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Inferring microbial interaction network
from microbiome data using RMN algorithm
Kun-Nan Tsai1,2, Shu-Hsi Lin1, Wei-Chung Liu3 and Daryi Wang1*

Abstract

Background: Microbial interactions are ubiquitous in nature. Recently, many similarity-based approaches have been
developed to study the interaction in microbial ecosystems. These approaches can only explain the non-directional
interactions yet a more complete view on how microbes regulate each other remains elusive. In addition, the
strength of microbial interactions is difficult to be quantified by only using correlation analysis.

Results: In this study, a rule-based microbial network (RMN) algorithm, which integrates regulatory OTU-triplet
model with parametric weighting function, is being developed to construct microbial regulatory networks. The
RMN algorithm not only can extrapolate the cooperative and competitive relationships between microbes, but
also can infer the direction of such interactions. In addition, RMN algorithm can theoretically characterize the
regulatory relationship composed of microbial pairs with low correlation coefficient in microbial networks. Our
results suggested that Bifidobacterium, Streptococcus, Clostridium XI, and Bacteroides are essential for causing
abundance changes of Veillonella in gut microbiome. Furthermore, we inferred some possible microbial interactions,
including the competitive relationship between Veillonella and Bacteroides, and the cooperative relationship
between Veillonella and Clostridium XI.

Conclusions: The RMN algorithm provides the reconstruction of gut microbe networks, and can shed light on the
dynamical interactions of microbes in the infant intestinal tract.

Keywords: Microbiome, Next-generation sequencing, Microbial regulatory network, Cooperative and competitive
relationship, OTU-triplet model, RMN algorithm

Background
Microbes are the most abundant and diverse organisms
on earth and their interactions are crucial in under-
standing both the ecology and the evolution of microor-
ganisms. Microbial interactions, including mutualism,
competition, parasitism and commensalism, are difficult
to quantify as the underlying processes usually cannot
be observed directly and are often too complex for la-
boratory experiments [1]. However, recent advances in
high-throughput sequencing technology have made large
scale surveys of microbial communities feasible. Metage-
nomic studies and network-based approaches have yield
detailed information on the composition of microbial com-
munities, which in turn pave the way to study the structure
of microbial ecosystems and their dynamics [2–4].

Elucidating competitive and cooperative relationship is
a challenge in generating a microbial interaction net-
work because of the direction of such interactions [5].
Competition and cooperation are the two most studied
microbial interactions in the recent times with the
former dominating the latter in various microbial com-
munities [6–9]. Recent studies have also shown that
competitive interactions can drive the evolution of co-
operation in microbial ecosystems [9]. Therefore, identi-
fying competitive and cooperative relationships between
microbes is profound importance; however, the direc-
tional nature of such interactions also poses as a difficult
challenge in network construction.
There are several approaches in constructing a microbial

network. One commonly used method is the similarity-
based network construction where the co-occurrences of
two species over multiple time-series samples are measured
to infer their interaction [2, 3, 10–12]. In such networks,
nodes correspond to organisms and an edge between two
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nodes represents the significant relationship of two taxa
across a set of time series samples. Although other derived
approaches [13–15] can identify the pairwise relationships
between microbes by using correlation estimation, they do
not identify the nature and the strength of these relation-
ships [1]. In general, these methods cannot capture the
complexity of microbial interactions and cannot elucidate
how microbes regulate each other.
To model complex relationships (one species influen-

cing multiple others), methods employing mathematical
and statistical models have been developed recently. For
example, the generalized Lotka–Volterra framework was
used to model the dynamics of microbial populations in
order to estimate parameters governing species-species
interactions [16–18]. Moreover, other studies have
used nonparametric regression models to infer the
dynamic relationships between three microbial popu-
lations [19, 20]. These regression models use smooth
functions to describe microbial relationships and esti-
mate their relative effects. Because these regression
analyses do not use a priori knowledge to build dynamic
microbial interactions, the prediction from those models
often lack biological explanations, especially when the
microbial community under examination is a complex
one [21]. Therefore, how to construct a meaningful mi-
crobial interaction network remains a challenge in micro-
bial ecology.
Due to the importance of competitive and cooperative

relationships between microbes in complex ecological
communities [8, 22, 23], an inference model for con-
structing microbial regulatory network should consider
these interactions simultaneously. However, all of the
studies mentioned above do not incorporate these fea-
tures into their construction of regulatory networks.
Association rule mining can be a promising way to infer
complex relationships. A rule-based method, named
smooth response surface (SRS) algorithm, was devel-
oped to construct complex regulatory networks [24].
Basing on a piecewise linear-quadratic polynomial, the
SRS algorithm uses a three-dimensional model surface
(3D-MS) to successfully infer the relationships between
the target, activator, and repressor nodes.
In this paper, we adopt a similar rationale as the SRS

algorithm to detect the cooperative and competitive re-
lationships between microbes for constructing microbial
regulatory networks. Our new methodology, named the
rule-based microbial network (RMN) algorithm, is an
advanced version of the rule-based approach. We used
Tanh functions for modeling nonlinear responses as
regulatory effects of microbes. To our understanding,
Tanh functions have been used to model nonlinear re-
sponses in some microbial studies, such as dose influences
of pathogens [25], regulatory effects of microbes [26], influ-
ences of microbial compositions (phospholipids fatty acids)

[27]. The RMN algorithm uses a nonlinear regulatory
OTU-triplet (NRO) model to capture cooperative and
competitive relationships and consequently infers the
directional interaction between microbes. We applied
our new approach to simulated data and showed
that the RMN algorithm was capable to reconstruct
microbial regulatory networks. Furthermore, we used
Koenig’ data (2011) to construct the interaction net-
work for the microbial community in infant gut [28];
and our results suggest that Bifidobacterium, Strepto-
coccus, Clostridium XI, and Bacteroides play essential
roles in regulating the abundance of Veillonella in an
infant gut microbiome.

Methods
Sample collection
To construct microbial regulatory networks in infant in-
testinal tracts, we used the pyrosequencing reads of 16S
rRNA genes from 61 infant gut samples, which were
treated with four diet states at four time periods [28].
These infant gut samples were collected over 61 time
points. The average length of 16S rRNA gene sequences
were 237 bps [28], we used only 16S rRNA gene se-
quences with length longer than 200 bps in this study.

Taxonomic classification and OTU assignment
The Ribosomal Database Project (RDP) classifier [29]
was used to classify 16S rRNA pyrosequencing reads
and to perform an operational taxonomic unit (OTU)
assignment. After accomplishing the OTU assignment
with a threshold of 80 % confidence, we carried out a
further filtering step by removing operational taxonomic
units (OTUs) that appeared in fewer than half of the
total time points.

Relative abundance analysis
To estimate the relative difference between individual
OTUs at each time point, we calculated the relative
abundance of individual OTUs. First, we defined the
pyrosequencing read number of the ith OTU at jth time
point as Yij. Second, we defined the sum of the pyrose-
quencing read numbers at jth time point as Yj. Finally,
we divided Yij by Yj to obtain the relative proportion Xij

of the ith OTU at jth time point. After all pyrosequencing
read numbers were transformed into relative propor-
tions, we removed the lth OTU if both the maximum
relative proportion of all Xlj was less than 0.1 and the
coefficient of variation of all Xlj was larger than 3.4. In
addition, we filtered out the data at the kth time point
if both the maximum of all X ik was less than 0.1 and
the total number of OTUs was less than 60 % at the
kth time point. Finally, the missing values were filled
through the Bayesian principal component analysis
(BPCA) with K = 5 [30].
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Data standardization
The relative proportion of each OTU at each time point
was standardized in order to estimate the difference be-
tween OTUs at each time point. The relative proportion
Xij of the ith OTU at the jth time point was transformed
such that it fell within the interval [0,1]. We defined Pij
as (Xij − Xmin) /(Xmax − Xmin), where Pij is the standard-
ized relative proportion (SRP) of the ith OTU at the jth

time point, while Xmin and Xmax are the minimum and
maximum relative proportions respectively.

Network construction
We developed a rule-based microbial network (RMN)
algorithm to construct microbial regulatory networks.
The RMN algorithm is based on a nonlinear regulatory
OTU-triplet model, named the NRO model for short.
Figure 1 shows the flowchart of the RMN algorithm, and
the details are as follows:
(i) To investigate how each OTU was involved in mi-

crobial regulatory network, we constructed a nonlinear
regulatory OTU-triplet model by using triplets of OTUs
across all time points (or samples). The nonlinear regu-
latory OTU-triplet model has three assumptions: First, a
cooperation–competition system is assumed to exist in
the microbial regulatory network. An OTU-triplet is de-
fined as {Om, Oc, Ot}, where Om, Oc, and Ot represent
the mth , cth and tth OTUs respectively. Here, Om and Oc

are assumed to be the cooperator and the competitor of
Ot respectively. In other words, the relationship between
the mth and the tth OTUs is assumed to be cooperative,
while that between the cth and the tth OTUs is assumed
to be competitive. Note that Om, Oc and Ot represent
different microbes in genus level. Second, it is assumed
that the standardized relative proportion (SRP) of Ot is
high when the SRP of Om is high and the SRP of Oc is
low. Conversely, the SRP of Ot is assumed to be low
when the SRP of the Om is low and the SRP of the Oc is
high. Third, the relationship between Om, Oc and Ot can
be modeled by using a three-dimensional model surface
(3D-MS) (Fig. 2) which is based on a piecewise nonlinear-
quadratic polynomial:

P Pm; ;Pcð Þ ¼

2 tanh 1:1Pmð Þ 1− tanh 1:1Pcð Þð Þ ;
if 0≤Pm < 0:5 and 0:5 < Pc≤1;

1−2 1− tanh 1:1Pmð Þð Þ tanh 1:1Pcð Þ ;
if 0:5 < Pm≤1 and 0≤Pc < 0:5;

tanh 1:1Pmð Þ− tanh 1:1Pcð Þ þ 0:5 ; otherwise

8>>>>>><
>>>>>>:

ð1Þ

In (1), Pm and Pc are the standardized relative propor-
tions (SRPs) of Om and Oc respectively while P(Pm,Pc) is
the inferred SRP of Ot.
(ii) To find suitable OTU-triplets close to the 3D-MS

for the OTU-triplet regulatory model, we used a lack-of-

fit function to analyze all possible OTU-triplets. The
lack-of-fit function is defined as:

L Om; ;Oc; ;Otð Þ ¼
Pk

n¼1 Ptn−P tnð Þ2Xk

n¼1
Ptn−P−

tnð Þ2
ð2Þ

where P^tn is the inferred SRP of Ot at the nth time
point (e.g. P(Pm,Pc) at the nth time point ); Ptn is the
observed SRP of Ot at the nth time point; and P−tn
represents the average of Ptn across all k time points. A
small L(Om, Oc, Ot) value indicates a good fit between an
OTU-triplet {Om, Oc, Ot} and the 3D-MS. In other

Fig. 1 The flowchart of the RMN algorithm. First, the standardized
relative proportions (SRPs) of OTUs were analyzed and found out
possible OTU-triplets. Then, suitable OTU-triplets were selected by
nonlinear regulatory OTU-triplet (NRO) model. Finally, the microbial
network was reconstructed
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words, a smaller L(Om, Oc, Ot) value reveals a stronger
relationship among Om, Oc, and Ot. Similar rationale has
been successfully applied for constructing gene regula-
tory networks [24].
(iii) To check the reliability of OTU-triplets, we used

an adjustment function to fix imperfect measurements
at one or more time points (or samples). The adjustment
function is defined as:

D Om; ;Oc; ;Otð Þ ¼
Xk

n¼1

���� L nð Þ Om; ;Oc; ;Otð Þ
L Om; ;Oc; ;Otð Þ

� �
log10

L nð Þ Om; ;Oc; ;Otð Þ
L Om; ;Oc; ;Otð Þ

� �����
ð3Þ

where L(n)(Om, Oc, Ot) is the value of lack-of-fit func-
tion when the information from the nth time point is re-
moved. A smaller D(Om, Oc, Ot) value indicates the
information of the OTU-triplet relationship is reliable.
Finally, an integrated function, I(Om, Oc, Ot) is defined
as the value of L(Om, Oc, Ot) multiplied by the value of
(1+ D(Om, Oc, Ot)). A smaller I(Om, Oc, Ot) value indi-
cates a stronger OTU-triplet relationship among Om, Oc,
and Ot.

(iv) Finally, we defined two criteria, Ld(Om, Oc, Ot) =
L(Om, Oc, Ot)/(1- L(Om, Oc, Ot)) and D(Om, Oc, Ot), to filter
out unreliable OTU-triplets, when 0 ≦ Ld(Om, Oc, Ot) ≦ L
and D(Om, Oc, Ot) <D. Note the L and D are constants. We
then ranked reliable OTU-triplets basing on the sorted
I(Om, Oc, Ot) values in the ascending order, and selected
OTU-triplets with lower I(Om, Oc, Ot) values as candidates
for network construction.

Performance analysis
To evaluate the performance of the RMN algorithm, we
simulated a microbial regulatory network consisting of

ten gut bacteria, three latent factors, and ten noise fac-
tors as follows:

O1 sð Þ ¼ 1:3 tanh −0:1F2 sð Þ þ 0:25ð Þ þ N1 sð Þ
O2 sð Þ ¼ 1:1 tanh 0:35F2 sð Þ þ 0:1ð Þ þ N2 sð Þ
O3 sð Þ ¼ tanh −0:56O1 sð Þ þ 0:4F1 sð Þ þ 0:5ð Þ þ N3 sð Þ
O4 sð Þ ¼ tanh 0:6O1 sð Þ−0:15O2 sð Þ−0:1O3 sð Þ þ 0:1ð Þ þ N4 sð Þ
O5 sð Þ ¼ tanh 0:24O2 sð Þ−0:75O3 sð Þ−0:05F1 sð Þ þ 0:3ð Þ þ N5 sð Þ
O6 sð Þ ¼ 1:4 tanh 0:2O5 sð Þ−0:2O3 sð Þ þ 0:15ð Þ þ N6 sð Þ
O7 sð Þ ¼ 1:3 tanh −0:15O5 sð Þ þ 0:2ð Þ þ N7 sð Þ
O8 sð Þ ¼ tanh −0:15F3 sð Þ þ 0:2ð Þ þ N8 sð Þ
O9 sð Þ ¼ tanhð−0:41O6 sð Þ þ 0:55O7 sð Þ þ 0:35O8 sð Þ

þ0:18Þ þ N9 sð Þ
O10 sð Þ ¼ tanhð−0:45O7 sð Þ þ 0:7O8 sð Þ þ 0:1F3 sð Þ

þ0:25Þ þ N10 sð Þ
ð4Þ

We used Tanh functions to create simulated a micro-
bial regulatory network because Tanh functions have
been used to model regulatory responses of pathogens
and microbes [25–27]. In addition, the similar idea has
been used to create simulated gene networks for evaluat-
ing the performance of GASA method [31]. In detail, we
defined this synthetic regulatory model in Fig. 3, where
Oi(s) is the abundance proportion of the ith OTU with

Fig. 2 The 3D image of a three-dimensional model surface (3D-MS).
P(Pm,Pc) is the inferred the standardized relative proportion (SPR) of
Ot, where Pm and Pc are the SRPs of Om and Oc, respectively

Fig. 3 Simulation of microbial regulatory network. For example,
O1(s) is defined to interact competitively with O3(s) but interact
cooperatively with O4(s). Here, the competitive and cooperatively
relationships are defined as ┤ and →, individually
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i =1,2,…,10; Fj(s) is the abundance proportion of jth la-
tent factor with j = 1, 2, 3; and Nk(s) is the abundance
proportion of the kth noise factor with k = 1,2,…,10.
Note the value of Oi(s) is between 0 and 1, while Fj(s)
is a random variable between 0 and 1. Nk(s) is a ran-
dom variable representing the noise level in the simu-
lated data (when Nk(s) = 0, no noise exists in the
simulated data). Three noise levels are assumed in the
simulated data: low noise if the value of Nk(s) is equal
to the variance of Oi(s) divided by Rk(s); medium noise
if Nk(s) is equal to five times the low noise level; and

high noise if Nk(s) is equal to ten times the low noise
level. Here, Rk(s) represents the signal-noise ratio and
its range was between 4 and 12. Note that Rk(s) is an
integral and is generated by using time-series data of
gut bacteria [19]. In detail, Rk(s) is the average propor-
tion of gut bacteria divided by its standard deviation.
We evaluated the performance of the RMN algorithm

by calculating the following measures: true positive rate
(TPR), true negative rate (TNR), F-measure, and Accur-
acy. TPR is defined as TP/(TP + FN), where TP and FN
are the numbers of true positive interactions (links) and
false negative interactions (links) respectively. TNR is
defined as TN/(TN + FP), where TN and FP are the
numbers of true negative interactions (links) and false
positive interactions (links) respectively. We define F-
measure as 2*TPR*TNR/ (TPR + TNR), and accuracy as
(TP + TN)/(TP + FN + TN + FP).

Results and discussion
Performance of RMN algorithm using simulation data
We generated simulated data under different levels of
noise and evaluated the performance of our RMN algo-
rithm by using the above mentioned four evaluation
measures. Then, we analyzed the occurrence rate (%) of
50000 simulated microbial regulatory networks when
any three of four evaluation measures showed the effi-
ciency superior or equal to the defined value. (see Fig. 4).
All four evaluation measures suggest high performance
from our RMN algorithm. Comparing different noise
levels, RMN algorithm has shown the best efficiency
when there is no noise in the simulated data. Even at
medium noise level, over 82 % of the results show effi-
ciency values higher than 0.64. In addition, the assess-
ment from those four evaluation measures shows 0.64
efficiency value on more than 74 % simulated data.

Fig. 4 Efficiency analysis of RMN algorithm for simulated data under
different level of noise interference. The threshold was set at
0≦Ld(Om, Oc, Ot) ≦0.8 and D(Om, Oc, Ot) < 0.8. Any three of four
evaluation measures showed the efficiency are their ratio value
superior or equal. The estimated data used 5000 simulated microbial
regulatory networks. Each simulated data contains 10 OTUs, whose
abundance values were simulated for 13 time points. Non-noise:
simulated data without noise; Low-noise: simulated data with low
noise; Medium-noise: simulated data with medium noise; High-noise:
simulated data with high noise

Fig. 5 Evaluation measurements on efficiency analysis of RMN algorithm for simulated data under different level of noise interference. The
threshold was set at 0≦Ld(Om, Oc, Ot) ≦0.8 and D(Om, Oc, Ot) < 0.8. a: The average results of four evaluation measures for the efficiency of RMN
algorithm. Error bars represent the standard deviation. b: The best result of four evaluation measures for the efficiency of RMN algorithm. The
estimated data used 5000 simulated microbial regulatory networks. Each simulated data contains 10 OTUs, whose abundance values were
simulated for 13 time points. Non-noise: simulated data without noise; Low-noise: simulated data with low noise; Medium-noise: simulated data
with medium noise; High-noise: simulated data with high noise
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There are no significant differences between the per-
formance results when the noise is varied from zero to
medium level (see Fig. 5(a)). Although the performance
of our RMN algorithm at the high noise level is worse
than those from lower noise levels, its efficiency value is
still over 0.68. More interestingly, according to TNR,
there were fewer false positive interactions (links) when
inferred from the high noise data than that from lower
noise data (see Fig. 5(a)). In addition, best efficiency
under different noise interferences exceeds 0.82 (see
Fig. 5(b)). During developing RMN algorithm, we used
two conditions, Ld(Om, Oc, Ot) and D(Om, Oc, Ot), to
filter out unreliable OTU-triplets, and we tried to select
the suitable thresholds for Ld(Om, Oc, Ot) and D(Om, Oc,
Ot) by analyzing the simulation data (Table 1). The best
efficiency for all evaluations reached over 0.82 when the
threshold at Ld(Om, Oc, Ot) and D(Om, Oc, Ot) were used
(see Table 1). Moreover, the efficiency for all evaluations
reached over 0.71 when the threshold at Ld(Om, Oc, Ot)
and D(Om, Oc, Ot). All in all, our efficiency evaluations
demonstrate that the performance of our RMN algo-
rithm is robust under three latent factors and different
noise levels.

Inferring the regulatory relationship of microbial pairs
with low correlation coefficient
Recent study shows that correlations between the abun-
dances of microbes do not imply microbial interactions
[18]. In order to investigate whether OTU-triplets ob-
tained by RMN algorithm are significantly correlated
based on their correlation coefficient and whether RMN
algorithm can find the regulator relationship behind
standard correlation-based approaches, we analyzed the
optimal resulting triplets with true positive links (filtered
by RMN algorithm). Here we used Spearman's rank
correlation coefficient for the estimation of nonlinear
correlation coefficient. The Pr value represents a prob-
ability of RMN algorithm prediction for OTU pairs
whose nonlinear correlation coefficient is less than 0.5.
In detail, Pr value (%) was defined as (OmOt_count +
OcOt _count) *100 %/Total_count, where OmOt_count is
the number of resulting triplets with a true positive link
between cooperator OTU and target OTU pair whose
nonlinear correlation coefficient is less than 0.5; OcOt _
count is the number of resulting triplets with a true
positive link between competitor OTU and target OTU
pair whose nonlinear correlation coefficient is greater
than −0.5; Total count is the number of resulting triplets
with a true positive link. As Table 2 shown, under differ-
ent levels of noise inference, Pr values for most analyzed
results were more than 15 %. That may imply the result-
ing triplets contain OTU pairs with low nonlinear cor-
relation coefficient. For example, more than 15 % OTU
pairs with low nonlinear correlation coefficient (less than

0.5) could be found when the threshold was set at
0≦Ld(Om, Oc, Ot) ≦0.8 and D(Om, Oc, Ot) < 0.8. Based on
the threshold, the performances of RMN algorithm were
more than 0.82 (see Table 1). In addition, more than
20 % OTU pairs with low nonlinear correlation coeffi-
cient (less than 0.5) could be found when the threshold
was set at 0≦Ld(Om, Oc, Ot) ≦3.8 and D(Om, Oc, Ot) < 0.8.
Based on the threshold, the performances of RMN algo-
rithm were more than 0.71 (see Table 1). In other words,
the RMN algorithm may characterize the regulatory re-
lationship composed of OTU pairs with low correlation
coefficient, and has a choice to find the regulator rela-
tionship behind standard correlation-based approaches.

Table 1 The best performance result with different parameters
and different level of noise interference. Here L0.8 represents for
0≦ Ld(Om, Oc, Ot) ≦0.8 and D0.8 represents for D(Om, Oc, Ot) < 0.8

Non-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.861 0.929 0.855 0.890

L1.8D0.8 0.833 0.857 0.831 0.844

L2.8D0.8 0.756 0.857 0.747 0.798

L3.8D0.8 0.722 0.786 0.717 0.750

L0.8D1.8 0.822 0.857 0.819 0.838

L0.8D2.8 0.828 0.857 0.825 0.841

L0.8D3.8 0.828 0.857 0.825 0.841

Low-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.856 0.929 0.849 0.887

L1.8D0.8 0.767 0.786 0.765 0.775

L2.8D0.8 0.756 0.786 0.753 0.769

L3.8D0.8 0.756 0.714 0.759 0.736

L0.8D1.8 0.828 0.857 0.825 0.841

L0.8D2.8 0.811 0.857 0.807 0.831

L0.8D3.8 0.822 0.857 0.819 0.838

Medium-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.828 0.857 0.825 0.841

L1.8D0.8 0.811 0.786 0.813 0.799

L2.8D0.8 0.767 0.786 0.765 0.775

L3.8D0.8 0.761 0.786 0.759 0.772

L0.8D1.8 0.828 0.857 0.825 0.841

L0.8D2.8 0.828 0.857 0.825 0.841

L0.8D3.8 0.833 0.929 0.825 0.874

High-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.850 0.857 0.849 0.853

L1.8D0.8 0.800 0.786 0.801 0.793

L2.8D0.8 0.756 0.786 0.753 0.769

L3.8D0.8 0.756 0.786 0.753 0.769

L0.8D1.8 0.833 0.857 0.831 0.844

L0.8D2.8 0.833 0.857 0.831 0.844

L0.8D3.8 0.844 0.857 0.843 0.850
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The construction of microbial regulatory network from
infant gut data
To further demonstrate the capability of our RMN algo-
rithm, we constructed microbial interaction networks
from a set of real microbial community time series data.
The data used consist of 61 infant gut samples treated
with four diet states at four time periods [28].
After performing taxonomic classification and OTU

assignment, 101 OTUs were obtained (Additional file 1).
However, after the filtering process removing OTUs that

appeared in less than half of the total time points, only
14 OTUs met the requirement (Additional file 2). In
addition, after performing relative abundance analysis
and filling missing values, 10 OTUs with 43 time points
were obtained. Finally, according to Fig. 3c from Koenig,
et al. [28], only 10 OTUs with 36 time points between
four steps were selected for analyzing using our RMN
algorithm (Additional file 3). Consistently, among 10
OTUs, 4 OTUs (OTU15, OTU16, OTU34, and OTU94)
were found to be involved in competitive and cooperative
interactions in Freilich’s study [32]. Since microbiome data
are usually enormous and inherently noisy, the threshold

Table 3 The efficiency analysis under different level of noise
interference by using the simulated data who’s best
performance showed at a threshold on 0≦ Ld(Om, Oc, Ot) ≦0.8
and D(Om, Oc, Ot) < 0.8

Non-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.861 0.929 0.855 0.890

L1.8D0.8 0.706 1.000 0.681 0.810

L2.8D0.8 0.617 1.000 0.584 0.738

L3.8D0.8 0.556 1.000 0.518 0.683

L0.8D1.8 0.828 0.929 0.819 0.871

L0.8D2.8 0.828 0.929 0.819 0.871

L0.8D3.8 0.828 0.929 0.819 0.871

Low-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.856 0.929 0.849 0.887

L1.8D0.8 0.678 0.929 0.657 0.769

L2.8D0.8 0.611 0.929 0.584 0.717

L3.8D0.8 0.550 0.929 0.518 0.665

L0.8D1.8 0.761 0.929 0.747 0.828

L0.8D2.8 0.761 0.929 0.747 0.828

L0.8D3.8 0.761 0.929 0.747 0.828

Medium-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.828 0.857 0.825 0.841

L1.8D0.8 0.706 0.929 0.687 0.790

L2.8D0.8 0.622 0.929 0.596 0.726

L3.8D0.8 0.533 0.929 0.500 0.650

L0.8D1.8 0.744 0.857 0.735 0.791

L0.8D2.8 0.744 0.857 0.735 0.791

L0.8D3.8 0.744 0.857 0.735 0.791

High-noise Accuracy TPR TNR F-measure

L0.8D0.8 0.850 0.857 0.849 0.853

L1.8D0.8 0.733 0.929 0.717 0.809

L2.8D0.8 0.633 0.929 0.608 0.735

L3.8D0.8 0.572 0.929 0.542 0.685

L0.8D1.8 0.778 0.857 0.771 0.812

L0.8D2.8 0.778 0.857 0.771 0.812

L0.8D3.8 0.778 0.857 0.771 0.812

Table 2 The nonlinear correlation coefficient of OTU pairs,
predicted by RMN algorithm as co-regulated triplets, under
different level of noise interference. A triplet predicted by RMN
algorithm is composed of cooperator, competitor and target.
Here L0.8 represents for 0≦ Ld(Om, Oc, Ot) ≦0.8 and D0.8
represents for D(Om, Oc, Ot) < 0.8

Non-noise OmOt_count OcOt_count Total_count Pr value (%)

L0.8D0.8 3 3 26 23.1

L1.8D0.8 4 0 24 16.7

L2.8D0.8 7 5 24 50.0

L3.8D0.8 6 1 22 31.8

L0.8D1.8 2 2 24 16.7

L0.8D2.8 1 2 24 12.5

L0.8D3.8 1 1 24 8.3

Low-noise OmOt_count OcOt_count Total_count Pr value (%)

L0.8D0.8 3 1 26 15.4

L1.8D0.8 6 2 22 36.4

L2.8D0.8 5 0 22 22.7

L3.8D0.8 1 4 24 20.8

L0.8D1.8 4 2 24 25.0

L0.8D2.8 1 0 24 4.2

L0.8D3.8 3 1 24 16.7

Medium-noise OmOt_count OcOt_count Total_count Pr value (%)

L0.8D0.8 5 2 24 29.2

L1.8D0.8 5 3 22 36.4

L2.8D0.8 5 1 22 27.3

L3.8D0.8 7 1 22 36.4

L0.8D1.8 4 1 24 20.8

L0.8D2.8 2 1 24 12.5

L0.8D3.8 4 2 26 23.1

High-noise OmOt_count OcOt_count Total_count Pr value (%)

L0.8D0.8 3 3 24 25.0

L1.8D0.8 6 5 22 50.0

L2.8D0.8 7 4 22 50.0

L3.8D0.8 5 0 20 25.0

L0.8D1.8 3 2 24 20.8

L0.8D2.8 2 1 24 12.5

L0.8D3.8 2 2 24 16.7
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was set at 0≦Ld(Om, Oc, Ot) ≦3.8 and D(Om, Oc, Ot) < 0.8 for
better prediction sensitivity (see Table 3). Before filtering by
this threshold, top 100 possible OTU-triplets from 10
OTUs analysis were listed in Additional file 4. After filtering
by this threshold, only 3 reliable OTU-triplets from 5
OTUs (Additional file 5) were used to construct microbial
regulatory network. The resulting microbial interaction
network among five OTUs is displayed in Fig. 6. Gram-
negative anaerobic cocci,Veillonella (OTU100), is found to
interact cooperatively with three OTUs, namely Clostrid-
ium XI (OTU30), Bifidobacterium (OTU16) and Strepto-
coccus (OTU94), but competitively with Bacteroides
(OTU15). Among them, Bifidobacterium, Streptococcus,
and Bacteroides have been identified in competitive and
cooperative metabolic interactions [32]. In particular, we
observed a positive correlation between Veillonella and
Bifidobacterium , both residing in human intestines and
oral mucosa as anaerobic commensal organisms [33].
This directional interaction also suggests the commensal
relationship between Veillonella and Bifidobacterium. In
addition, Veillonella was also observed to have a positive
correlation with Streptococcus. They have been found to
interact cooperatively during the production and degrad-
ation of Lactic acid [34–40]. Recently, positive correla-
tions were also found between the abundances of
Veillonella and Streptococcus [41]. In addition, the con-
structed network also suggests that competitive relation-
ship may exist between Veillonella and Bacteroides.
Veillonella and Bacteroides are gut-associated obligate
anaerobic genera found in maternal faeces, breast milk
and neonatal faeces [42]; and the difference in their ef-
ficiency on oligosaccharide consumptions may suggest
they occupy different metabolic niches [43]. In addition,
our network suggests there might be a cooperative
relationship between Veillonella and Clostridium XI
Clostridium glycolicum; and this cooperative relation-
ship might suggest their simultaneous involvement in
the ear infections in infants. In fact, those two gut bac-
teria have been found to be associated with bacterial

infections, such as bacteremia [44, 45]. Finally, micro-
bial interaction network from Fig. 6 were analyzed to
check if the RMN algorithm can predict microbial
interactions from low correlation data. As shown, it
confirmed that OTU pairs with low correlations can be
predicted by RMN algorithm (Additional file 6). In gen-
eral, our constructed network can extrapolate coopera-
tive and competitive relationships between microbes in
infant guts.

Conclusions
In this paper we presented RMN algorithm, a rule-based
algorithm using the OTU-triplet model with parametric
weighting function, to construct microbial regulatory
networks. RMN algorithm can theoretically extract dir-
ectional interactions to delineate the cooperative and
competitive relationships between microbes from high-
throughput sequencing time series data. The efficiency
estimation shows the high performance of RMN algo-
rithm on simulated data with three latent factors and
different noise levels. We also applied our framework to
identify new relationships in infant gut samples. RMN
algorithm is both computationally feasible and capable
of detecting biologically significant progresses embedded
in a microbial community.
Although simple pairwise relationship has been used

to describe complex forms of microbial interactions,
advanced techniques are still required to infer complex
microbial networks. Recent studies show that the co-
operative and competitive relationships between mi-
crobes coexist in complicated ecological communities
[8, 22, 23]. In addition, triplet relation, like activator-
repressor-target pattern, has been adopted to construct
gene regulatory network form time course gene expres-
sion data [24]. Basing on such a rationale, we developed
RMN algorithm to describe the relationship among
every triplet of microbe as the cooperator-competitor-
target. RMN algorithm is used to search for triplet rela-
tions of OTUs where the abundances of the target

Fig. 6 The reconstruction of microbial regulatory networks in infant intestinal tract. Here, the competitive and cooperatively relationships are
defined as ┤and →, individually
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should be high while that for the cooperator is high and
that for the competitor is low (conversely, the abun-
dances of the target should be low while that for the co-
operator is low and that for the competitor is high). Our
evaluation results suggest RMN algorithm has high per-
formance when subjected to simulated data with differ-
ent levels of noise (see Figs. 4 and 5). As presented in
the results, our algorithm has characterized well-known
and possible microbial interactions from time series
microbiome data of infant gut samples (see Fig. 6).
In summary, networks reconstructed by using simple

similarity-based method often fail to capture the com-
plex topology of a real system, and such networks may
be full of false positive links. Furthermore, biologically
significant relationships are often difficult to be identi-
fied from such networks. Our RMN algorithm can pro-
duce low false positive links even for highly noisy data
(see Fig. 5(a)). Moreover, RMN algorithm is designed
to explore complex networks consisted of non-linear,
decentralized and directed interactions among microbes.
However, having said all these, the drawback of RMN al-
gorithm is that it may not be able to detect simple linear
correlation between two OTUs. Another potential con-
cern is that we tested our method using a simulated data
with the Tanh functions, the circularity in the model
construction and validation can cause bias on our re-
sults. Overall, RMN algorithm can theoretically predict
microbial interactions from low correlation data (see
Tables 1 and 2). Our method should be a promising starting
step to identify novel microbial interactions that normally
cannot be found by using similarity-based methods. There-
fore, by integrating similarity-based methods and our RMN
algorithm, one can potentially gain a more accurate picture
of microbial interactions towards a better understanding of
microbial dynamics.

Additional files

Additional file 1: The table of OTUs for all the samples at
the genus level with OTU assignment before filtering process.
(XLS 81 kb)

Additional file 2: The table of OTUs for all the samples at
the genus level with OTU assignment after filtering process.
(XLS 34 kb)

Additional file 3: The table of OTUs for all the samples at the
genus level with data standardization. (XLS 26 kb)

Additional file 4: List of top 100 possible OTU-triplets ranking by
I(Om, Oc, Ot) values in the ascending order. These OTU-triplets were
selected without using the threshold set at 0≦Ld(Om, Oc, Ot) ≦3.8 and
D(Om, Oc, Ot) < 0.8. (XLS 28 kb)

Additional file 5: List of the reliable OTU-triplets ranking by I(Om,
Oc, Ot) values in the ascending order. These OTU-triplets were
selected when the threshold was set at 0≦Ld(Om, Oc, Ot) ≦3.8 and
D(Om, Oc, Ot) < 0.8. (XLS 19 kb)

Additional file 6: The nonlinear correlation coefficient of OTU pairs
predicted by RMN algorithm. (XLS 20 kb)
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