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Differential variability and correlation of
gene expression identifies key genes
involved in neuronal differentiation
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Abstract

Background: Understanding the dynamics of stem cell differentiation processes at the molecular level is a central
challenge in developmental biology and regenerative medicine. Although the dynamic behaviors of differentiation
regulators have been partially characterized, the architecture regulating the underlying molecular systems remains

unclear.

Result: System-level analysis of transcriptional data was performed to characterize the dynamics of molecular
networks in neural differentiation of stem cells. Expression of a network module of genes tightly co-expressed in
mouse embryonic stem (ES) cells fluctuated greatly among cell populations before differentiation, but became
stable following neural differentiation. During the neural differentiation process, genes exhibiting both differential
variance and differential correlation between undifferentiated and differentiating states were related to developmental
functions such as body axis development, neuronal movement, and transcriptional regulation. Furthermore, these
genes were genetically associated with neuronal differentiation, providing support for the idea they are not only
differentiation markers but could also play important roles in neural differentiation. Comparisons with transcriptional
data from human induced pluripotent stem (iPS) cells revealed that the system of genes dynamically regulated during
neural differentiation is conserved between mouse and human.

Conclusions: The results of this study provide a systematic analytical framework for identifying key genes involved in
neural differentiation by detecting their dynamical behaviors, as well as a basis for understanding the dynamic
molecular mechanisms underlying the processes of neural differentiation.
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Background

Cell differentiation is a complex process requiring pre-
cise dynamic regulation of cellular components. The
spatio-temporal heterogeneity of ES cells and iPS cells
makes it hard to determine the molecular mechanisms
of cell differentiation and establish efficient differenti-
ation protocols [1, 2]. From the standpoint of dynamic
systems theory, differentiation processes, like societies
and ecological or biological networks, are systems that
shifts abruptly from one state to another, often in re-
sponse to external stimulation; such shifts are referred
to as “critical transitions” [3—5]. ES and iPS cells are in a
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balanced stable state that can shift to multiple other
states representing differentiated cell types [5, 6].
Although it may exhibit little change beforehand, a system
close to a critical transition usually shows signs of fragility.
For example, high variance and correlation of system
components are empirical indicators of upcoming transi-
tions [4]. Thus, the mRNA and protein components of a
gene regulatory network may exhibit highly variable
expression and correlated expression patterns prior to ES
and iPS cell differentiation. Such variance is thought to be
related to spatio-temporal fluctuation (“noise”) in gene ex-
pression [7]. Controlled temporal fluctuation or oscillation
is required for maintenance of stem cell self-renewal [8].
Some gene sets related to self-renewal not only oscillate,
but are also co-expressed during neural differentiation [9].
The co-expression network provides a comprehensive
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picture of the correlation relationships between gene
products and reveals the functional organization of the
transcriptome [10, 11]. The structure of the transcrip-
tional regulatory network may be altered during ES cell
differentiation. Fluctuations in the levels of important
differentiation regulators may affect network structure,
thereby controlling cell fate decisions and population
heterogeneity [12]. Recently developed systematic
approaches can identify such changes in network struc-
ture [13]. These approaches identify regulators or
marker genes of disease pathophysiology by comparing
gene network structures and variances of the genes in
the network between healthy and disease progression
states [14—20]. Application of these methods to ES and
iPS cell may reveal alterations in network structures
and variance in gene expression levels during ES cell
differentiation process, ultimately leading to identifica-
tion of important regulators of differentiation. In
support of this idea, several known regulators exhibit
co-regulated fluctuations during differentiation [9].
Understanding of these gene regulatory networks could
help dissect the complex molecular mechanisms under-
lying stem cell biology. Although pioneering work has
revealed the behaviors of dynamic gene fluctuations,
especially in developmental biology, genome-wide dis-
covery of genes exhibiting dynamic fluctuation during
differentiation has not been comprehensively per-
formed. In this study, we developed an analytical frame-
work for investigating the dynamics of transcriptional
networks and applied it to the differentiation processes
of ES and iPS cells. Examination of the gene expression
profile during mouse neural differentiation revealed
that the variability of a group of genes that were co-
expressed in the undifferentiated state decreased after
neural differentiation. We then ranked the individual
genes using an integrative scoring method (Fig. 1) that
simultaneously assessed the changes in gene expression
variances and co-expression relationships between the
undifferentiated and differentiated states. This analysis
identified 671 highly ranked genes, including Hes1, pre-
viously shown to oscillate prior to neural differenti-
ation. The common biological functions among these
genes are related to neural differentiation, and act
downstream of pluripotency-related transcription fac-
tors. This group was also enriched in genes that cause
phenotypic alternations of developmental processes in
KO/Tg mice. We demonstrated that these genes signifi-
cantly overlapped with the set of genes that exhibited
differential variance and correlation during neural dif-
ferentiation of human iPS cells. This study suggests
that analysis of network dynamics can be used to iden-
tify genes important for the differentiation process, as
well as yield insights into dynamic molecular mecha-
nisms in both mice and humans.
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Results

Network dynamics detection in the differentiation

process

We analyzed microarray data collected at six time points
(days 0, 3, 4, 5, 6, and 7) from mouse ES cells undergoing
neural differentiation; each time point was measured in
eight replicates (E-TABM-1108) [21]. Two indicators were
calculated to identify genes whose expression patterns
predicted the transition from the undifferentiated state to
the neural lineage (Fig. 1). One indicator was differential
variance, representing the difference in gene expression
variance between day 0 and each time point after day. The
other was differential correlation, representing the differ-
ence between the average value of correlations within co-
expressed gene sets at day O and those on subsequent
days. These co-expressed gene sets, so-called ‘modules;
were defined at day 0 using hierarchal clustering. A system
transition score was assigned to each gene by combining
the differential variance and differential correlation (Fig. 1
and Methods). Hierarchical clustering analysis of gene
expression data from ES cells at day O revealed 76 mod-
ules (Fig. 2). Comparisons of expression variances between
day 0 and subsequent days identified 315 differentially
variable genes (Additional file 1: Table S1). Genes for
which the variances decreased after day 0 were the most
significantly enriched in the skyblue module (colored sky
blue in Fig. 2), which contained the most highly correlated
genes at day O (p=3.61e-50). This result indicates that
genes specifically expressed in ES cells in the undifferenti-
ated state were more variable than those expressed in dif-
ferentiating cells, even though it is likely that multiple
types of cells are present in the population during neural
differentiation. On the other hand, the genes that were dif-
ferentially expressed between day 0 and subsequent days
were not enriched in the skyblue module (Fig. 2) as much
as genes with differential variance (p>0.999, Additional
file 2: Table S2). As noted above, high differential variance
and correlation are observed in fragile systems before a
critical transition [4], and these features may represent an
early warning signal of imminent differentiation.

Genes with differential variance and correlation are
involved in neural differentiation

To identify fluctuating genes that contribute to dynamic
changes in the transcriptional network, we ranked all
genes based on their system transition scores. We
referred to the highly ranked genes as DVC (differential
variance and correlation) genes. We detected 671 such
genes (Additional file 3: Table S3). One of the top-
ranked DVC genes, Hesl, exhibited high variance at day
0 (Fig. 3c). Co-expression relationships with Hesl were
diminished at day 4 relative to day O (Fig. 3d). Functional
analysis of the DVC genes revealed that genes involved
in body axis development, neuron movement, and
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Fig. 1 Methodological overview of system transition scoring based on network dynamics. Two indexes were used for system transition scoring:
gene expression variance within replicates in each cellular state, and the co-expression relationship between genes in each cellular state. After
calculating these indexes for each state, a differential analysis was performed to compare the indexes of the undifferentiated and differentiated
states. A conceptual gene expression variance and co-expression network of three genes (genes A, B, and C) is shown. In the left panel, gene A
(in red) exhibits the largest change in expression variance within replicates at the undifferentiated state (US), however the variance greatly
decreases following the shift to the differentiating state (DS). This change in variance is defined as differential variance. Co-expression relationship
(grey lines connecting three genes) is defined as the correlation between genes within replicates; therefore, the relationship between gene A and
gene B/C diminishes in the DS. Such a correlation difference between states is defined as differential correlation (blue line indicates “decrease” of
correlation” in the right panel). When both the differential variance and differential correlation are large, the system transition score is high. Gene
B (in grey) and gene C (in green) are member genes that co-express with gene A in the undifferentiated state. Although gene B exhibits differential
variance, the differential correlation of gene B is smaller than that of gene A. The differential variance of gene C is much smaller than that of gene A.
The system transition scores of genes B and C are lower than that of gene A
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transcription were enriched among the DVC genes
(Fig. 3a). There were 822 differentially expressed genes
that satisfied (1) p <0.05 by t-test, and (2) fold change >
mean + 2SD (standard deviation), when their mean ex-
pression levels were tested between differentiating
states (Days 3, 4, 5, 6, and 7) and Day 0. Compared to
the functions enriched in the DVC genes, the enriched
functions of the differentially expressed genes included
cancer-related functions (malignant solid tumor, prolif-
eration of cells, digestive tumor, cell death of tumor)
(Additional file 4: Table S4). Moreover, the DVC and
differentially expressed genes did not significantly over-
lap (p=0.793), but the DVC genes did significantly
overlap with the set of genes (Fig. 3b) regulated by the
Yamanaka factors (Myc, Sox2, and Pou5f1(Oct4))
expressed at the highest levels in the undifferentiated
state (Day 0) (Additional file 5: Figure S1). Hoxb3, Fgf4,
and Pax6 are downstream of both Pou5fl (Oct4) and
Sox2. These results suggest that the DVC genes not
only represent early warning signals for neural differen-
tiation, but are also functionally involved in the differ-
entiation process.

Gene expression variance and correlation are altered at a

neuroectodermal stage

Next, we assessed the expression patterns of differenti-
ation marker genes in order to understand when during
the neuronal differentiation process their individual gene

expression variance and co-expression relationship with
associating genes changed. The cell populations initially
expressed markers of the undifferentiated state, such as
Pou5f1(Oct4) and Nanog, and began to express the primi-
tive ectoderm marker Fgf5 on day 3 (Fig. 4). The early
neuroectodermal marker Sox1 was expressed after day 4,
and the neural markers Ascll (Mashl) and Tubb3 (Tujl1)
were elevated after day 5 under neural differentiation con-
ditions. Over half (55.7 %) of the DVC genes exhibited
their largest changes in variability and correlation at Day
4. For instance, the expression variance of Hes1 decreased
after day 4, when Sox1 was dramatically up-regulated. The
co-expression networks of six time points are shown in
Additional file 6: Figure S2. The figures show that the cor-
relations between the genes in the skyblue module
decreased the most at day 4. Because the early neuroecto-
dermal marker Sox1 was highly expressed at Day 4, we
believe that this time point represents a neuroectodermal
stage. Based on these results, we infer that the transition
to the neuroectodermal stage may involve an abrupt gen-
etic system shift in differentiating cells.

DVC genes are genetically associated with the
differentiation process

We next performed enrichment analyses to determine
whether the DVC genes play important roles in differen-
tiation processes. To this end, we compared the DVC
with the genes associated with differentiation-related
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Fig. 2 Co-expression modules identified in the undifferentiated state (day 0) in mouse ES cells. Dendrogram shows modules of co-expressed
genes identified by hierarchical clustering of gene expression profiles on day 0. Individual colors represent single modules. The heatmap indicates
fold change, differential variance, and differential correlation between day 3/4/5/6/7 and day 0. Differential variance indicates the absolute value
of the difference between SD after day 0 and SD on day 0. Differential correlation indicates the absolute value of the difference between PCC

phenotypes in knockout and transgenic mice. This ana-
lysis revealed that genes involved in embryogenesis,
embryonic lethality, neural differentiation and neural
progenitor cell differentiation were significantly more
enriched among the DVC genes than among the differ-
entially expressed genes (Fig. 5). Thus, the DVC genes
could play important roles in neural differentiation. In
other words, the genetic factors underlying neural dif-
ferentiation could control differentiation by affecting
the transcriptional network and its fluctuations, which
are measured as dynamic changes in correlations and
variances.

DVC genes conserved in mouse ES and human iPS cells
Next, we assessed the conservation between humans
and mice of differential variance and correlation during

neural differentiation. To this end, the analysis used to
detect network dynamics was applied to gene expression
data collected at three differentiating states during neural
differentiation of human iPS cells: iPS cells, neural precur-
sor cells, and neurons [22]. We identified 284 DVC genes
in neural differentiation of human iPS cells (Additional file
7: Table S5), which overlapped significantly with those in
mice (p = 0.0204, Fig. 6a); for example, Hes1 and Ccng?2 in
the mouse co-expression network were also identified as
DVC genes in neural differentiation of human iPS cells
(Fig. 3d). Proliferation- and morphology-related genes
were over-represented both in mouse and human (Fig. 6b).
Furthermore, in both species, DVC genes were commonly
regulated by MYC and SOX1 (Fig. 6c). For example,
SOX1 is a transcriptional factor for HES1 [23], and the
abrupt up-regulation of SOX1 may drive the dynamic
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Fig. 3 Functional analysis of DVC genes. a Functional categories enriched in the DVC genes during neural differentiation. b Upstream regulator
analysis revealed transcriptional factors that could regulate the DVC genes. ¢ Expression profile of a representative DVC gene, HES1. d Co-expression
network of the module exhibiting the highest differential correlation and variance. Links between nodes represent strong correlation relationships
(correlation coefficient 2 0.95). Green nodes indicate genes associated with differentiation-related phenotype in knockout or transgenic mice. Node size
indicates system transition score

changes of HESI expression and co-expression relation-
ships at day 4. Both genes play important roles in stem cell
maintenance [24].

Discussion

We carried out the first genome-wide analysis aimed at
detecting dynamical changes in gene-expression variance
and co-expression relationships during neural differenti-
ation of mouse ES and human iPS cells. Our results
demonstrate that genes that were highly correlated in ES
cells exhibited significant changes in expression variance.
Functional analysis revealed that genes exhibiting both
differential variances and differential correlations may

encode the regulators of neural differentiation. Although
differentially expressed genes are normally used to iden-
tify genes that play important roles in differentiation
[25-27], analysis of network dynamics allows us to iden-
tify potential key regulators that cannot be detected by
differential expression analysis.

The DVC genes tended to be downstream of the
Yamanaka factors (Fig. 3), and could therefore be related
to self-renewal of stem cells and maintenance of pluripo-
tency. Hoxb3, Fgf4, and Pax6 are downstream of both
Pou5f1 (Oct4) and Sox2. Hoxb3 plays a role in maintain-
ing self-renewal [28], and Fgf4 is involved in pluripotency
[29]. On the other hand, Pax6 is a master regulator of
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Fig. 4 Expression profiles of neural differentiation markers in mouse ES cells. The Z-score indicates relative expression differences in each marker
gene throughout the neural differentiation period (day 0 to day 7). Pou5f1 (Oct4) and Nanog are undifferentiated pluripotency markers. Fgf5 is a
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neuronal differentiation [30]. Sox1, one of the common  differentiation of ES cells into the neural lineage and
transcription factors upstream of the DCV genes in  delays mesoderm and endoderm differentiation [32].
both the mouse and human studies (Fig. 6), promotes  Pitx2 is important for mesodermal and neuroectoder-
neurogenesis [23]. Hesl and Pitx2 are downstream of mal development in vivo [33]. These results suggest
Sox1. Hesl-null mice exhibit premature neurogenesis that the DVC genes include not only pluripotency
and neural tube defects during embryogenesis [31]. The genes but also the genes specifically related to neuronal
Hes1 protein is a transcriptional repressor that inhibits  differentiation.
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SOX1 also acts upstream of DVC genes in human iPS
cells. HES1, FRZB, and WLS are common DVC genes
downstream of SOX1 in both humans and mice. Reduc-
tion in FRZB expression is required for neural progenitor
proliferation and the acceleration of neuron development
[34]. FRZB can bind extracellular WNT and inhibits Wnt
signaling. WLS is important for Wnt-mediated neuronal
development [35]. These genes might have regulatory
links and be involved in a neuronal differentiation.

HES1 expression is dynamically regulated during
neuronal differentiation. In particular, Hes1l expression
oscillates in ES cells and neural progenitor cells, and is
transiently down-regulated during the transition to epi-
blast stem cells (epiSCs) in neural and non-neural line-
ages [9, 32, 36]. The heterogeneity of Hesl expression
was greater in the ES cell population than in epiSCs.
This heterogeneity may be due to oscillatory expres-
sion, observed as expression variances in ES cell popu-
lations. Our analysis was able to detect the change in
expression variances during the transition from ES cells
to the neural lineage.

Inactivation of HES1 in ES cells promotes rapid and
homogeneous differentiation into neural progenitors
[36]. CCNG2 was also identified as a DVC gene in both

mouse ES and human iPS cells. Both Hesl and Ccng2
prolong G1 phase to reduce cell proliferation [37, 38].
Smad2 is a transcriptional regulator of Hesl and Ccng2,
and the inhibition of Smad2 promotes immediate differ-
entiation into functional neurons [39]. These findings
suggest that modulation of the DVC genes might facili-
tate the development of experimental protocols for rapid
and homogeneous differentiation of neurons. Because
the heterogeneities of ES and iPS cells preclude the use of
these materials as a stable supply of rapidly differentiated
neurons, such an approach could contribute greatly to the
understanding of brain functions and the development of
regenerative medicine. These heterogeneities could arise in
part from the dynamical behaviors of cellular components
such as protein expression and localization. Recently, a
growing number of attempts have been made to control
dynamical patterns by targeted perturbations using chem-
ical compounds and other interventions [40]. Perturbation
of the genes identified by the methods in this study could
contribute further to understanding of the molecular basis
of stem cell differentiation. Moreover, dynamical regula-
tions of the genes by such perturbations might control
neural differentiation. Specific dynamical patterns are asso-
ciated with various cellular responses such as apoptosis
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and immune response; therefore, the application of this
method to other biological responses could identify im-
portant regulators of specific cellular responses.

However, it remains challenging to identify dynamic
changes in molecular networks. The approach used in
this study might not detect all the early warning signals
of upcoming transitions. For example, genes previously
shown to exhibit oscillatory expression in stem cells,
such as Ascll and DII1, were not identified in this study.
One possible reason for this is that we measured mean
values of gene expression in cell populations, potentially
resulting in underestimation of gene expression variance
among individual cells. A single-cell analysis of gene-
expression profiles with a large number of replicates
would help us to observe the transcriptional distribution
of each gene across individual cells. Characterizing the
transcriptional distribution in this manner could provide
more accurate estimation of a gene expression variance
between cellular states.

There are, of course, genetic and epigenetic differences
between humans and mice. For example, the molecular
machineries that maintain the stemness of ES and iPS
cells are not completely identical [27, 41]. In addition,
various human iPS cell lines come from different genetic
backgrounds [22]. Despite such differences, a significant
number of common DVC genes were identified during
neural differentiation in mouse ES and human iPS cells.
This finding supports the idea that the machineries
responsible for dynamic changes in gene expression vari-
ances and correlations during neural differentiation are
conserved between humans and mice.

Conclusions

Our system-level analysis of the mouse ES and human
iPS cell transcriptomes demonstrates the existence of a
transitional state during neural differentiation that ex-
hibits fluctuations in gene expression and transcriptional
regulation. These dynamic transcriptional changes, iden-
tified by unbiased systematic detection of early warning
signals for upcoming neural differentiation, were genet-
ically related to developmental functions. Our analysis
provides a systems biology framework that could be used
to gain insights into the mechanisms underlying dy-
namic developmental processes in stem cells.

Methods

Transcriptional data

Transcriptional data of neural differentiation in mouse
ES cells were obtained from the ArrayExpress database
(E-TABM-1108) [21]. Transcriptional data of neural dif-
ferentiation in human iPS cells were obtained from the
Gene Expression Omnibus (GSE25542) [22]. The raw
transcriptional data were log, transformed and subjected
to quantile normalization. Probes corresponding to genes
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that were expressed (presence call >50 %) and exhibited
variance (SD >0) across replicates in each time point or
differentiation stage were used in the analysis. Differential
co-expression and variation analyses were performed
based on 30,035 and 12,364 probes from mouse ES cell
and human iPS cell data, respectively. The gene expres-
sion signals were standardized to the Z-score (average =0,
SD =1) for each gene across replicates of each time point
or differentiation stage.

Differential variance and co-expression analysis

The differential co-expression and variation analysis was
conducted using the Bioconductor package in the R lan-
guage [42]. To identify modules, hierarchical clustering
was applied to the standardized expression values from
mouse ES cells at day 0 or from human iPS cells. The hier-
archical clustering was performed based on the Pearson
correlation coefficient (PCC) and average linkage method.
Modules were detected using a dynamic tree-cutting algo-
rithm (hybrid mode, minimal module size of 100). In each
module, the average PCC of each gene with other genes in
the module was calculated. Differential correlation was cal-
culated as the absolute value of the difference between
PCC after day 0 and PCC at day 0 in the module as defined
on day 0. The average SD of each gene among replicates in
each time point or cellular state was calculated. The differ-
ential variance was calculated as the absolute value of the
difference between SD after day 0 and SD at day 0. The
system transition score, based on a previously described
composite index, was used to rank the genes and identify
those with high differential correlation and variance during
neural differentiation [15]. This score was calculated using
in the following formula:

PCCxSD

atday 0

System transition score = max{log (PCC* SDOP cc )
“opee atday3, 4,5, 6,7

where OPCC is the average PCC of each gene with the
genes outside the module. Highly ranked genes were
defined those whose scores were 2 SDs higher than the
average score over all genes. Highly ranked genes in the
same module displayed in network representation using
Cytoscape 3.1.2 [43]. Correlation coefficients above 0.95
are shown as connections in the network visualization
figure.

Enrichment analysis

Functional enrichment and upstream regulator analysis
was performed using Ingenuity Pathways Analysis (IPA°,
Qiagen, http://www.ingenuity.com) software. Genes
associated with differentiation-related phenotypes in
knockout and transgenic mice were identified based on
the Mouse Genome Informatics database [44]. Enrich-
ment of genes associated with differentiation-related


http://www.ingenuity.com
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phenotypes among DVC genes was assessed by cumulative
hypergeometric probability using the phyper function in R.

Statistical analysis

Welch’s t-test was applied to transcriptional data to
identify genes differentially expressed between day 0 and
subsequent days during neural differentiation process. F-
test was carried out to evaluate differential variances of
genes between day 0 and subsequent days. P-values were
adjusted by the Benjamini—-Hochberg method [45]. Dif-
ferentially expressed genes were defined as those whose
fold changes were more than 2 SDs higher than the
mean of all genes, with adjusted p-value < 0.05, as in the
definition of DVC genes. To compare the mouse ES cell
and human iPS cell data, mouse orthologs of the DVC
genes from the human iPS cell study were identified
based on information in the HUGO Comparison of
Orthology Predictions database [46]. Overlap analysis of
DVC genes in mice and human was performed by hyper-
geometric test, as in the enrichment analysis.
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