 –0.251 (± 0.065) 233.237 (± 13.702) 0.93 12069 556 295 41.92 0.0075

27 Fungi Aspergillus nidulans an 6335 6255 98.74 –0.288 (± 0.153) 247.290 (± 30.285) 0.93 30166 542 300 25.92 0.0365

28 Fungi Chaetomium globosum hg 5692 5647 99.21 –0.223 (± 0.058) 230.690 (± 11.844) 0.98 34336 594 290 137.78 0.0013

29 Fungi Coprinopsis cinerea or 6143 6138 99.92 –0.176 (± 0.072) 219.845 (± 16.101) 0.92 37500 559 280 54.21 0.0007

30 Fungi Phanerochaete chrysosporium fc 5688 5646 99.26 –0.265 (± 0.166) 232.617 (± 29.379) 0.9 30000 485 279 17.14 0.0537

31 Protista Aureococcus anophagefferens a6 7871 7664 97.37 –0.159 (± 0.067) 201.023 (± 10.281) 0.96 32000 543 245 22.34 0.1327

32 Protista Dictyostelium discoideum dt 6643 6597 99.31 –0.251 (± 0.098) 227.656 (± 20.211) 0.95 34000 – 295 73.82 0.001

33 Protista Giardia lamblia gf 2426 2348 96.78 –0.119 (± 0.005) 221.790 (± 0.882) 1 1192 630 279 2714.7 0.0122
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Table 1 Summary table of correlation data for the 60 proteomes examined (Continued)

34 Protista Monosiga brevicollis ov 5777 5691 98.51 –0.238 (± 0.052) 214.210 (± 10.717) 8 38648 – 284 147.68 0.0012

35 Protista Naegleria gruberi eb 8619 8607 99.86 –0.201 (± 0.129) 216.458 (± 23.734) 7 36000 543 268 19.87 0.021

36 Protista Paramecium tetraurelia ir 15858 15773 99.46 –0.213 (± 0.093) 208.394 (± 17.651) 200000 550 265 28.29 0.013

37 Protista Phaeodactylum tricornutum hr 5800 5784 99.72 –0.207 (± 0.095) 211.022 (± 16.193) 7 2753 – 255 20.58 0.0201

38 Protista Tetrahymena thermophila hy 11268 11174 99.17 –0.223 (± 0.120) 228.480 (± 27.268) 1 103927 825 303 39.97 0.0032

39 Protista Thalassiosira pseudonana tl 6238 6230 99.87 –0.184 (± 0.104) 206.013 (± 17.869) 6 25000 – 259 24.58 0.0077

40 Protista Bigelowiella natans bn 490 486 99.18 –0.210 (± 0.084) 207.501 (± 18.090) 9 91405.9 337 294 25.29 0.0152

41 Archaea Archaeoglobus fulgidus af 1573 1571 99.87 –0.239 (± 0.028) 200.756 (± 3.756) 6 2178 301 250 65.32 0.004

42 Archaea Candidatus Methanoregula 3p 1549 1548 99.94 –0.245 (± 0.042) 199.534 (± 11.096) 4 2542 332 259 115.37 <0.0001

43 Archaea Halobacterium salinarum 8 m 1284 1283 99.92 –0.314 (± 0.056) 213.881 (± 10.952) 8 2000 325 262 147.93 0.0012

44 Archaea Hyperthermus butylicus 5 m 983 977 99.39 –0.180 (± 0.031) 197.889 (± 4.878) 9 1667 309 238 187.21 0.0464

45 Archaea Methanocorpusculum labreanum 4 l 1128 1121 99.38 –0.304 (± 0.040) 211.796 (± 5.493) 2 1804 322 255 21.71 0.0431

46 Archaea Natronomonas pharaonis np 1553 1552 99.94 –0.291 (± 0.021) 213.048 (± 3.713) 7 2595 335 269 173.4 <.0001

47 Archaea Picrophilus torridus p3 1074 1071 99.72 –0.374 (± 0.177) 232.033 (± 30.236) 6 1549 332 273 51.29 0.0189

48 Archaea Pyrococcus abyssi pb 1229 1226 99.76 –0.226 (± 0.041) 209.505 (± 8.813) 6 1765 316 258 78.21 0.003

49 Archaea Staphylothermus marinus 0e 932 932 100 –0.232 (± 0.015) 210.751 (± 1.085) 1 1570 324 258 28.65 0.0128

50 Archaea Sulfolobus acidocaldarius za 1391 1391 100 –0.270 (± 0.043) 221.013 (± 7.876) 7 2225 316 267 98.46 0.0022

51 Bacteria Acidobacteria bacterium a3 3063 3061 99.93 –0.269 (± 0.033) 221.631 (± 12.549) 7 5001 384 287 202.13 <0.0001

52 Bacteria Cytophaga hutchinsonii 37 2172 2171 99.95 –0.263 (± 0.010) 217.536 (± 1.671) 9 4433 399 279 572.32 <0.0001

53 Bacteria Roseiflexus castenholzii 77 2981 2972 99.7 –0.289 (± 0.104) 229.016 (± 23.424) 5 5723 392 289 78.58 0.0009

54 Bacteria Leuconostoc mesenteroides 2 s 1317 1314 99.77 –0.291 (± 0.070) 224.144 (± 13.480) 6 2038 337 281 63.78 0.0041

55 Bacteria Paracoccus denitrificans 27 2893 2889 99.86 –0.331 (± 0.182) 226.498 (± 34.921) 1 4582 344 278 51.58 0.0008

56 Bacteria Polynucleobacter sp 0 s 1469 1469 100 –0.282 (± 0.055) 222.263 (± 18.110) 2159 350 286 54.08 0.0003

57 Bacteria Syntrophobacter fumaroxidans 0 l 2674 2674 100 –0.272 (± 0.032) 219.074 (± 8.425) 5 4990 376 288 117.56 <0.0001

58 Bacteria Arcobacter butzleri 6 k 1544 1538 99.61 –0.325 (± 0.118) 219.041 (± 22.723) 5 2341 354 268 57.99 0.0047

59 Bacteria Psychrobacter arcticus ri 1447 1442 99.65 –0.246 (± 0.097) 216.765 (± 19.062) 2650 361 281 36.05 0.0039

60 Bacteria Petrotoga mobilis 6y 1330 1328 99.85 –0.319 (± 0.127) 234.956 (± 26.153) 6 2169 361 296 68.67 0.0037

G.a. Two-letter genome abbreviation, L Average protein length, Le Effective protein length (sum of domain lengths)
*Missing average protein length information is indicated with a line
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Fig. 1 A log-log plot describing how average structural domain length (zk) of a protein decreases with the number of protein domains it holds
(k) for proteins in the proteome of Homo sapiens. Circles show the mean values of average number of domain lengths within a k value. The
horizontal bars on the circles depict the standard error of the means. The red line indicates the linear fitting (regression) line, which does not
pass through points with k > K’

Shahzad et al. BMC Systems Biology  (2015) 9:44 Page 5 of 13
system is hierarchically structured with n + 1 levels of
organization and i > j > n, (ii) a significant fit of the relation
between the length x of a higher level i sub-system and the
average length y(x) of the parts of a lower level j sub-system
exists, and (iii) immediate parts and subsystems (level i
parts and level i + 1 subsystems) are stochastically inde-
pendent. Specifically, length x of subsystem i (proteins in
proteomes) can be measured by counting terminal (lowest)
level n parts (amino acids) or by counting the number of
level-j subsystems (domains). Table 1 therefore shows that
domain parts and protein subsystems measured using
terminal amino acid parts are MA-related at the proteome
system level. We note that the evaluation of 60
proteomes appropriately samples the diversity of the
cellular world and meets in every case the fitting re-
quirements of the MA-relationship. It reveals a power
law-generating stochastic behavior that is likely universal
for proteomes and follows the MA law in a hierarchical sys-
tem of molecular structure. However, its study only gains
empirical interest if a rationale for the MA behavior
can be envisioned.

Menzerath-Altmann’s law links trade-offs between
determinants of persistence
Altmann suspected that the MA law was “somehow
connected with the principle of least effort or with some
not yet known principle of balance recompensating
lengthening on one hand with shortening on the other”
[4]. Here we put forth the hypothesis that the MA law rep-
resents a tendency towards economy in a trade-off relation-
ship, where improvement in one property occurs at the
expense of others. We will therefore unfold empirical
patterns at protein and proteome levels that would sup-
port our rationale and mathematical formulations.
In order to interpret the fitting parameters of the MA law

in linguistics, a statistical mechanics approach can be used
that makes use of classical particle physics to describe
words in text [29]. In the absence of a similar approach for
protein domain organization, we start by defining a persist-
ence function, which provides a heuristic argument for
interpreting the MA power law. We introduce a principle
of decreasing returns in domain organization to explain the
MA-dependency of Table 1. The principle states that the
persistence of a system (P) is related to two terms, a
cost describing the energy-matter investment in the
molecule (PC) that depends both on k, the number of
domains in a protein, and zk, the average length of a
domain [corresponding to x and y of eq. (2)], and a
term describing the flexibility and robustness of the
molecular system (PFR) that depends on L1, the length
of single domain proteins [i.e., the intercept, which
corresponds to A of eq. (2); Table 1], b, the slope
(which describes the decreasing return in domain
length zk with increasing k) and k. Persistence follows
eq. (3)

P ¼ PC þ PFR ¼ −kzk þ L1
bþ 1

kbþ1 ð3Þ

The derivative of the persistence function P with respect
to k, when set equal to zero, gives the power law version of
the MA formulation [eq. (2)] of eq. (4)

zk ¼ Akb ð4Þ

with A = L1. The function P is not always positive; it be-
comes negative for sufficiently large k or zk, beyond the
curve P = 0 in the (k, zk) plane. However, eq. [4] corre-
sponds to a ridge of maximum values for P between this
curve and the k and zk axes. Thus eq. (4) maximizes the
persistence function P. Substituting eq. (4) into eq. (3), we
get along the ridge eq. (5)
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Pmax ¼ −L1kbþ1 þ L1
bþ 1

xbþ1

¼ L1k
bþ1 1

bþ 1
−1

� �
¼ −L1kbþ1 b

bþ 1

� �
ð5Þ

Given eqs. (3) and (5), the flexibility plus robustness-
to-cost ratio R depends on slope b, following eq. (6)

R ¼ PFR

PC

����
���� ¼ 1

bþ 1
ð6Þ

Steeper slopes (more negative b, −1 < b < 0) give bigger
R ratios, which suggest increased trade-offs benefitting
flexibility and robustness over economy in the frustrated
landscape of molecular persistence. As we will now elab-
orate, this agrees with b representing a measure of struc-
tural and functional cooperativity among domains as
these accrete in proteins and extend their length.
Multidomain proteins provide both structural and func-

tional plasticity, including an increased repertoire of active,
regulatory, allosteric and binding sites, an increased
landscape of intramolecular stabilizing interactions, en-
hanced molecular flexibility, and the option of distributing
functions among the different domains [21, 30]. The com-
bination of domains in multidomain proteins by genomic
rearrangements, gains and losses manifests quite late in
evolution [13, 20], suggesting that domain accretion in
proteins is a derived evolutionary trait that benefits the in-
creasing tasks of evolving multi-level molecular and cellular
organization. Domains stabilize proteins in multidomain
proteins mainly through interaction between hydrophobic
residues in inter-domain interfaces [19]. The energy of
these interactions scales linearly with the surface area of
domain-domain interfaces, which depends on the size of
the protein. Interactions also enhance the stability of
individual domains, which constrains mutational substi-
tution of interacting residues. This matches the broad
observation that surface residues are less conserved in
proteins when compared to those that are buried in the
structural core (e.g., [31]). A recent comparison of number
of buried residues normalized to the radius of gyration of
domain structure has shown that younger domains tend to
have higher surface area to volume ratio than older coun-
terparts [27]. Since in general, younger domains engage in
massive domain combinatorics [13], then multidomain
proteins must be enriched in domains with relatively more
stable structural cores. Thus, increases in k must result
in increases of domain cooperativity during folding
and consequent increases of protein stability.
If the proteome imparts limits to cellular behavior, then a

number of crucial biophysical properties of proteins could
constrain proteomic and cellular make up. Biophysical
considerations have established that many properties of
single-domain proteins, including folding rate and collapse,
protein stability and size, and diffusion coefficients, simply
depend on chain length and are important for the growth
and fitness of the cell [32–35]. Scaling and distribution
relationships reveal that folding rate, collapse, size, stability
and diffusion of proteins depend simply on chain length
[33]. While proteomes were marginally stable to denatur-
ation, the function of cells appeared rate-limited not only
by protein synthesis but also by the diffusional transport of
proteins (which could explain compartmentalization in
eukaryotic organisms) and the folding kinetics of the
slowest-folding proteins of the cells. The dependence of
cellular processes on protein folding and length is not a
surprise. Length is a fundamental biophysical property of
biopolymers as they self-assemble to maximize thermo-
dynamic dissipation of energy [35]. Proteins transition
abruptly into the folded state through a remarkable co-
operative and frustrated process. Hydrophobic residues
are buried to form the globular core and charged and polar
residues that extend protein structure are exposed. This
process exhibits remarkable universal behavior. Folding
rates of both proteins and RNA scale as e√L, with L repre-
senting the length of the polymer. Similarly, the folding
and collapse transitions, which coincide, exhibit a coopera-
tive behavior Ω that scales with L1.22 [35]. Therefore,
folding cooperativity scales with protein length and there-
fore with k in multidomain proteins.
We reiterate that the persistence function P for pro-

teins and proteomes of eq. (3) depends solely on the
length and number of domains, and can be apportioned
into two separate terms. The first term reflects the
matter-energy cost of lengthening domains by addition
of amino acids or lengthening proteins by domain accre-
tion. This cost is mainly imposed by protein synthesis,
diffusion and folding and delimited by the mass-energy
equivalence imparted by biochemistry. For example,
shorter proteins that retain maximum rates of function
and have similar kinetic characteristics incur in lower
metabolic costs of translation [36], as long as the trade-
off maximizes cell physiology and growth rates. We note
however that the intensity of protein length reductive
pressure decreases if the fraction of cellular mass of the
protein decreases. This would be particularly significant
for highly diverse proteomes (e.g., Eukarya) and macro-
molecular crowding environments that maximize diffu-
sion rates and the kinetic efficiencies of proteins [25].
Similarly, domain length follows a narrow distribution [37],
limited by the benefits of fast folding of shorter proteins
and the stability offered by burial of hydrophobic residues
of structural cores of sufficient size. The second term of P
reflects the benefits of larger domains and multidomain
proteins, which contribute intramolecular interactions and
provide additional structural and functional bases for
increasing information flux through the system and enhan-
cing flexibility and robustness. Borrowing from Yafremava
et al. [38], we here define flexibility broadly as those
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structural and functional mechanisms that respond to
changes internal and external to the molecular system and
require processing of information. More flexible systems
are generally larger, harbor more complex functionalities,
and are more diverse in finding trade-off solutions. We de-
fine robustness as mechanisms that use information to
maintain structure and function despite external influence
and protect molecules from malfunction. Robustness in-
cludes stability but refers to broader processes that are pas-
sive from an information point of view. Information in
molecules is stored in intramolecular and intermolecular
interactions necessary for molecular function and stability
[39]. In domain combinations, information also material-
izes in the combinatorics of domains, which manifests at
chain and 3-D levels, and can be equated with language
information [21].
The persistence function therefore makes a mathem-

atically explicit framework of persistence strategies for
biomolecular systems, in which economy, flexibility and
robustness engage in various trade-off solutions. This
framework defines a ‘triangle of persistence’, which has
the potential to successfully explain organismal diversity
Fig. 2 Domain size and organization affects molecular persistence. a Prote
robustness (R) will find optimal trade-off solutions given matter-energy bud
(left panel) in the order A’, A, AB and ABC, where letters indicate their dom
are more expensive to make and maintain but provide flexibility and robus
the segregation transforms into a triangle that unfolds trade-off relationshi
is mainly driven by new levels of structural organization, such as the comb
emergence of protein complexes. These levels impose additional constrain
levels of the hierarchy
[38]. Figure 2 summarizes the framework as it applies to
domain structure and organization.

Patterns of decreasing returns in proteomes of kingdoms
and superkingdoms
The MA-law imposes patterns of decreasing returns for do-
main lengths of proteins of a proteome. These patterns re-
late to protein domain make up, domain function, and
evolutionary pressures imposed on the proteome as an
interacting body of the cell. Analyses of domain length in
proteins sampled from many proteomes (e.g., a set of PDB
structures [37]) may not reveal the MA relationship be-
cause the scaling patterns are global and proteome centric.
Conversely, a simple comparative analysis of the comple-
ment of protein domains in four kingdoms of Eukarya and
superkingdoms Archaea and Bacteria hold very distinctive
distributions of molecular functions [40] and domain rear-
rangements [20]. Thus, it is expected that specific pat-
terns of decreasing returns will exist for those groups.
We therefore plotted slope (b) versus intercept (L1) for each
proteome that we studied with the goal of dissecting the
contributions of economy and length of domains in single
ins with different propensities towards economy (E), flexibility (F) or
get and information. b Molecules segregate along a budgetary axis
ain makeup. The length of A’ is smaller than that of A. Larger proteins
tness benefits. Once an information flux is made explicit (right panel)
ps between flexibility and robustness. The extended vertex of flexibility
ination of domains in proteins, formation of quaternary structures and
ts on economy that are always satisfied by the MA law at different
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domain proteins that are characteristics of organismal
groups (Fig. 3a). The lengths of single domain proteins L1
act as upper bounds for the MA’s ‘shortening’ principle of
domain length, establishing a flexibility-robustness stratum
for a proteome in the triangle of persistence. Slopes ranged
from −0.045 for Medicago truncatula (Plants) to −0.404 for
Brachiostoma floridedae (Metazoa). Intercepts ranged from
183 for Medicago truncatula to 247 for Aspergillum nidu-
lans (Fungi). Most fungi exhibited the largest intercepts
and a substantial number of plants and metazoans showed
the smallest. Higher intercepts should be interpreted as lar-
ger ‘starting’ domain sizes fostering opportunities for flexi-
bility and robustness but counteracted by increased
burdens of cost. Most metazoans showed the steepest
slopes and substantial number of plants and protists the
shallowest. Steepest slopes should be interpreted as
Fig. 3 Patterns of decreasing returns in proteomes of Kingdoms and Supe
determination (R2) values for correlations in organismal groups are shown
largest for most fungi and smallest for a substantial number of plants and
plants and protists the shallowest. b Total number of domains vs. intercept
domains in proteome analyzed. Dashed trend lines described non-significa
stronger ‘push’ towards flexibility and robustness and corre-
sponding ‘counter-push’ towards economy in domain
organization. Proteomes distributed in the plot following a
fan-like pattern, with the top segment of the semi-circle oc-
cupied by Fungi, Protista-Bacteria-Plants, and Archaea, in
that order, and the bottom part by Metazoa. Plants and
Protista occupied the fan handle.
We find that proteomes in the plot showed higher linear

correlations for Fungi, Archaea and Plants (R2 = 0.59-0.87;
F = 11.4-54.6; p < 0.0001-0.01), the lowest correlation for
Bacteria (R2 = 0.36; F = 4.51; p = 0.067), and no significant
trends for Metazoa and Protista (R2 = 0.04-0.08; F = 0.34
−0.68; p = 0.432-0.575). Since slopes of proteome groups in
the slope b versus intercept L1 plots increase with single-
domain length (intercept L1) and increasing linear fits, we
hypothesize that this increasing trend, which is maximal in
rkingdoms. a Slope b vs. intercept L1 plot. Slope and coefficients of
for each fitted line. Most fungi exhibited the largest L1 intercepts were
metazoans. Most metazoans exhibited the steepest b slopes and most
L1 plot. The total number of domains is the total count of protein
nt fits (p > 0.05)
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Fungi, describes a ‘compressible’ property capable of redu-
cing domain length (Lk) when additional domains are ac-
creted in proteins (k > 1). In other words, proteomes like
those of fungi that exhibit on average longer domains in
single domain proteins are capable of considerable length
reduction as domains accrete in proteins. In turn, those that
have shorter average single domain proteins relax the re-
ductive tendency in multidomain proteins. Given the the-
oretical link that exists between b and both domain
cooperativity and stability elaborated above, and the
high surface area to volume ratio detected in new emer-
gent proteins [27], we propose that the ‘compressible’
property is associated with contact density in domain
structures, i.e., the fraction of buried sites in the atomic
structure. Contact density correlates positively with evolu-
tionary rate, measured as substitutions in protein sequence,
without being confounded by gene expression levels [41].
Consequently, the larger numbers of contacts buried in the
structures of larger domains, such as those of fungi, are
prone to increased structural change. This could acceler-
ate the reduction of the length of secondary structures
by domain accretion in multidomain proteins, as ac-
cretion increases buried surface area. Since domains in
a multidomain protein are translated at the same rate,
the effect of gene expression levels on sequence change
homogenizes differences in evolutionary rates of do-
mains in multidomain proteins [42]. Thus, increases in
evolutionary rates with domain number should extend to
the entire protein. We note that both fungi and plants, as
a group, are subject to increased levels of genomic rear-
rangements (via high recombination rates or transposon
activities), when compared to metazoan, bacterial and
archaeal microbes. This could result in increased
insertion-deletion (indel) dynamics in regions of sec-
ondary structure that would decrease the length of these
segments in evolution. Moreover, organismal groups
such as Archaea and Fungi are subjected to strong re-
ductive evolutionary pressures [43] that manifest in
highly reduced proteins and proteomes [25]. This trend
adds ‘compression’ tendencies to the length of multido-
main proteins in this group, even if the lengths of single
domain proteins are on average low.
We also plotted total number of domains in proteomes

versus intercept (L1) to reveal the effect of reductive evolu-
tion at proteome level on starting domain size of organis-
mal groups (Fig. 3b). As expected, the proteomes of the
microbial superkingdoms were highly reduced, an evolu-
tionary tendency imposed by an early pressure of demand-
ing microbial lifestyles to reduce protein complements
[38, 43]. However, proteomes of Bacteria showed larger L1
values than those of Archaea, uncovering additional reduc-
tive evolutionary constraints imposed on the archaeal mi-
crobes by lifestyle and history. With exception of Fungi, the
rest of eukaryotic kingdoms relaxed reductive evolutionary
constraints. Metazoa showed the largest repertoires and
low L1 domain lengths. Fungi showed the smallest reper-
toires and the largest L1 values. All organismal groups in
the plot were clearly dissected but none showed significant
correlations (R2 = 0.001-0.136).

Patterns of domain length over-representation in single
domain proteins
The effective average protein length (Le) represents the
sum of the length of individual domain constituents of a
protein, without considering linkers and terminal non-
domain sequences. We calculated Le for each proteome
using weights Mk, the number of proteins with k domains,
and averaging over all k up to K’, the largest value of k on
the linear part of the log-log plot. The plot L1 versus Le
(Fig. 4a) showed linear correlations with low goodness-of-
fit for proteomes in all kingdoms and superkingdoms
(R2 = 0.42-0.85; F = 5.92-44.74; p = 0.0002-0.041) with
the exception of Bacteria (R2 = 0.37; F = 4.66; p = 0.063).
All trend lines clustered together quite tightly showing
an expected overall increase of L1 with increasing Le.
The slopes, which vary from 0.352 to 0.866, represent
the fraction of total domain length apportioned to sin-
gle domain proteins (L1/Le). Slopes show the dispropor-
tionate large representation of single domain proteins
in microbial proteomes that hold only a limited reper-
toire of multidomain proteins. Slopes are maximal in
Fungi and Archaea (0.866 and 0.742), intermediate in
Plants and Bacteria (0.545 and 0.458) and minimal in
Protista and Metazoa (0.352 and 0.390). Thus, Fungi
and Archaea have significant overrepresentation of the
length of single domain proteins, a feature that correlates
with the high ‘compressible’ property revealed in Fig. 3a
and the fact that they represent the organismal groups sub-
jected to highest reductive tendencies in microbial and
eukaryotic superkingdoms, respectively, revealed in Fig. 3b.
The steepness of slopes follows the Fungi–Archaea >
Plants–Bacteria > Protista–Metazoa trend of the slope ver-
sus intercept plot. Similarly, the best supported linear fits
correlate with proteomes harboring larger proteins result-
ing from larger single domain proteins. Archaea is the
superkingdom harboring the most reduced protein domain
repertoires and the shortest proteins [25, 43]. This reduc-
tive trend is likely the result of mass economy and growth
rate optimization. It is therefore unsurprising that it is
costly for archaeal proteins to add more domains to a single
domain protein; L1 takes more of Le. A similar trend exists
in fungi, especially in ascomycetous yeast, which already
show significant reductive trends compared to other fungi
and other eukaryotes [40] (Nasir, A. and Caetano-Anollés,
unpublished). In our study, ascomycetes that include uni-
cellular yeasts and dimorphic fungi that switch between
unicellular and hyphal phases, have on average higher L1
(236 ± 6) and steeper slopes (−0.259 ± 0.018) than the rest



Fig. 4 Patterns of domain length overrepresentation in single domain proteins. a Intercept L1 vs. effective average protein length Le plot. Le
represents the sum of the length of individual domain constituents of a protein, without considering linkers and terminal non-domain sequences.
Le were calculated using weights Mk, the number of proteins with k domains, and averaging over all k up to K’, the largest value of k on the linear
part of the log-log plot (see Fig. 1 as example). b Effective average protein length Le vs. slope b plot. Slope and coefficients of determination (R2)
values for correlations in organismal groups are shown for each fitted line. Dashed trend lines described non-significant fits (p > 0.05)
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of fungi examined (220 ± 10 and −0.202 ± 0.045), support-
ing the reductive trend visible in Fig. 3b. Within Eukarya,
fungi also show maximum reductive evolutionary tenden-
cies in the repertoire of domains and associated functions,
when these are defined at fold superfamily level of struc-
tural classification (see Table S1 in [40]).
We also plotted Le versus slope b again revealing linear

correlations for Fungi and Archaea with low goodness-
of-fit (R2 = 0.63-0.66; F = 13.48-15.22; p = 0.0045-0.0063)
but non-significant fits for the rest (Fig. 4b). Most corre-
lations showed that b became steeper with increasing Le.
This is expected since larger proteins must impose in-
creased pressure to fulfill the decreasing return strategy
of the MA law and the principle of maximum economy.
Remarkably, groups showing the more significant linear
correlations (Fungi and Archaea) showed maximum
slopes in the plot, matching patterns observed in Fig. 3a.
Thus, the marked reductive evolutionary trends of Archaea
and Fungi that manifest at proteome level carry over to the
length of individual proteins, supporting a previous study
of reductive evolution [25]. We note that in Fig. 4b, the
slope of the archaeal group is steeper (−0.0044) than
that of fungi (−0.0025), revealing additional reductive
constraints that are imposed on the akaryotic microbial
superkingdom, which is significantly marked and un-
folded very early in protein evolution [43]. This is also
evident in the plot of Fig. 3b.

Conclusions
Processes of diminishing returns manifest when systems
search for optimality. The closer to the optimum condi-
tion, the more difficult the effort invested in attaining it.
For example, laboratory optimization of an arylesterase
function in an in vitro evolution experiment revealed
strong diminishing returns on enzymatic activity [44].
The first mutations in the bacterial population accounted
for most improvements and the last ones simply reinforced
the effects of early ones. In general, experiments that unfold
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new molecular functions also reveal the existence of evolu-
tionary trade-offs between stability and function (e.g., [45]).
Here we uncover similar processes of diminishing returns
and trade-offs operating during molecular accretion of do-
mains in proteins.
Menzerath’s insight suggested the existence of a universal

tendency of parts to decrease their size when systems
enlarge. The MA law appears universal for language and
music. Our study extends its validity to biological parts
and systems. In language, constituents of language con-
structs, such as the phonemes of words, are dynamic. They
change as language unfolds in human history. Similarly,
parts of biological systems, such as the domains of pro-
teins, change in molecular evolution. In the case of
domains, they increase or decrease in length and accrete in
multidomain proteins by the pervasive effects of mutations
and genomic rearrangements. We now find that protein
domain length decreases with increasing number of
domains in the proteins of proteomes. The existence of an
MA law in protein domain organization can be explained
as the consequence of the frustrated interaction between
the strategies of economy, flexibility and robustness. The
MA law represents a power law relationship that manifests
when unfolding molecular persistence P as a function of
domain accretion, measured as number of domains k in
proteins. P holds two terms, one reflecting the matter-
energy cost of adding domains and extending their length
in proteins, the other reflecting how domain length and
number impinges on information and the flexibility and
robustness of the molecular system. Thus, our persistence
function describes a frustrated landscape in a ‘persistence
triangle’ with vertices representing the three main
strategies.
A previous analysis of proteome makeup revealed that

organisms in kingdoms and superkingdoms preferen-
tially use flexibility and robustness properties in trade-
off relationships with economy as they face environmen-
tal uncertainties and negotiate survival [38]. Archaea
and the more flexible Bacteria gravitate towards the tri-
angle’s economy vertex. In turn, eukaryotic organisms
trade economy for flexibility and robustness as they
massively expand biological repertoires and levels of
organization. Protista occupy a saddle manifold separat-
ing Archaea and Bacteria from multicellular organisms.
Plants and the more flexible Fungi are less affected by
the positive feedback loop that pushes Metazoa towards
maximum flexibility. Our mathematical formulations of
persistence, which explain the MA power law, manifest
similar trade-off relationships in the proteins of pro-
teomes (Figs. 3b and 4b). Archaea, Fungi and to a lesser
degree Plants show the largest push towards economy,
each at their economic stratum. Fungi increase domain
size in single domain proteins while reinforcing the pat-
tern of diminishing returns in multidomain proteins.
Archaea and Plants follow the same strategy but relaxing
the push towards larger single domain size. In contrast,
Metazoa, and to lesser degrees Protista and Bacteria,
relax the MA pattern of economy returns within a broad
range of single domain sizes. Metazoa achieves maximum
flexibility and robustness in proteins by generating com-
pact molecules with a large number of domains and a
multiplicity of combinations. This strategy implemented by
Metazoa offers a new vocabulary for molecular functions
in biology and new levels of structural organization.

Methods
We selected 60 proteomes of free-living species from the
highly curated dataset of Wang et al. [25], which holds ~ 3
million sequences (from 745 proteomes) with structural do-
mains assigned using hidden Markov models (HMMs) of
structural recognition in SUPERFAMILY [46]. Species cov-
ered superkingdoms Archaea and Bacteria and the four
main kingdoms of Eukarya, Protista, Plants, Fungi and
Metazoa (animals). Protein entries were retrieved trusting
the reliability and robustness of HMMs that were used to
delimit domains, the low probability of cryptic domains
matching non-domain linker sequences (P < 0.0001) that
could affect assignments of sequences to multi-domain
protein groups, and the absence of biases imposed on
length estimates by superkingdom-specific Markovian
models [25]. A flat file was created with information about
protein ID, domain ID defined at superfamily level, domain
length and whole protein length. We averaged out domain
lengths (Yk

j ) against each domain number (k) for the se-
lected proteins. The following eqs. (7) and (8) were then
used to calculate the mean value (zk) and variance (sk

2)
respectively.

zk ¼
XMk

i¼1
Y j

k

Mk
ð7Þ

skð Þ2 ¼
XMk

j¼1
Y j

k−zk
� �2

Mk−1
ð8Þ

where zk =mean value of Yk
j within a k, Yk

j = sum of the
value for Mk’s at k point, Mk = number of proteins with k
domains, i = number of unique domains starting from 1
to M, k = unique domain number, j = number of Yk

points starting from 1, and (sk)
2 = variance.

The graphs of k versus zk were plotted with both axes
on a log10 scale. To avoid biases introduced by a small
minority of proteins harboring a large number of do-
mains (outliers with k ≤ K domains), we excluded pro-
teins with more than K’ domains and used the rest to
fit the lines. K’ was chosen by eye with the goal of
maximizing both R2 and the number of proteins
retained. Initial boundaries for the optimization were
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R2 > 0.8 and > 95 % of protein entries retained. Analysis
of several proteomes in preliminary studies showed that the
by-eye choice of K’ judged by marked departures from a
line gives nearly optimal fit. For example, inclusion of
proteins with K’ ≥ 14 domains of H. sapiens in the example
of Fig. 1 (up to the maximum of 20) decreases the R2 statis-
tics from 0.91 to 0.7. In turn, selecting K’ ≤ 5 domains
decreases the number of proteins retained from 99.7 to 95 %.
This brackets the K’= 13 domain boundary by exactly k=±7.
Lines were fitted in log space to eq. (9)

zk ¼ Akb ð9Þ
using the Excel solver for weighted and non-weighted
least squares of Harris [47], which fits experimental data
using non-linear functions. For the solver input, we used
k (k = 1 to K’), zk, standard errors of the means (Yerr),
and weight of kth value (wk) to calculate the slope (b),
intercept (L1) and their respective standard errors of the
means (SEM). We used the following eqs. (10) and (11)
to calculate (Yerr) and (wk):

Y err ¼
ffiffiffiffiffiffiffiffiffiffi
skð Þ2
Mk

s
ð10Þ

wk ¼ Mk

skð Þ2 ð11Þ

Effective average protein lengths (Le) were calculated
using the following eq. (12)

Le ¼
XK 0

k¼1
k �Mk � zkð ÞXK 0

k¼1
Mk

ð12Þ

We used the F statistics of Proc GLM (SAS, SAS Inst.
Inc., Cary, NC) to test the linear relationship between
k vs. zk, b vs. L1, genome size vs. L1, Le vs. b and Le vs.
L1. We report dependencies that are most useful for
biological interpretation. In particular, L1 describes the
average length of single domain proteins, which serves
to define an upper bound for the MA-dependency of a
proteome. In turn, Le describes the sum of the length
of individual domain constituents of a protein, which
is an indicator of mass economy for growth rate
optimization. An example of a regression model is
given by eq. (13)

V ij ¼ L1 þ bUi þ εij ð13Þ

where Vij is the observation of the ith effect and the jth
replication, Ui is the ith effect, and εij is a random error
term of the ith effect and jth replication, assuming NID
(0, σ2), i.e., normality, independence and identical data
distribution.
Availability of supporting data
A file with the proteomic data of Wang et al. [25] ana-
lyzed in this study can be found at LabArchives: http://
dx.doi.org/10.6070/H4513W6X.
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