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Abstract

Background: Cellular decision-making is governed by molecular networks that are highly complex. An integrative
understanding of these networks on a genome wide level is essential to understand cellular health and disease. In most
cases however, such an understanding is beyond human comprehension and requires computational modeling.
Mathematical modeling of biological networks at the level of biochemical details has hitherto relied on state transition
models. These are typically based on enumeration of all relevant model states, and hence become very complex unless
severely – and often arbitrarily – reduced. Furthermore, the parameters required for genome wide networks will remain
underdetermined for the conceivable future. Alternatively, networks can be simulated by Boolean models, although these
typically sacrifice molecular detail as well as distinction between different levels or modes of activity. However, the
modeling community still lacks methods that can simulate genome scale networks on the level of biochemical reaction
detail in a quantitative or semi quantitative manner.

Results: Here, we present a probabilistic bipartite Boolean modeling method that addresses these issues. The method
is based on the reaction-contingency formalism, and enables fast simulation of large networks. We demonstrate its
scalability by applying it to the yeast mitogen-activated protein kinase (MAPK) network consisting of 140 proteins and
608 nodes.

Conclusion: The probabilistic Boolean model can be generated and parameterized automatically from a rxncon
network description, using only two global parameters, and its qualitative behavior is robust against order of
magnitude variation in these parameters. Our method can hence be used to simulate the outcome of large signal
transduction network reconstruction, with little or no overhead in model creation or parameterization.
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Background
Mathematical modeling of cellular regulatory networks
is a challenge due to two opposite requirements: the aim
to describe the biological complexity in all necessary de-
tail and the need for simplicity that makes model ana-
lysis and simulation feasible.
Many signaling pathways and regulatory networks have

been described with sets of ordinary differential equations
(ODE). These models enable a representation of their gen-
eral wiring and of the kinetics of individual reactions, and

can be simulated to follow the dynamics of the investi-
gated system (examples for the yeast MAPK pathways are,
amongst many others, described in [1–7]). A frequently
used framework to describe the dynamics of gene regula-
tory networks is Boolean modeling [8–10].
Both approaches helped to elucidate dynamic features of

cellular networks, but both have their limitations. ODE
models quickly become difficult to handle in larger net-
works. Boolean networks, on the contrary, are suitable to
model larger networks because they simplify the potential
values to binary ON or OFF, representing the activity or
presence of compounds. This simplification enables us to
describe and to analyze the dynamics of rather large net-
works, but neglects intermediate values, which may be of
biological relevance.
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When modeling signaling networks, the formation of
protein-protein complexes and multiple phosphorylation
or other modification steps quickly leads to a combina-
torial explosion in the number of states. We have previ-
ously developed a method to cope with the biological
complexity provided by the multitude of states of pro-
teins, of interactions between proteins and dependencies
restricting potential state changes. In the reaction-
contingency (rxncon) formalism, all potential states and
state transitions are listed together with the conditions
(called contingencies) under which they can occur [11].
As a consequence, the state transitions are only executed
if relevant conditions are met, i.e., when educts are
present and contingencies are fulfilled. This description
is similar to rule based models, and reduces the com-
plexity drastically compared to a full ODE system [12].
The rxncon format is tailor made for formalization of bio-
logical knowledge from literature, and a rxncon based de-
scription can be used to automatically generate models that
correspond to the network definition. With a recently pre-
sented bipartite Boolean model export, the resulting models
can be simulated over time in a Boolean fashion [13].
In this paper, we extend this bipartite Boolean model-

ing formalism with probabilistic model export and simu-
lation, as used in Probabilistic Boolean networks (PBN)
[14]. PBNs are extensions of Boolean networks (BN), in
which each node can have several update functions [15].
One of these is chosen randomly in each time-step ac-
cording to the probabilities assigned beforehand, which
makes state transitions non-deterministic. However, the
model can also be interpreted quantitatively by averaging
over a number of parallel realizations. Hence, this exten-
sion enables a semi-quantitative probabilistic simulation
of regulatory networks in a bipartite PBN format.
Here, we use this concept to enable a quantitative

probabilistic simulation of regulatory networks. It is
based on the description in rxncon format and the
Boolean model export and assigns probabilities to re-
actions. This way, it allows for a stochastic simulation
of the reaction system and, hence also for a quantita-
tive analysis. Using this method the contingency of a
reaction on a modifier can be modeled as a certain
probability p that the reaction depends on the
modifier.
We benchmark the capabilities of the approach (i)

with an example of an oscillatory system in the form of
an isolated MAP kinase pathway with negative feed-
back, and (ii) by applying the method to the full MAPK
network of Saccharomyces cerevisiae to investigate
under which conditions the signal is reliably transmitted.
Taken together, these examples demonstrate that the
method scales with network size: It is largely insensitive to
the assumption on parameter values, and can efficiently
simulate large networks.

Methods
A network definition in the rxncon formalism uniquely
defines a bipartite Boolean model
We previously defined the rxncon formalism for the repre-
sentation of biological networks and described a way to
generate Boolean models from it that can be simulated dir-
ectly [13]. Briefly, the rxncon language describes a network
in terms of decontextualized elemental reactions, their
corresponding elemental states, and contingencies that
define the contextual constraints on elemental reactions
[11, 16]. An elemental state has a single molecular property
defined, such as a specific phosphorylation of protein-
protein interaction, and hence is a set containing all spe-
cific states that include this particular property. Elemental
reactions define state transitions that produce or consume
elemental states, and hence correspond to all specific reac-
tions that change that particular property – regardless of
the presence or absence of any other elemental state. In-
stead, such contextual conditions are provided by the con-
tingencies, which define when reactions require or are
enhanced by the existence or absence of other elemental
states. Together, the elemental reactions and contingencies
fully define the network, and can be directly exported to a
bipartite Boolean model with a unique truth table [13].
The logic of the bipartite Boolean model is encoded in

the rxncon language. Importantly, each reaction has a spe-
cific type that gives it certain properties (e.g., reversibility),
but no parameters or kinetic laws are required. The reac-
tion types include covalent modifications (e.g., phosphory-
lations (P+)), intra- and intermolecular interactions (e.g.,
protein-protein interactions (ppi)), production and con-
sumption reactions (e.g., transcription (TRSC)) and trans-
location reactions (e.g., nuclear import (NIMP)). Which
products a reaction creates depends on its type, e.g., a
protein-protein-interaction of A and B (A_ppi_B) gener-
ates all complexes in which A binds to B (A–B). The con-
tingencies determine if a reaction can take place given
other states in the system (e.g., only if one of the reactants
is phosphorylated on a specific residue). Contingencies
can be absolute requirements, as denoted by an exclam-
ation mark (!), absolute negative as denoted by an “×”, or
quantitative contingencies that only express a quantitative
influence which are denoted by K+/K-. The quantitative
contingencies mean that the reaction rate switches be-
tween two non-zero levels. There are also contingencies
that exclude any influence (0) or imply unknown connec-
tions (?), which are both treated as no effect.
Given such a network, we can derive a BN that can be

used to simulate the network dynamics using a set of rules.
The resulting BN has a bipartite structure split into reaction
nodes and state nodes (Fig. 1a). The update function for a
reaction depends on its substrates and its contingencies
while the update function for a state depends on the reac-
tions connected to it. The product states of non-reversible
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reactions require active degradation, and are only set to
FALSE if there is an active consumption reaction and no
producing reaction. Hence, these states need to have a
memory, which is implemented as self-dependence in the
model. Reversible reactions must be TRUE for their prod-
uct states to stay TRUE, and their products are assumed to
degrade when they are FALSE. We give a short example in
rxncon format

B_ppi_C
A_ppi_B; ! B–C,

where “ppi” is a protein-protein-interaction and A, B, and
C are protein components of the system. Following this
definition, B and C can always interact to form the complex

“B–C” which in turn enables the interaction between A and
B if present. It is important to stress that the complex B–C
is not a specific state, but rather the entire set of states that
includes B bound to C (in this case, both the BC only com-
plex, and the ABC complex; Fig. 1b). The resulting Boolean
network from this definition would be:

B−−C t þ 1ð Þ ¼ B ppi C tð Þ
A−−B t þ 1ð Þ ¼ A ppi B tð Þ
A ppi B t þ 1ð Þ ¼ A tð Þ∧B tð Þ∧B−−C tð Þ
B ppi C t þ 1ð Þ ¼ B tð Þ∧C tð Þ

with t being the current time-step. So we get an update
function for the two possible states and their producing
reactions.

A

C

B

Fig. 1 Principles of the rxncon formalism and the bipartite Boolean modeling. a Bipartite Boolean modeling based on rxncon format. Two
protein-protein interactions between B and C (B_ppi_C), and between A and B (A_ppi_B), produce the B–C and A–B complexes, respectively.
Note that these complexes are not mutually exclusive. Instead, they correspond to all complexes containing B & C and A & B. The trimeric A-B-C
complex corresponds to the intersection between these two sets. The symbol “*=” means that the value of left side at time t + 1 will be equal to
the value of right side at time t. b In a specific state description, these reactions translate into a network with three possible complexes (AB, BC
and ABC) and four different reactions. Hence, the elemental reactions in (a) are generic statements that map to several distinct specific reactions in
(b). If the specific reactions corresponding to a single elemental reaction occur with different rates, then the elemental reaction is contingent on
one or more of elemental states. There are six such possible contingencies (c); absolute requirement (A_ppi_B; ! B–C)(corresponding to rate k_re1 = 0 in
(B)); positive effect (K+)(k_re1 < k_re2 in (B)); neutral (0)(k_re1 = k_re2 in (B)); negative (K-)(k_re1 > k_re2 in (B)) and absolutely inhibitory (x)(k_re2 = 0 in (B)).
Unknown effects (?) are treated as neutral. In a qualitative Boolean model, only absolute requirements or inhibitions affect the update functions, while
the probabilistic model can account also for the quantitative modifiers (K+/K-), as can be seen in the direct comparison between the two model formats
c: In this table, protein-protein interaction B_ppi_C is omitted. The false rules (blue lines in red box) correspond to noise in biological systems, and can be
set to any value between 0 (no noise) and 1 (no signal). The second Boolean functions in the rows “A_ppi_B; K+ B–C” and “A_ppi_B; K- B–C” (red lines)
only appear in the probabilistic model, allowing it to account for quantitative modifiers (K+/K-), which was not possible with the qualitative version. In
the probabilistic Boolean modeling, one of the Boolean functions is chosen randomly at each time step according to the probability assigned to it
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If a rxncon definition contains a reaction that degrades
or synthesizes a component, we need to add more logic
to the update functions to ensure that a state is only
TRUE if these functions are in the right configuration.
Essentially, states require their components to be there.
Hence, if a component belonging to a state is degraded
and not synthesized at the same time it cannot be TRUE,
regardless of any other reactions.
The differences in the update functions for other types

of contingencies are shown in Fig. 1c. As shown there,
non-absolute contingencies that represent a gradual in-
fluence of a state on a reaction are simply ignored in this
approach, which is a strong limitation for the results.
We address this shortcoming using the probabilistic ap-
proach presented here.

Extension towards probabilistic simulations enables the
use of quantitative modifiers
In the Probabilistic Boolean network approach each
node × can have more than one update function and
each of the update functions fi has an assigned prob-
ability pi to be chosen in each time-step. We use a syn-
chronous updating scheme and an instantaneously
random probabilistic Boolean network (all functions
can be chosen in all time-points) without changes to
the probabilities over time and thus produce a Markov
chain. To be able to represent quantitative contingen-
cies in Boolean simulations, we assign each reaction
that depends on a quantitative contingency at least two
update-functions; one depending on the contingency
and one that does not (Fig. 1c). We use the functions'
probabilities as parameters for how strong the reaction
relies on the contingency, so that a reaction depends on

a contingency only with the probability pi and is inde-
pendent with the probability 1-pi.
To be able to model a small random failure of the

whole reaction and test the models robustness we add
one update function that always evaluates to FALSE and
which has a probability of pFALSE.
For complicated cases (such as multiple modifiers af-

fecting one reaction) multiple Boolean functions are
generated depending on the number of positive and
negative effectors and different probabilities are assigned
to them (Fig. 2). Let p0 and pFALSE be the probabilities
assigned to the Boolean function without contingencies
and the false function, respectively, then p0 is given by
the following equation:

p0 ¼ 1−pFALSEð Þ=
Xn

i¼0
ki;

where n is the total number of positive and negative
quantitative modifiers. The parameter k scales the prob-
ability differences between the update functions so that
each probability pi is k times larger than the probability
pi-1. The i-th Boolean function is assigned a probability
of pi = p0 · ki. For k > 1, this scaling guarantees higher
probabilities for more restrictive update functions
(Fig. 2), because these are ordered by stringency. In each
update function fi (1 ≤ i ≤ n), we include the conjunction
of i contingencies. For each fi this leads to

n
i

� �
possible

combinations of contingencies. We require at least one
of these combinations to be TRUE by taking their dis-
junction. The update functions become more restrictive
for larger i by requiring at least i. modifiers to be TRUE,
meaning that if fi = TRUE it follows that fi-1 = TRUE. In
summary, this means that each update function fi re-
quires at least i contingencies to be TRUE and has a

Fig. 2 The probabilistic bipartite Boolean modeling method can handle complex cases. Here, we consider a reaction with one absolute requirement
(!S1), two positive quantitative modifiers (K+ S2, K+ S3), two negative quantitative modifiers (K- S4, K- S5) and one absolute inhibition (× S6). The
Boolean functions are generated according to the number of positive (red box) that are TRUE and negative effectors (blue box) that are FALSE. The
probability assigned to each Boolean function, except for the false function, increases k times as the number of fulfilled quantitative conditions in a set
(purple box) increases, where the total probability of the Boolean functions (= p0 + p1 + p2 + p3 + p4 + pFALSE) is 1
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probability to be chosen that is proportional to ki. If we
consider the simple example above and add different
quantitative contingencies

B_ppi_C
A_ppi_D
A_ppi_B; K+ B–C; K- A–D

we get to the following update functions for the reactions
following the rules above with the parameters k = 10 and
pFALSE = 0.1:

A ppi D t þ 1ð Þ ¼ A∧D tð Þ 0:9
A ppi D t þ 1ð Þ ¼ 0 0:1
A ppi B t þ 1ð Þ ¼ A tð Þ∧B tð Þ 0:008108
A ppi B t þ 1ð Þ ¼ A tð Þ∧B tð Þ∧ B−−C tð Þ∨¬A−−D tð Þð Þ 0:08108
A ppi B t þ 1ð Þ ¼ A tð Þ∧B tð Þ∧ B−−C tð Þ∧¬A−−D tð Þð Þ 0:810812
A ppi B t þ 1ð Þ ¼ 0 0:1
B ppi C t þ 1ð Þ ¼ B tð Þ∧C tð Þ 0:9
B ppi C t þ 1ð Þ ¼ 0 0:1

The number of Boolean update functions for a reac-
tion with n quantitative modifiers is n + 2 as we iterate
the number of required modifiers from 0 to n, plus the
pFALSE function. It is worthy to note that we only need
two parameters (pFALSE and k) to generate a simulation-
ready model, but the user is able to change each of the
update probabilities to their needs in the output file.

Implementation
The rxncon tool is published as open source software
(under lGPL). The tool as well as its source code can be
downloaded freely from http://www.rxncon.org. The stand-
ard Boolean model is generated in BooleanNet format
(https://github.com/ialbert/booleannet) and simulated in
BooleanNet [17]. Since BooleanNet does not provide prob-
abilistic Boolean simulation, we added the capability to
simulate probabilistic Boolean models using BoolNet
[18], an R (http://www.r-project.org) package for prob-
abilistic Boolean networks. Accordingly, the rxncon
tool was modified such that it can create a model in the
BoolNet format.
The rxncon tool is implemented in Python and Javascript.

Here, we added the probabilistic model generation to the
rxncon tool (http://www.rxncon.org). The tool can be used
online and we provide a desktop version for all major plat-
forms as a download.

Results and discussion
In the Methods section, we introduced the concept of
probabilistic simulation of a rxncon-derived Boolean net-
work and assigned probabilities to execute reactions ac-
cording to their rules or to contradict them (false-rate).
Below, we exemplify the approach for selected signaling
networks in order to analyze the effect of assigning
false-rates and a k-base for combining probabilities for

multiple contingencies. We illustrate the effect of par-
ameter choices on the oscillatory behavior of a pathway
with negative feedback. Finally, we demonstrate that the
approach can be applied to a large signaling network.

Application: oscillatory system representing simplified
signaling pathway with negative feedback
To show the capabilities of our probabilistic approach, we
used the simplified high osmolarity glycerol (HOG) pathway
of S. cerevisiae as an example of oscillatory system (Fig. 3a)
[13]. The simplified HOG pathway consists of two modules:
a phosphotransfer module and a MAP kinase module. A sig-
nal from an external module leads to inactivation of the
phosphotransfer module and activation of the MAP kinase
module, and then the output of the signal cascade in the
MAP kinase module feeds back to the phosphotransfer mod-
ule via glycerol accumulation (reviewed in [19]). The rxncon
definitions of the pathway are illustrated in Fig. 3b and imple-
mented as a qualitative (top) or quantitative model (bottom).
We analyzed time series of the qualitative and quanti-

tative HOG pathway with fixed start states. To be able
to follow the dynamics of the network, we simulated
1000 runs of the probabilistic model and averaged over
the Boolean state of each node in all simulations to cal-
culate a probability of activation. In a standard simula-
tion only the network nodes that were defined as
components in the rxncon system (the basic proteins in
this case) were set to TRUE in the start state. The simula-
tion results are shown in Fig. 3c and d. They reveal that
high false-rates and low k-base values lead to a fast conver-
gence of the system to a steady state (of about 0.5) after
averaging over 1000 simulations. However, what appears to
be dampened oscillations is an effect of a loss of synchrony
of oscillations between the single simulation runs. For the
qualitative model (without k values), when false-rate was
0.01, the system converged gradually to a state around 0.5
(Fig. 3c left, Fig. 3d upper panels). On the other hand, when
the false-rate was 0.03, oscillations broke down early
because of rapid desynchronization. Compared to that,
synchronous oscillations were kept for a long time
when k-base value was high. This is because the model
with high k-base values well approximates the qualitative
model. Finally, we used a low false-rate (pFALSE = 0.01) and
a high k-base value (k = 100) and generated time series. In
this case, oscillations were kept in early stage and the sys-
tem converged gradually (again to about 0.5). These results
revealed that our approach, with appropriate false-rates
and k-base values, enables more realistic Boolean simula-
tion of biological systems (Fig. 3c right, Fig. 3d lower).

Scalability: the method can be used to simulate the entire
MAP kinase system
We applied our probabilistic approach to MAP kinase
network of baker’s yeast as an example of realistic
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Fig. 3 (See legend on next page.)
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signaling networks. The MAP kinase network is related
to control of cellular functions such as stress response.
As described in [11], the first rxncon model of the MAP
kinase network was constructed based on literature, and
contains 84 components, 181 states, and 222 reactions. We
later translated this network into a qualitative bipartite
Boolean model, in which all contingencies are absolute, and
made minor adjustments because the bipartite Boolean

modeling approach cannot deal with quantitative models
[13]. This work also extended the network model to en-
compass 142 components, 182 elemental states, and
273 elemental reactions, in order to make the pathways
functional in the model. We used this previously pub-
lished network and further modified it to a quantitative
model by reverting to the original quantitative contin-
gencies [11].

(See figure on previous page.)
Fig. 3 The probabilistic method can simulate dampening of oscillations in a linear signaling pathway with negative feedback. a Simplified model of the
high osmolarity glycerol (HOG) pathway visualized as a regulatory graph [11]. The simplified HOG pathway consists of two modules: a phosphotransfer
module and a MAP kinase module [13]. When turgor is sufficient, the phosphotransfer module is active and keeps the downstream MAP kinase module
inactive. On the other hand, increased external osmolarity causes loss of turgor, which leads to inactivation of the phosphotransfer module and activation
of MAP kinase module. The output of the signal cascade activates the phosphotransfer module again via glycerol accumulation, which leads to turgor
recovery. b Descriptions of the simplified HOG pathway in the rxncon format. The upper panel displays the qualitative HOG model, and the lower panel
the quantitative HOG pathway in which all contingency symbols were changed from “!” or “×” into “K+” or “K-”, respectively, indicating a certain probability
of the occurrence of a reaction if its contingencies are met or not met. c, d Results of the time course simulation of the qualitative HOG model with a
non-zero failure rate (pFALSE > 0) and the quantitative HOG model. The average probabilities of being active or inactive are calculated over 1000 time series
of 280 time points. c The amplitude and phase for the 1st and 7th periods are represented by the size and colors of nodes, respectively. The parameters p
and k shown in each panel indicate false-rate and k-base value, respectively. d Individual state transitions of Hog1-{P} with different probabilities of
false-rate and different scale factors of k-base. The upper (“!/×”) and lower (“K+ / K-”) panels show the average value for the phosphorylated state of
the terminal MAP kinase (Hog1-{P}) in the qualitative HOG model and the quantitative HOG model, respectively

Fig. 4 The probabilistic method scales efficiently, and can be used to simulate the entire yeast MAP kinase network. The complete MAP kinase network
[11] was used to generate models with variable k-base values. The top panels show the state evolution of all model species in the MAP kinase network
model as a heat map. The average probabilities of active or inactive are calculated over 1000 time series of 125 time points. As the average probability
increases, the color changes from blue (false) to yellow (true) gradually. p and k indicate false-rate and k-base, respectively. The initial setting was (turgor,
MFalpha, Ste3, Tec1) = (true, false, false, true), but turgor was turned off at time t= 27, then switched on again at time t= 50 [13]. MFalpha was added at
time t= 75. The individual state transitions of Hog1_[(T174)]-{P} and Slt2_[(Y192)]-{P} are shown in the middle and bottom panels. The rightmost panel
shows a negative control in which all “K+” and “K-”contingencies were deleted
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State evolution of the MAP kinase network and individ-
ual state curves of phosphorylated Hog1 and Slt2 with
varying k-base are shown in Fig. 4. This comparison shows
the effect of different parameter sets on the output signal
of the network. The deterministic simulation uses absolute
contingencies without false-rates as shown in [11]. As a
negative control, we used a modified version of the same
MAP kinase network model in which the effects of
quantitative modifiers was not taken into account (i.e.,
all contingencies “K+/K-” were erased). This modifica-
tion completely removes the effect of the quantitative
modifiers in the network, and destroys the information
transfer ability of the pathways that no longer respond
to perturbations. In these simulations, we ran the model to
steady state where we turned off turgor at time t = 27,
switched it on again at time t = 50, and then turned on
MFalpha at time t = 75 in order to analyze the cross-talk
effects. The simulation results show that the state evolution
gets smoother as the k-base value becomes smaller, while
the system becomes noisier. We explored a range from al-
most deterministic simulation (k = 100) to equal chances of
choosing rules with no bias depending on the number of
fulfilled contingencies (k = 1). However, the signal can be
seen even when the k-base value is 1, in spite of very high
background. This indicates that the system is quite robust
against change of k-base value.

Conclusion
The probabilistic approach enables quantitative analysis
of rxncon-derived Boolean networks
The presented extension of the Boolean approach to a
probabilistic Boolean network allows for a stochastic simu-
lation of regulatory and signaling networks, which are
already presented in the rxncon formalism. It can, hence,
respect important biological details and contingencies, but
also include probabilities for the occurrence of reactions.
We have demonstrated the impact of the probabilistic

simulation for a small example and a large realistic MAP
Kinase network. It can be noticed that the non-deterministic
simulation can exhibit system properties that will not occur
in a deterministic simulation. For the isolated HOG pathway
with artificially introduced negative feedback we observed
de-synchronization and hence a dampening of the oscilla-
tions in the simulated ensemble, while the oscillations are
stable in the deterministic system. The full MAPK system
showed, on the ensemble level, that a visually detectable sig-
nal is transmitted even with very low k-values, which could
be interpreted in the sense of robustness of the signaling
network.
To get statistically meaningful results in stochastic sim-

ulations one usually averages over large numbers of repli-
cates, as we have also done here. This enabled to see in
the MAPK network visually distinguishable signals in the
pathway output even with no bias towards choosing rate

laws with fulfilled contingencies (k-base =1). There are
various ways to interpret these results and it is common
to regard each iteration as the pathway output in one cell
and consider the result as a population mean. However,
the iterations could also be interpreted as isolated in-
stances of signaling pathways in one cell, in which case
multiple parallel pathways compensate for high noise
levels. Such pathways would need to be insulated from
each other (e.g., by scaffolding as is known for the Hog
pathway (Pbs2; [20])).
Depending on this interpretation, the obtained prob-

abilities in pathway output correspond to a quantitative
simulation of either the behavior of many pathways in
one cell or an average over many cells. While this mod-
eling strategy cannot compare to the precision of ODE
models, it provides a much closer approximation than
classical or binary reaction-contingency based Boolean
modeling.

The probabilistic Boolean approach based on rxncon is
automated and can be reused
Model generation and parameterization is generally a major
challenge, even given a reasonable base of knowledge about
the system. Typically, structuring and parameterization re-
quire a large efforts and even Boolean models need deci-
sions on exact truth tables. The challenge is even more
daunting in quantitative models. This has been tackled in
approaches such as ODE-fy [21] or SQUAD [22], where at
least threshold levels or kinetic parameters such as Hill co-
efficients or Km values must be set. In ODE models in
general, parameter estimation is an art even given a
fully determined model structure [23]. Here, using a
special case of PBN modeling, we parameterize a full
MAPK network model using only two parameters, and
show that the qualitative outcome is robust against
large changes in both. Hence, the proposed method
supports full automation of model generation from a
biological knowledge database (in the rxncon format).
Given sufficient suitable experimental data, however,
further more detailed parameterization is possible.
The direct link to an underlying database is specifically

useful in the light of network reconstruction and curation
in combination with model quality assurance, which is a
time consuming work requiring knowledge and effort of
experts [24, 25]. The fact that models can be easily reused
is of great importance for an ongoing description of bio-
logical network [16]. Here, it is exemplified for networks of
the yeast S. cerevisiae, but would be of even greater import-
ance for human signaling networks relevant in health and
disease. Our approach is in line with standardization efforts
as supported by SBML and it enables model annotation.
The method offered here has the advantage that it is based
on a database format that allows high level of annotation,
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and that can be used for other exports, i.e., into SBML or
various visualization tools, such as Cytoscape. Hence, a
model developed in this format can also serve as a database
and can easily be reused and extended in other contexts.

The framework allows for scalable quantitative modeling
Perhaps the premier challenge for formulating appropriate
mathematical models is the complexity of signaling net-
works, especially due to formation of multiple complexes
and many different post-translation protein modifications.
While methods for compact model definition have been de-
veloped [12], the computational demand on simulating
large complex networks is daunting. e.g., the yeast phero-
mone model contains a single MAP kinase pathway with
19 species, but the reaction rules correspond to over
200,000 specific states (see yeastpheromonemodel.org).
Here, we model the complete MAP kinase network consist-
ing of a much larger number of components. Despite the
large network size, both model generation and simula-
tion are quick (simulation takes only about 10 s on a
standard PC). The main advantage with the reaction-
contingency based model structure is that it avoids the
combinatorial explosion of the possible interactions
and modifications, hence models scale very nicely with
the number of components and reactions, and the
method will be computationally efficient also for much
larger models.
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