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Abstract

Background: The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of
biochemical networks. The resulting equations provide a simplified description of the network in terms of
non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for
heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities.
Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the
stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent
examples show that this is not necessarily the case.

Results: Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the
accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis
of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic
QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial
conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship
provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using
deterministic simulations.

Conclusions: The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the
use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear
when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can
be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate
functions can be used in stochastic simulations.

Keywords: Stochastic QSSA, Multi-scale stochastic simulation, Hill function, Michaelis-Menten function

Background
Biochemical systems frequently consist of reactions evolv-
ing on disparate timescales. The species regulated by
fast reactions quickly equilibrate to a “quasi-steady-state
(QSS)” [1], and hence these fast species can be assumed to
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be in a quasi-equilibrium that is dependent on the state of
the slow species. This assumption allows one to eliminate
the variables describing the fast species from determin-
istic models via non-elementary reaction functions. The
deterministic quasi-state-state approximation (QSSA) can
thus be used to reduce the dimensionality of a system
and avoid stiffness in numerical simulations. QSSA has
been widely used in both numerical and theoretical stud-
ies and its validity condition in deterministic models is
well understood [1–11].
Timescale separation has also been used to reduce and

accelerate simulations of stochastic models [12–30]. The
QSS of a fast species in the chemical master equation
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(CME) can be defined as the conditional average of the
species which depends on the instantaneous state of
the slow species [16–18]. This approximation obviates
the need to simulate fast reactions explicitly. However, to
calculate the averages of the fast species, knowledge of
the solution to the full CME is generally required, giving
rise to a “chicken or the egg” problem – one introduces a
reduced system to avoid solving the full system, but carry-
ing out the reduction requires solving the full system. As
an alternative, it has been proposed that one can approxi-
mate the needed averages using the QSS of the fast species
obtained from the corresponding deterministic systems
[16, 23, 24, 26]. For instance, Michaelis-Menten or Hill
functions derived using the deterministic QSSA have been
used as propensity functions in stochastic simulations – a
method known as “stochastic QSSA”.
The validity of the stochastic QSSA relies on two

assumptions: 1) the separation of timescales between the
slow and fast reactions, and 2) the accurate approxima-
tion of the stochastic QSS (i.e. the conditional average of
the fast species) by the deterministic QSS [30]. It is not
well understood when these assumptions hold. In many
previous studies, it has been assumed that the stochastic
QSSA is accurate whenever the corresponding determin-
istic QSSA is accurate [31–34]. However, recently intro-
duced examples show that this may not always be true,
as the reduced stochastic model may poorly approximate
the full model even when their deterministic counterparts
agree [27, 30, 35, 36]. Due to this discrepancy, previous
studies concluded that the stochastic QSSA cannot be val-
idated using the deterministic QSSA, leaving open the
question of alternative validation methods. Nevertheless,
the stochastic QSSA is still used widely in simulations
of complex models that would otherwise be intractable
[31–34, 37–47].
Here, we identify a clear correspondence between the

validities of the deterministic and the stochastic QSSA
for examples widely used in biological systems. This rela-
tion provides a simple and computationally inexpensive
method for validating the stochastic QSSA. Specifically,
we find that discrepancies between the stochastic and
the deterministic QSSA stem from the fact that, due to
the random fluctuations, the stochastic system explores a
wider range of states than its deterministic counterpart.
We provide an analysis of a two-state promoter model,
and use numerical simulations for a variety of other mod-
els to show that the stochastic QSSA is accurate only when
the deterministic QSSA is accurate over a range of initial
conditions that cover themost likely states explored by the
stochastic system. Our finding suggests that in many cases
the validity of the stochastic QSSA can be checked post
facto by examining the deterministic QSSA over a range
of initial conditions obtained by simulating the reduced
stochastic model.

Results and discussion
Discrepancy between stochastic and deterministic QSSA
We began investigating the relationship between the
stochastic and the deterministic QSSA with a simple tran-
scriptional negative feedback loop model (Fig. 1a):

Ṁ = αMDA − βMM, (1)
Ṙ = αRM − βRR − kf RDA + kbDR, (2)

ḊA = −kf RDA + kbDR, (3)

whereM, R, DA, and DR are the concentrations of mRNA,
repressor, active DNA, and repressed DNA, respectively,
measured relative to the total amount of DNA, DT ; αM
and αR are the transcription and translation rates, respec-
tively; kf and kr are the forward and reverse rates of
repressor binding to DNA; and βM and βR are the degra-
dation rates of mRNA and repressor, respectively. The
total amount of DNA is conserved, and hence our choice
of units implies that DA + DR = 1.
If DA evolves faster than M and R, Eq. 3 equilibrates

faster than Eqs. 1-2. Thus, DA can be assumed to be in
steady state with respect to the instantaneous state of M
and R [1, 4–8, 10]. The QSS of DA can be obtained by
solving the QSS equation, ḊA = 0, giving

DA(R) = KD
KD + R

, (4)

where KD = kb/kf . Equation 4 allows us to close the
remaining equation (Eqs. 1–2) giving the reduced system
(Fig. 1a):

Ṁ = αM
KD

R + KD
− βMM,

Ṙ = αRM − βRR.
(5)

Note that different choices of kb and kf for Eqs. 1–3
result in the same reduction (Eq. 5), provided the ratio
KD = kb/kf is fixed. We asked whether values of kf
that lead to accurate deterministic reductions also pro-
vide accurate stochastic approximations. To address this
question we varied kf while keeping KD = 10 fixed. For
both kf = 10−1 and kf = 101, the reduced model pro-
vides an accurate deterministic approximation to the full
model for certain initial condition (insets of Fig. 1b and c).
However, the corresponding stochastic simulations of the
reduced and the full model disagree when kf = 10−1

(Fig. 1b and c) (see ‘Methods’ for details of stochastic sim-
ulations). These results agree with previous studies show-
ing that the accuracy of the deterministic reduced model
does not guarantee the accuracy of stochastic simulations
[27, 30, 35, 36].
Interestingly, the reduced deterministic model becomes

inaccurate when initial conditions are changed for
kf = 10−1, but remains accurate over a wide range of
initial conditions when kf = 101 (Fig. 1d and e). Thus,
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Fig. 1 The relationship between the accuracy of the deterministic and the stochastic QSSA. a The diagrams for the full model (Eqs. 1–3) and the
reduced model (Eq. 5). b–c The deterministic QSSA is accurate when both kf = 10−1h−1 and kf = 101h−1 (the insets). However, the corresponding
stochastic QSSA is accurate only when kf = 101. The colored ranges and histograms represent a standard deviation of R from its mean and the
distribution of R at steady state, respectively. Here, KD = 10, αM = 300h−1, βM = βR = 1h−1.M(0) = R(0) = 100 and DA(0) = 0. d–e The phase
plots of deterministic trajectories with various initial conditions when kf = 10−1 (d) and kf = 101 (e). The star and the square indicate initial
conditions used in (b) and (c) and the insets of (d) and (e), respectively. The black circle indicates the fixed point. Here, we assumedM(0) = R(0)

we hypothesized that the stochastic reduction is accu-
rate if the deterministic reduction is valid over a range
of initial conditions. We next investigated this hypothesis
analytically and numerically.

A condition for an accurate stochastic QSSA
In the presence of timescale separation, deterministic
solutions evolve in two phases: an initial transient (IT)
phase and a QSS phase. The two phases correspond
to times before and after the solutions are in QSS,
respectively. During the IT phase the solution approaches
the slow manifold defined by the QSS equation (e.g. the
red dashed lines in Fig. 1d and e). In this phase of the
full model the “fast” variables have not equilibrated to
their QSS. In the reduced model, however, fast variables
are assumed to equilibrate instantaneously. Thus, the

reduction is valid only when the “slow” variables change
little during the IT phase [1, 4]. If this condition is satis-
fied, trajectories in the phase plane horizontally approach
the slow manifold from their initial conditions (Fig. 1d
and e) [1, 3, 4].
The trajectories of the deterministic system evolve along

the slow manifold during the QSS phase (Fig. 1d and e).
However, trajectories of the corresponding stochastic sys-
tem fluctuate around the slow manifold. Therefore, any
trajectory starting away from the slow manifold that does
not horizontally relax onto it on average will contribute to
the error in the stochastic QSSA. Thus, during the return
of the fast variables to the slow manifold after a random
fluctuation, the slow variables should change little. This
leads to the hypothesis that for the stochastic QSSA to be
accurate, the deterministic QSSA should be accurate for a
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range of initial conditions which contain the most likely
fluctuations away from the slow manifold.
To investigate this hypothesis, following Segel and

Slemrod [1], we estimated how much a slow variable (R)
changes compared to its initial condition (R(0)) during the
IT phase:∣∣∣∣ �R

R(0)

∣∣∣∣ ≈ βR/kf + Dmax
A

R(0) + KD
. (6)

Here Dmax
A is the maximum value of DA during the IT

phase (See ‘Methods’ for details). This quantity should
be small for the deterministic QSSA to be accurate.
Equation 6 predicts that the error of the deterministic
QSSA increases as either R(0) or kf decrease, in agree-
ment with simulations (Fig. 1d and e).
In previous work [30] we showed that the stochastic

QSSA is accurate when (See ‘Methods’ for details):

kf � βR and
Var(DA)

R + KD
� 1. (7)

The first condition guarantees that the reactions regu-
lating DA is fast and the second condition ensures that
the stochastic QSS of DA (i.e. the conditional average of
DA) is accurately approximated by a deterministic QSS
equation for DA (Eq. 4). Interestingly, the second condi-
tion is similar in form to the condition for timescale sep-
aration for the deterministic QSSA during the IT phases
(Eq. 6). Thus, the conditions that imply the accuracy of
the stochastic QSSA (Eq. 7) are satisfied if Eq. 6 is small
for those values of R(0) that cover the range of states real-
ized during the stochastic simulations. This supports our
hypothesis that the stochastic QSSA is accurate when the
deterministic QSSA is accurate for a range of initial con-
ditions. This also explains why the parameter region for
which the stochastic QSSA is valid is smaller than for the
deterministic QSSA (Fig. 1b and c).

A numerical method for testing the accuracy of the
stochastic QSSA
Equations 6 and 7 predict that both the stochastic and the
deterministic QSSA become increasingly accurate as kf or
KD increases. We tested these predictions by numerically
estimating the error of the deterministic QSSA using:

max
N

∫ T
0

∣∣Xfull(t) − XQSSA(t)
∣∣ dt∫ T

0
∣∣XQSSA(t)

∣∣ dt , (8)

where Xfull(t) and XQSSA(t) represent the solutions (R(t))
of the full (Eqs. 1–3) and the reduced model (Eq. 5),
respectively. We chose the range of initial conditions (N )
to be three standard deviations from the expected val-
ues of the slow variables (M and R) at steady state of
the reduced model (Red histograms in Fig. 1b and c).
The entire range of the fast variable (DA) was included

in N because we cannot determine its expectation and
standard deviation with the reduced model. Equation 8
provides a measure of the accuracy of the deterministic
QSSA over the range of initial conditions that contains the
likely stochastic perturbations from the steady state.
We used the relative error of the coefficient of variation

at steady state to test the accuracy of the stochastic QSSA.
Both Eq. 8 and the error of the stochastic QSSA decrease
as kf and KD increase (Fig. 2), matching our analysis
(Eqs. 6–7). This again shows the close relation between
the error of deterministic and the stochastic QSSA. In
more complex models an analytical approach may not be
possible. For such models, the accuracy of the determin-
istic QSSA estimated numerically using Eq. 8 can inform
the validity of the stochastic QSSA as described in the next
section.
The proposed numerical method for testing the accu-

racy of the stochastic QSSA with Eq. (8) is simple, but
has limits. Importantly, we do not require stochastic sim-
ulations of the full model which can be computationally
expensive. Hence, the distribution and the range of fluctu-
ations of the fast species is not required to be known. Our
method requires that the reduced deterministic system
is accurately approximated the full deterministic system
over a range of initial conditions that includes all plausible
values of the fast species. This range of initial conditions
must include most of the mass of the distribution of the
fast species, but can be larger. Since we do not know the
distribution of the fast species this could include initial
conditions that are outside the fluctuation range of the fast
species. Hence, our condition can be too restrictive, as we
could require it to hold for initial conditions that are never
visited by the stochastic system.
As an example, consider the unscaledmodel in Eqs. 1–3

(i.e. variables are not scaled by DT ). For fixed volume
�, as DT increases the number of molecules of the fast
species, DA, increases. This reduces fluctuations of DA
and hence the range of the likely values of DA (Additional
file 1: Figure S1A). Thus, as DT increases, requiring the
deterministic QSSA to be accurate for all possible values
of DA is a more restrictive condition than necessary to
ensure the accuracy of the stochastic QSSA. As a result,
when the error of the deterministic QSSA is estimated
for a range of initial conditions that includes all possible
values of the fast species, the error of the deterministic
and stochastic QSSA shows a discrepancy asDT increases
(Additional file 1: Figure S1B), and our method will give a
false negative. This obvious limitation of our method can
be resolved by estimating the distribution of DA at least
approximately.
We also found that normalizing the fast species as we

scaled the system with DT can help overcome the lim-
itation of our method. In the scaled system (Eqs. 1–3
and Eq. 5), DT only appears implicitly in the parameter
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a b

Fig. 2 The numerically estimated error of deterministic and stochastic QSSA show strong correlation. a–b The error of the stochastic QSSA is closely
corelated to the error in the deterministic QSSA when kf (a) and KD (b) change. Here, the error in the deterministic QSSA is measured using the
relative differences in deterministic solutions R(t) given in Eq. 8. The error of the stochastic QSSA is measured using the relative difference of
coefficient of variation at steady state between the full and the reduced model. Note that since the error of stochastic and deterministic QSSA were
measured in different ways, they can potentially differ, even by orders of magnitude. See Additional file 1: Figure S2 for the difference of the
distributions of R between the stochastic QSSA and full model. The error bars were estimated with the boot strap method as described in ‘Methods’.
See Fig. 1 for the details of parameters

kf = DTk∗
f (k∗

f is the binding rate before scale) instead
of directly affecting the DNA concentration. In the scaled
system, our method predicts that as kf increases, the
stochastic QSSA becomes more accurate (Fig. 2a). This
result can be used to predict that, since kf = DTk∗

f as
either k∗

f or DT increases, the accuracy of the stochastic
QSSA for the unscaledmodel would equally increase. This
agrees with the numerical error analysis of the stochas-
tic QSSA for the original model (Additional file 1: Figure
S1C). In summary, the effect of DT on the accuracy of the
unscaled model can be accurately captured by applying
ourmethod Eq. 8 to the scaledmodel. Hence, when testing
the parameter dependence of the stochastic QSSA, nor-
malization of the fast species can improve the reliability of
our criterion using Eq. 8.

Key parameters for an accurate stochastic QSSA
Next, we tested whether our finding can explain the previ-
ously observed discrepancies between the stochastic and
the deterministic QSSA [27, 30]. We began with a model
of cooperative enzyme kinetics (Fig. 3a) [5, 27]:

Ṡ = kin − k1SE + k−1ES − k2SES + k−2ES2 ,
ĖS = k1SE − k−1ES − k2SES + k−2ES2 + kpES2 ,
ĖS2 = k2SES − k−2ES2 − kpES2 ,
Ṗ = kpES2 .

(9)

Here, the substrate (S) reversibly binds with enzyme (E)
to form a complex (ES). This complex can bind another
substrate (S) to form a second complex (ES2 ), which disso-
ciates to the first complex (ES) and product (P). We scale
all concentration relative to the total enzyme concentra-
tion, ET . The total enzyme concentration is constant, so
that E + ES + ES2 = 1.

If ES and ES2 equilibrate more quickly than S, and k−1
k1 �

k−2+kp
k2 leading cooperative substrate binding, then the full

model can be reduced with QSSA [5, 8, 27] giving:

Ṡ = kin − kpS2

K2
m + S2

, Ṗ = kpS2

K2
m + S2

, (10)

where K2
m = k−1

k1
k−2+kp

k2 (Fig. 3a). Thomas et al. [27]
showed that, in the deterministic case, the reduced model
accurately captures the behavior of the full model (Fig. 3b),
but its stochastic equivalent with the same initial con-
dition does not (Fig. 3c). This discrepancy between the
deterministic and the stochastic QSSA can be explained
by observing that the deterministic QSSA becomes inac-
curate for other initial conditions that correspond to fluc-
tuations from the slow manifold in the stochastic system
(see the inset of Fig. 3b).
If we change k−1 and k−2 while fixing the values of

Km1 = k−1
k1 and Km2 = k−2+kp

k2 , then K2
m in Eq. 10 does

not change and the full model has the same reduction.
We varied k−1 and k−2 while keeping K2

m fixed to deter-
mine when the reducedmodel is accurate. The error of the
deterministic QSSA estimated with Eq. 8 decreases with
the increase of k−1, but not k−2 (Fig. 3d and e). This sug-
gests that the error of the stochastic reduction will depend
on k−1, but not on k−2. We confirmed this prediction in
further stochastic simulations (Fig. 3d and e). This illus-
trates how the key parameters determining the accuracy
of the stochastic QSSA can be identified by examining the
accuracy of the deterministic QSSA over an appropriate
range of initial conditions.

Comparison of different stochastic QSSAs
Up to this point we have only considered the stan-
dard QSSA (sQSSA), but other versions of QSSAs have
been proposed [4, 6, 7, 10, 12, 30]. Therefore, we next
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Fig. 3 The deterministic QSSA can identify key parameters determining the accuracy of the stochastic QSSA. a The diagrams of the full model
(Eqs. 9) and the reduced model (Eq. 10). b–c)Whereas the deterministic QSSA is accurate (b), but the stochastic QSSA is inaccurate (c) with the same
initial condition: S(0) = ES(0) = ES2 (0) = 0. The deterministic QSSA becomes inaccurate with a different initial condition: S(0) = 410 or 500,
ES(0) = 0, ES2 (0) = 1 (the inset of (b)). The colored ranges and histograms represent a standard deviation of S from its mean and the distribution of
S at steady state, respectively (c). The parameters of the model is adopted from Thomas et al. [27]: kin = 0.5s−1, k−1 = k−2 = 100s−1, kp = 1s−1,
Km1 = 2 · 106, Km2 = 0.101. d–e Both the errors of the stochastic and the deterministic QSSA depends on k−1 (d), but not k−2 (e). The errors were
measured as in Fig. 2. In particular, the error of the deterministic QSSA is estimated with Eq. 8, where T = 4000 and X(t) = S(t) were used. See
Additional file 1: Figure S3 for the distribution of S from the stochastic simulations

investigated whether the same relationship between the
stochastic and the deterministic QSSA holds for other
QSS reduction techniques, such as the total QSSA
(tQSSA) [4, 6, 10] and the pre-factor QSSA (pQSSA) [7,
10, 12]. For illustration, we chose a transcriptional nega-
tive feedback loop model (Fig. 4a) given by the system:

Ṁ = αMDA − βMM, (11)
Ṗ = αPM − βPP, (12)
Ṙ = αRP − βRR − kf RDA + kbDR, (13)

ḊR = kf RDA − kbDR − βRDR, (14)

where the transcription of mRNA (M) occurs propor-
tional to active DNA (DA) and M is translated to the
protein (P), which transforms to the active repressor (R).
The repressor reversibly binds with DA to form repressed
DNA (DR). The total DNA concentration DT = DA + DR
is constant.

Our previous study shows that the tQSSA, but not the
sQSSA, provides a valid reduction of the full model when
binding and unbinding are fast [30]. For the tQSSA, we
introduce a new variable, the total amount of repressor,
T ≡ R + DR, and replace Eqs. 13 and 14 with

Ṫ = αRP − βRT ,
ḊR = kf (T − DR)DA − kbDR − βRDR.

(15)

Note thatT does not depend on the fast reversible binding
unlike F. By using DR = DT − DA and solving the QSS
equations for the fast species (ḊR = 0), we can obtain the
equilibrium values of DA in terms of T [30, 48]:

DA(T) = DT − T − Kd +
√

(DT − T − Kd)
2 + 4DTKd

2
,

(16)
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Fig. 4 Different types of stochastic QSSA. a The diagram of full model (Eqs. 11-14) and two types of reduced models (Eqs. 17 and 18). bWhen an
initial condition is on the limit cycle, only the stochastic tQSSA is accurate while both deterministic pQSSA and tQSSA are accurate (Additional file 1:
Figure S4A). A detailed numerical error analysis with Fourier transform is provided in Additional file 1: Figure S5. c Even with an initial condition on
the limit cycle (black circle), for which deterministic pQSSA is accurate (Additional file 1: Figure S4A), the stochastic trajectory escapes the limit cycle
due to the fluctuation, where the deterministic pQSSA is inaccurate (e.g. black square) (Additional file 1: Figure S4B). The parameters of the model
are adopted from [30]: αM = 15.1745h−1, αP = αF = βM = βP = βF = 1h−1, kb = 50h−1, kf = 200nM−1h−1, DT = 164.75nM

where Kd = (kf + βR)/kb. With this equation, we can
reduce the system (Fig. 4a):

Ṁ = αMDA(T) − βMM,
Ṗ = αPM − βPP,
Ṫ = αRP − βRT .

(17)

Because the tQSS solution (Eq. 16) is less intuitive
than the Michaelis-Menten-like form of the sQSS solu-
tion (Eq. 4), the reduced system can be transformed into
a more intuitive form by expressing Eq. 17 in terms of the
original free protein variable, R. Using DA(R) = DTKd

R+Kd
and

Ṫ = ∂T
∂R Ṙ, we obtain:

Ṁ = αM
DTKd
R + Kd

− βMM,

Ṗ = αPM − βPP,

p(R)Ṙ = αRP − βR

(
R + DTR

R + Kd

)
,

(18)

where p(R) ≡ ∂T
∂R = ∂R

∂R + ∂DR
∂R = 1+ DTKd

(R+Kd)2
(Fig. 4a). Due

to the pre-factor (p(R)) in Eq. 18, this reduction is known
as pQSSA [7, 10, 12]. We have shown previously [30]
that both the tQSSA and the pQSSA accurately approxi-
mate sustained oscillations of the full deterministic model
(Additional file 1: Figure S4A). However, only the tQSSA

provides an accurate approximation to the full stochastic
model (Fig. 4b and Additional file 1: Figure S5).
The discrepancy between the stochastic and the deter-

ministic pQSSA can again be explained by examining the
initial transient for a range of initial conditions (Fig. 4c). In
the deterministic case, initial conditions on the limit cycle
(e.g. the black circle on blue loop in Fig. 4c) lead to solu-
tions that are accurately approximated using the pQSSA
(Additional file 1: Figure S4A). However, initial condi-
tions off the limit cycle (e.g. the black square in Fig. 4c),
the deterministic pQSSA becomes inaccurate (Additional
file 1: Figure S4B). We thus expect the stochastic pQSSA
to fail as well even for initial conditions on limit cycle
(Fig. 4b). For a stochastic reduction to be accurate, the cor-
responding reduced deterministic model needs to agree
with the full model in a neighborhood of the limit cycle –
a neighborhood that contains most of the mass of the
stationary distribution of the stochastic system. This indi-
cates that accurately approximating limit cycle period or
amplitude – the focus of most previous deterministic
models [5, 7, 8, 48, 49] – is not sufficient to guarantee an
accurate stochastic approximation [50]. It is also neces-
sary to check whether the deterministic model captures
global dynamical features around the neighborhood of
limit cycle [51–54].
Both the deterministic pQSSA and tQSSA have been

developed to improve the accuracy of sQSSA [4, 6, 7, 10].
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The deterministic tQSSA broadens the range of initial
conditions over which the approximation is valid dur-
ing both the IT phase and QSS phase [4, 6, 10]. On the
other hand, the transformations required for obtaining
the pQSSA assume that the fast variables are initially in
QSS (note DA(R) = DTKd

R+Kd
was used) [7, 10]. Therefore,

the pQSSA is not necessarily valid during the IT period
unlike tQSSA. This explains why the stochastic tQSSA,
but not the stochastic pQSSA, is more accurate than the
stochastic sQSSA [23, 24, 30].

Stochastic QSSA with composite reductions
We next investigated whether our findings can be
extended to more complex models that contain multi-
ple non-elementary functions. We considered the tran-
scriptional negative feedback loop model with enzymatic
degradation (Fig. 5a) can be described using the following
equations [27]:

Ṁ = αM(D + DR) − βMM,
Ṙ = αRM − k1RD + k−1DR − k2RDR

+ k−2DR2 − k3ER + k−3ER,
Ḋ = −k1RD + k−1DR,

ḊR = k1RD − k−1DR − k2RDR + k−2DR2 ,
ĖR = k3ER − k−3ER − k4ER.

(19)

The rate of mRNA (M) transcription is proportional to
the concentration of unbound DNA (D), and DNA bound
with one protein (DR). DNA bound with two proteins
(DR2 ) is reposed status. mRNA is translated to protein (R),
which reversibly binds with D and DR to form DR and
DR2 , respectively. The protein also reversibly binds with
the enzyme (E) to form a complex (ER), which decays.
DT = D+DR +DR2 and ET = E + ER are constant. If ER,
D, andDR equilibrate faster thanM and R, and k−1

k1 � k−2
k2 ,

the model can be reduced to [27]):

Ṁ = αMDTK2
D

K2
D + R2 − βMM, Ṙ = kRM − k4ETR

KM + R
, (20)

where KM = (k−3 + k4)/k3 and K2
D = k−1k−2/k1k2 [27].

The reduced model is obtained through composite reduc-
tions resulting in two non-elementary terms: the Hill
function, αMDTK2

G
K2
D+R2 , describing transcriptional repression

and the Michaelis-Menten function, k4ETR
KM+R , describing

enzymatic degradation.
The reduced stochastic model is inaccurate [27]. To

investigate whether a particular step in the composite
reduction leads to this inaccuracy, we compared four
models: the full model, the model with reduced enzymatic
degradation (ER), the model with reduced transcriptional
repression (DR) and the fully reduced model obtained

Fig. 5 The deterministic QSSA can inform the validity of the stochastic QSSA with composite reduction. a The diagram of the full model (Eqs. 19)
and the reduced model (Eqs. 20). b The three different types of reduced models (ER, DR and EDR) (Additional file 1: Figure S6) accurately
approximate the deterministic simulations of full model with an initial condition, which will be used for stochastic simulation:M(0) = R(0) = ER(0)
= G(0) = GR(0) = 0. However, only ER model accurately approximates the full model if R(0) = 100. c–e The stochastic simulation of only ER model
is accurate for an initial condition with which all three types of reduced model are deterministically accurate (Fig. 5b). The colored ranges and
histograms represent a standard deviation of R from its mean and the distribution of R at the steady state. The parameters of the model are adopted
from [27]: αM = 50s−1, βM = kR = k4 = 1s−1, k−1 = k−2 = k−3 = 10s−1, k1 = 10−5s−1, k2 = 102s−1, KM = 110, DT = 0.01



Kim et al. BMC Systems Biology  (2015) 9:87 Page 9 of 13

using both reductions (EDR) (Fig. 5a and Additional file 1:
Figure S6). The solutions of these three deterministic
reductions agree for a particular initial condition, which
will be used for the stochastic simulation (Fig. 5b). How-
ever, when we varied the initial condition, only the
ER model accurately approximated the full deterministic
model (Fig. 5b). This suggests that an accurate stochastic
reduction needs to contain an elementary representation
of the repressor to DNA binding process. Indeed, only
the stochastic ER model provided an accurate approxi-
mation (Fig. 5c-e). The deterministic QSSA pointed to
the reduction step which caused the inaccuracy in the
stochastic QSSA. This suggests that our theory can iden-
tify the reduction steps that lead to a valid approximation
(e.g. ER model).

Stochastic QSSA with an unbounded fast variable
Finally, we investigate an example in which the values of
the fast variable are not bounded. Namely, consider the
constitutive transcription of first mRNA and then trans-
lation of protein described by the deterministic system:

Ṁ = αM − kMM, Ṗ = αPM − kPP. (21)
If kM � kP, M rapidly equilibrates to its QSS (αM/kM)

and the reduced model becomes

Ṗ = αMαP
kM

− kPP. (22)

Since the system is linear, the exact variance of P at the
steady state can be calculated [27, 55]:

σ 2
full = 〈P〉

(
αP/kM

1 + kP/kM
+ 1

)
, σ 2

QSSA = 〈P〉.
where 〈P〉 is the average of P at the steady state
(αMαP/kMkP).
Previous studies note that even if kP/kM � 1, which

ensures the accuracy of the deterministic QSSA, the
stochastic QSSA has an error that depends on αP/kM
[27, 55]. This discrepancy can also be explained by our
finding: the accuracy of the stochastic QSSA depends not
only on the accuracy of the deterministic QSSA, but also
on the range of fluctuations in the full stochastic system.
To see how this applies to the present example, assume
that kM and kP are fixed and kP/kM � 1. Then, as long as
αMαP is fixed, the full model (Eq. 21) always has the same
reduction (Eq. 22), and the differences between trajecto-
ries of the full model and the reduced deterministic model
remain the same for different initial values of normalized
M(0) by the steady state ofM(αM/kM) (Fig. 6a). However,
a larger αP (and, accordingly, a smaller αM) results in a
lower equilibrium concentration, and hence larger fluc-
tuation in the normalized M (See Fig. 6b, the coefficient
of variation of M is

√
kM/αM). This means that we need

to require the deterministic reduction to be accurate for
a larger range of initial conditions of the normalized M,

and, in particular, small M(0)/(αM/kM) when αP is large
(Fig. 6a and b). Thus, while αP does not affect the accu-
racy of deterministic QSSA, it does impact the error of the
stochastic QSSA.
As kP decreases, the deterministic QSSA becomes

more accurate (Fig. 6c), but the difference between σ 2
full

and σ 2
QSSA increases, apparently contradicting our claim.

However, unlike above, the change in kP leads to differ-
ent reductions with different scales (Eq. 22) and therefore
the accuracy of the reduction should be compared in a
relative sense (Fig. 6a, c). Indeed, when we compare the
relative accuracy of the stochastic QSSA (the coefficient
of variation), we see that :

σfull − σQSSA
〈P〉 ≈

√
αP/kM + 1 − 1√
αMαP/kPkM

∝
√
kP,

where we used kM � kP in the first approximation. Hence,
the relative error of the stochastic QSSA decreases with
decreasing kP, as does the relative error of the determinis-
tic QSSA.
This example shows that the deterministic and stochas-

tic QSSA are related as described earlier, even when the
fast variable is not bounded. However, applying the simple
numerical method (Eq. 8) to this example is not possible
since it would require one to test the accuracy of deter-
ministic QSSA for all possible values of the fast variables,
a point we consider further in the Conclusions.

Conclusions
Numerous methods have been developed to accelerate
and simplify stochastic simulations [12–30]. The stochas-
tic QSSA is the most widely used reduction technique due
to its simplicity and general applicability [31–34, 37–47],
but its validity is rarely justified rigorously [30]. Often it
is tacitly assumed that the stochastic QSSA is accurate
whenever its deterministic counterpart is valid [31–34].
However, recent counterexamples have brought this
assumption into question [27, 30, 35, 36]. Here, we
demonstrated a clear relationship between the accuracy
of the two reductions. Our analysis and simulations reveal
that the stochastic QSSA is valid if the deterministic QSSA
is accurate over a range of initial conditions that include
the most probable fluctuations (Figs. 1–6). If the deter-
ministic QSSA is not accurate in this neighborhood, the
stochastic QSSA will fail. On the other hand, if the deter-
ministic QSSA is accurate regardless of initial conditions,
the stochastic QSSA will be accurate.
We have discussed the relationship between the accu-

racy of the deterministic and the stochastic QSSA using
common examples (e.g. Michaelis-Menten and Hill kinet-
ics). Based on these examples, we conjecture that a similar
relation holds more generally. We leave a full theoreti-
cal investigation of this conjectured relationship for future
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Fig. 6 A model with an unbounded fast variable. a The trajectories of the full model (Eq. 21) and the reduced deterministic model (Eq. 22) during
the IT period are the same for the same initial values of normalizedM(0) by the steady state ofM (αM/kM) when αM = 1,αP = 10 and when
αM = 10,αP = 1. The difference between the trajectories increases asM(0) decreases. Here, kM = 1, kP = 0.1. bWhen αM = 1,αP = 10, fluctuation
in the normalizedM by its steady state is larger than for αM = 10,αP = 1. cWhen kP = 0.01, the relative differences between the trajectories of the
full and reduced deterministic model during the IT period are smaller than when kP = 0.1 (c.f. panel a)

work. Thomas et al. [56] used a projector operator tech-
nique to show that, if fast reactions do not affect slow
species – a condition which is not generally satisfied when
the QSSA can be applied – then the propensities derived
from the deterministic QSSA can be used to provide an
accurate linear noise approximation. This is consistent
with our result showing that the tQSSA, which holds when
slow species are insulated from fast reactions, leads to a
more accurate stochastic QSSA (Fig. 4). Furthermore, we
considered more general cases in which the fast reactions
affect the slow species, which is common in QSSA reduc-
tions (Figs. 1, 3 and 5). Our work indicates that if fast
reactions do affect slow species the stochastic QSSA is
more accurate when the slow species do not change much
during the IT period. This indicates that the theoretical
results of Thomas et al. [56] can be generalized to the case
when fast reactions do affect slow species.
Based on the above relationship, we provide a sim-

ple numerical method (Eq. 8) for testing the validity
of stochastic reductions that include non-elementary

propensity functions (Fig. 7). In applying this method, we
assume that the distribution and the range of fluctuations
of the fast species is not known. Without this knowledge,
we assume that fast variables can vary over all possible
states, a range that may be much larger than that cov-
ered by their actual fluctuations. As a result, our method
is more conservative than necessary and can produce false
negatives. Our method can be improved by identifying a
plausible range of initial conditions that need to be tested
by estimating the actual fluctuations in the fast variables
via analysis (e.g. linear noise approximation) or numeri-
cal simulation (Fig. 6b). Our approach works better if one
normalizes the fast variables (Additional file 1: Figure S1),
which can help reduce the parameter dependence of the
fast variables’ fluctuation range.
Furthermore, to avoid stochastic simulations of the full

model, we proposed to test the accuracy of the determin-
istic QSSA over a range of values for the slow variable
determined by simulations of the reduced model (Fig. 7).
It is possible that the accuracy of the deterministic QSSA

Fig. 7 Procedure for validating the stochastic QSSA with Eq. 8. Step 1. Perform stochastic simulations with the reduced model. Step 2. From these
stochastic simulations, estimate a range of initial conditions for the slow variables. For the fast variables, use all possible states for their range of
initial conditions. Step 3. Using these ranges of initial conditions for the slow and fast variables, test the accuracy of deterministic QSSA. If the
deterministic QSSA is accurate for all of these initial conditions, the stochastic QSSA is accurate
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inside this range does not imply validity outside the range.
In such cases our method can lead to false positives and
suggest the stochastic QSSA is accurate when it is not. A
singular perturbation analysis of the accuracy of the deter-
ministic QSSA can help to avoid this problem [1–3, 9, 11].
For instance, Eq. 6 shows that the accuracy of the deter-
ministic QSSA across an arbitrary range of initial values
of the slow variable (R(0)) is determined by the same
condition. In such cases, false positives can be avoided
(Fig. 2).
Diverse software packages for simulating stochastic bio-

chemical systems are available. A common issue with all
these packages is how to deal with non-elementary reac-
tion functions. Some packages, such as STOCKS [57],
require users to convert non-elementary reaction func-
tions to elementary ones. Such simulations can be pro-
hibitively slow. Thus other packages, such as COPASI [58],
StochSS (http://www.stochss.org/) and Cain [59] allow the
use of non-elementary propensity functions. The resulting
simulations are faster, but may be inaccurate. Our method
can provide a quick way to guarantee when such simula-
tions can be trusted (Fig. 7). Because this method is based
on our finding of a relative relationship between the error
of the deterministic and stochastic QSSA (Figs. 2 and 3d-
e), it could be improved if a more direct relationship can
be derived.
Our work could also be extended to more general

singularly perturbed systems such as reaction diffusion
system [3, 60, 61]. The relation we found could also pro-
vide a bridge between theories of singularly perturbed
deterministic systems [2, 3, 9, 11], and their stochastic
counterparts.

Methods
Stochastic simulation
All stochastic simulations were performed with the Gille-
spie algorithm [62]. The propensity functions of both
elementary and non-elementary reactions were obtained
by substituting X = nX

�
to the macroscopic reaction rates

(Additional file 1: Table S1). X and nX represent concen-
tration and the number of species, respectively. � is the
volume of system. We used � = 1 unless it is specified.
The variance and expectation values of species were esti-
mated with 106 simulations (Figs. 2 and 3d–e). The stan-
dard deviation of errors in Figs. 2 and 3d–e were estimated
with the bootstrap method with 100 block length.

Validity condition of deterministic QSSA
The deterministic QSSA of the model (Eq. 5) is accurate
when a slow variable, R, changes little while a fast vari-
able, DA, approaches its QSS in the model (Eqs. 1–3). Let
us estimate how much R changes while DA approaches
its QSS. To follow the estimation method of Segel and
Slemrod [1], we consider the case when R decays from its

initial condition. The timescale ofDA during the IT period
(R ≈ R(0)) can be estimated by

t−1
DA

=
∣∣∣∣∂ḊA
∂DA

∣∣∣∣ = kf R(0) + kb

Then, the relative change of R during the IT period
becomes∣∣∣∣ �R

R(0)

∣∣∣∣ ≈
∣∣∣∣ Ṙ

max

R(0)

∣∣∣∣ tDA

≈
∣∣∣∣βRR(0) + kf R(0)Dmax

A
R(0)

∣∣∣∣ 1
kf R(0) + kb

= βR/kf + Dmax
A

R(0) + KD
, (23)

where Ṙmax and Dmax
A represent the maximum of Ṙ and

DA during the IT period, respectively. Note that when we
derived ˙Rmax ≈ βRR(0) + kf R(0)Dmax

A , we assumed that
mRNA evolves much more slowly than DA during the IT
period. Equation 23 estimates themaximal relative change
of R during the IT period.

Validity condition of stochastic QSSA
Our previous study showed that the stochastic QSSA of
themodel (Eq. 5) is accurate when: 1) binding and unbind-
ing between R and DA are faster than other reactions;
and 2) the QSS of DA of the deterministic and stochas-
tic systems are similar [30]. When the first condition is
satisfied, it was shown that replacing the fast variable DA
with its QSS of the stochastic system leads to an accurate
reduction [16–18, 29]. Thus, when the second condition is
satisfied, the stochastic QSSA becomes accurate because
the stochastic QSSA uses the QSS of DA driven with the
deterministic system to replace the fast variables. For the
first condition, we need kf � βR = βM because KD =
kb/kf is fixed in this study. For the second condition, the
relative difference between the QSS of the deterministic
(DA(R)) and stochastic (〈DA〉) systems should be small. A
theorem provided in our previous study (p. 788 of [30])
shows that the difference mainly depends on the Fano
factor of the fast variables (Var(DA)/DA(R)) and the sen-
sitivity of the QSS solution (dDA(R)/dR). Since the error
stems from ignoring the effect of fluctuations of the fast
species on the slow species ([27, 56]), the error depends
on the Fano factor of fast variables – and this error is
magnified by the sensitivity of the QSS solution:

∣∣∣∣DA(R) − 〈DA〉
DT

∣∣∣∣ ≈ 1
DT

Var(DA)

DA(R)

∣∣∣∣dDA(R)

dR

∣∣∣∣
= Var

(
DA
DT

)
DT

R + KD
(24)

The second equality comes from Eq. 4. Under nondimen-
sionalization, where DT = 1, Eq. 24 becomes Eq. 7.

http://www.stochss.org/
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