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A simple method for identifying parameter
correlations in partially observed linear
dynamic models
Pu Li* and Quoc Dong Vu

Abstract

Background: Parameter estimation represents one of the most significant challenges in systems biology. This is
because biological models commonly contain a large number of parameters among which there may be functional
interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been
extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically
non-identifiable models have rarely been investigated.

Results: We propose a simple method for identifying pairwise correlations and higher order interrelationships of
parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix
and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability
of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of
structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear
equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant
control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter
estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability
issue, which is popular for linear biological models, can be remedied. Several linear compartment models including
an insulin receptor dynamics model are taken to illustrate the application of the proposed approach.

Conclusions: Both structural and practical identifiability of partially observed linear dynamic models can be clarified
by the proposed method. The result of this method provides important information for experimental design to
remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the
algorithm can be easily implemented into a software packet.

Keywords: Linear model, Parameter estimation, Identifiability analysis, Parameter correlation, Remedy of
non-identifiability, Experimental design

Background
Model-based analysis and synthesis become increasingly
important in systems biology [1–4]. However, a signifi-
cant obstacle to effective model-based studies comes
from the fact that it is highly difficult to achieve the
values of model parameters. A straightforward way to
address this issue is to fit the model to the measured
data by proper experimental design [5–7]. Nevertheless,
such a fitting may usually fail, even for quite simple

models, because some parameters in the model can be
non-identifiable.
There are two major reasons for model non-

identifiability. On the one hand, many biological models
contain a large number of parameters to be estimated,
among which some parameters may have functional
interrelationships. This is largely because of the model
structure when considering compound reaction net-
works [8–10]. More important is that biologists experi-
ment with living cells and therefore the possibilities to
stimulate the cells are limited, i.e. the control signals and
the initial condition cannot be chosen at will. This limita-
tion leads to challenges in parameter estimation [11–13],
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in particular, the model can be non-identifiable, which is
the concern of this paper.
As a consequence, the effect of one parameter will com-

pensate that of another. These parameters are correlated
each other and therefore non-identifiable [14, 15]. On the
other hand, because of limiting experimental facility, the
measured data for parameter estimation are incomplete;
in particular, in many cases only a part of the variables in
the model can be measured. The input-output relations of
a partially observed model may become highly compli-
cated and lead to implicit parameter correlations, even if
the model structure itself contains no functional relation-
ships between the parameters [16, 17].
The existence of parameter correlations will lead to

enormous difficulties in estimating the model parame-
ters. As a consequence, the parameters cannot be cor-
rectly constrained, the landscape of the predicting errors
is quite flat, and the sensitivities of the resulting parame-
ters are sloppy [18–20]. Therefore, identifiability analysis
presents a very important and necessary task before per-
forming parameter estimation. Although identifiability
analysis of biological models has been extensively inves-
tigated in the past, the issue is far from being satisfactor-
ily addressed [21–23].
In general, non-identifiable parameters in a model can be

classified into structurally and practically non-identifiable
parameters. Structurally non-identifiable parameters are
those which cannot be estimated based on any measure-
ment data with any quality and quantity, since the param-
eter correlations in effect are independent of the
experimental condition. In contrast, the interrelationships
of practically non-identifiable parameters are either due to
a partial observation or due to inaccurate data [16]. As a
result, it is possible to uniquely estimate the parameters
based on datasets generated in experimental design by
properly determining the experimental condition and
improving the quality of the measurement. In this way, the
non-identifiability of the model can be remedied. The
“practical identifiability” in this paper means the case in
which a non-identifiable model becomes identifiable if the
initial condition and control signals are properly selected
and meanwhile if the measured datasets are noise-free.
Thus this provides a necessary condition for a practically
identifiable model, i.e. even if this condition is satisfied, the
model can be non-identifiable because of noisy data.
Therefore, the aim of identifiability analysis should be

not only to figure out the structural and/or practical
identifiability of the model but also, most importantly, to
find the dependences of the identifiability on experimen-
tal conditions, so that proper experiments can be de-
signed to remedy the non-identifiability when indicated.
In particular, the impact of control signals and the initial
condition of the identifiability has rarely been empha-
sized in the previous studies.

Linear ordinary differential equations (ODEs) are widely
used to describe biological systems [24]. Many studies on
identifiability analysis of linear dynamic models have been
made and, in particular, methods for determining the
structural identifiability have been developed for partially
observed models [24–29]. The Laplace transformation
methods were used for identifiability analysis of linear
models [30, 31], but these studies did not consider
parameter correlations based on analyzing the output
sensitivity matrix. Another aspect in this area is the
detection of explicit identifiable combinations of non-
identifiable parameters which can help for model repar-
ameterization [32–35]. More recently, identifiability
conditions of fully observed linear models from one
single dataset were presented; these conditions are
related to the initial conditions of the system [36].
Using differential algebra, a priori methods were pro-

posed to analyze structural identifiability of linear and
nonlinear biological models without any requirement of
measurements [33–35, 37–40], based on which effective
software tools have been established [35, 41, 42]. In [43]
it was pointed out that problems can arise by using
differential algebra methods in testing the identifiability
of systems started at some special initial conditions.
However, from the previous studies for structural iden-
tifiability there are no suitable measures developed for
remedying existing non-identifiability of a model. As a
consequence, the accessible software tools will fail to
run when unexpected but meaningful initial conditions
and/or controls are provided, even for very simple linear
models [35].
The measured data are always associated with noisiness

and limitation of the number of sampling points which
also make model parameters non-identifiable [8, 16].
Therefore, a posteriori methods detect the identifiability
of a model by numerically solving the fitting problem
based on available data [16, 17, 44, 45]. Using the method
of profile likelihood, it is possible to find pairwise func-
tional relations of the non-identifiable parameters if the
corresponding manifold is one-dimensional [16]. Since
the initial concentrations can be regarded as parameters
to be estimated, the relation of the non-identifiability to
the initial condition can be numerically characterized.
As a result, the non-identifiability due to correlations
can be remedied by means of defining proper initial
conditions.
In a recent study [15], we proposed a method that is able

to analytically identify both pairwise parameter correlations
and higher order interrelationships among parameters in
nonlinear dynamic models. Correlations are interpreted as
surfaces in the subspaces of correlated parameters. Explicit
relations between the parameter correlations and the con-
trol signals can be derived by simply analyzing the sensitiv-
ity matrix of the right-hand side of the model equations.
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Based on the correlation information obtained in this way
both structural and practical non-identifiability can be
clarified. The result of this correlation analysis provides a
necessary condition for experimental design for the
control signals in order to acquire suitable measure-
ment data for unique parameter estimation. However,
this method can only identify parameter correlations in
fully observed models, i.e. it is required that all state
variables be measurable, thus leading to limited applica-
tions of this method.
In this paper, we propose a simple method which can be

used for identifying pairwise and higher order parameter
correlations in partially observed linear dynamic models.
An idealized measurement (i.e. noise-free and continuous
data) is assumed in this study. It means that we derive the
necessary condition of identifiable systems when such data
are available. Unlike previous approaches, explicit rela-
tions of the identifiability to initial condition and control
functions can be found by our method, thus providing a
useful guidance for experimental design for remedying the
non-identifiability if available. Our basic idea is to derive
the output sensitivity matrix and detect the linear depen-
dences of its columns, which can be simply made by using
the Laplace transformation and then solving a set of
homogenous linear equations. The computations are quite
straightforward and thus can be easily implemented into a
software packet.
For parameter estimation, different species (substances)

measured from experiment leads to different output
equations, due to which the model parameters may be
non-identifiable. Therefore, prior to the experiment for
data acquisition, it is important to analyze the identifiabil-
ity of the parameters, when some certain species will be
measured. The method presented in this paper can be
used for a priori identifiability analysis. In this way, the
question which species should be measured, so that
unique parameter estimation will be achieved, can be
answered. Thus, this is important for experimental design.
Both structural and practical non-identifiability can be

addressed by using the proposed method. In the case of
structural non-identifiability, the identifiable parameter
combinations can be determined, while, in the case of
practical non-identifiability, this method can provide
suggestions for experimental design (i.e. initial condition,
constant control signals, and noise-free datasets) so as to
remedy the non-identifiability. Five linear compartmental
models including an insulin receptor dynamics model are
taken to demonstrate the effectiveness of our approach.

Methods
Output sensitivity matrix
In this paper, we consider general time-invariant linear
state space models described as

_x ¼ Axþ Bu; x 0ð Þ ¼ x0 ð1Þ
y ¼ CxþDu ð2Þ

where Eq. (1) and Eq. (2) are state and output equations
in which x∈Rnx ;u∈Rnu ; y∈Rny are state, control and out-
put vectors, respectively. x0 is the initial state vector. For
the purpose of parameter estimation, the controls u and
the initial condition x0 are regarded as being defined by
experimental design.
The outputs y are considered as variables with avail-

able datasets (time courses) measured from experiment.
In many situations, due to limiting experimental facil-
ity, only part of the state variables can be measured, i.e.
ny < nx, which means that the model is partially ob-
served. If, in the particular situation, ny = nx, the model
is called fully observed. Similarly, the initial state vector
x0 may also be partially or fully observed, depending on
the measurement facility. In the following, it will be
seen that the impact of the availability of partial or full
observations of x and/or x0 are significant on the par-
ameter correlations and thus the identifiability of the
model under consideration.
It should be noted that, in the case of an observable

system, the state profiles can be uniquely reconstructed
even if ny < nx. However, such a reconstruction can be
made by different value sets of the parameters if there is
a parameter correlation. This is due to the fact that the
observability of a system depends only on the matrixes A
and C, but the identifiability depends not only on A and
C but also on the control signal and initial condition.
In Eq. (1) and Eq. (2), A∈Rnx�nx ;B∈Rnx�nu ;C∈Rny�nx ;D

∈Rny�nu are constant matrices with appropriate dimen-
sions which contain nA, nB, nC, nD parameters denoted
in the vector form pA∈R

nA ; pB∈R
nB ; pC∈R

nC ; pD∈R
nD,

respectively. Then the vector of the whole parameters to
be estimated is

pT ¼ pT
A ; p

T
B ; p

T
C ;p

T
D

� � ð3Þ
It is noted that the corresponding vectors in pT will

fall out, when one or more matrices among (A, B,C,D)
contains no parameters to be estimated. To estimate the
model parameters, one needs at first to check their
identifiability. Here we address this issue by identifying
correlations among the parameters. To do this, it is
necessary to analyze the linear dependencies of the
columns of the output sensitivity matrix

∂y
∂p

¼ ∂y
∂pA

;
∂y
∂pB

;
∂y
∂pC

;
∂y
∂pD

� �
ð4Þ

where ∂y
∂pA

∈Rny�nA ; ∂y
∂pB

∈Rny�nB ; ∂y
∂pC

∈Rny�nC ; ∂y
∂pD

∈Rny�nD are
the matrices of the output sensitivities to the parameters in
(A,B,C,D), respectively. Thus the output sensitivity matrix
∂y
∂p has ny rows and np = nA+ nB + nC + nD columns. The
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necessary condition of completely identifiable parameters of
the model is that the columns of this matrix are linearly
independent.
Solving the state Eq. (1) in the Laplace form we have

X sð Þ ¼ sI−Að Þ−1 BU sð Þ þ x0ð Þ ð5Þ
where I∈Rnx�nx is an identity matrix. It follows from the
output equation Eq. (2)

Y sð Þ ¼ C sI−Að Þ−1 BU sð Þ þ x0ð Þ þDU sð Þ ð6Þ
From Eq. (6), it is straightforward to achieve the out-

put sensitivities in the Laplace form

∂Y sð Þ
∂pA

¼ C sI−Að Þ−1MA X sð Þð Þ

∂Y sð Þ
∂pB

¼ C sI−Að Þ−1MB U sð Þð Þ

∂Y sð Þ
∂pC

¼ MC X sð Þð Þ

∂Y sð Þ
∂pD

¼ MD U sð Þð Þ

ð7Þ

where MA X sð Þð Þ ¼ ∂
∂pA

AX sð Þð Þ , MB U sð Þð Þ ¼ ∂
∂pB

BU sð Þð Þ ,
MC X sð Þð Þ ¼ ∂

∂pC
CX sð Þð Þ and MD U sð Þð Þ ¼ ∂

∂pD
DU sð Þð Þ

are partial derivative matrices with MA∈Rnx�nA , MB∈Rnx�nB ,
MC∈ny�nC and MD∈ny�nD , in which the corresponding
elements are linear to the elements of X(s) and U(s), respect-
ively. Therefore, the output sensitivity matrix Eq. (4) can be
written as

∂Y sð Þ
∂p

¼
C sI−Að Þ−1MA X sð Þð Þ
C sI−Að Þ−1MB U sð Þð Þ

MC X sð Þð Þ
MD U sð Þð Þ

0
BB@

1
CCA

T

ð8Þ

According to Eq. (5) and Eq. (7), the elements in the
output sensitivity matrix Eq. (8) are functions of the
parameters in the matrices A, B,C,D, the elements of
the input vector U(s) and of the initial condition vector
x0. In this way, explicit relationships of parameter sensi-
tivities with the controls and the initial condition can be
achieved, base on which both structural and practical
identifiability issues can be addressed.
It is noted that in most previous studies on identifia-

bility analysis of linear models only parameters in the
matrix A were considered as being estimated. In this
case, MB = 0, MC = 0, MD = 0 and thus only the first
term in Eq. (8) remains, i.e.

∂Y sð Þ
∂p

¼ C sI−Að Þ−1MA X sð Þð Þ ð9Þ

Moreover, in the case of y = x, then Eq. (9) reduces to

∂Y sð Þ
∂p

¼ sI−Að Þ−1MA X sð Þð Þ ð10Þ

Therefore, the parameter correlations can be deter-
mined easily by checking the linear dependencies of the
columns of MA(X(s)). The identification of parameter
correlations in the case of y = x was in detail discussed
in [15].

Identification of parameter correlations
To identify the correlations among the parameters, it is
necessary to analyze the linear dependencies of the out-
put sensitivity matrix Eq. (8) which can be expressed as
(see Additional file 1)

∂Y sð Þ
∂p

¼ 1

Δ2 QA sð Þ QB sð Þ QC sð Þ QD sð Þð Þ ð11Þ

where Δ = det(sI −A) and

QA sð Þ ¼
q1;1 sð Þ ⋯ q1;nA sð Þ
q2;1 sð Þ ⋯ q2;nA sð Þ

⋮ ⋮ ⋮
qny;1 sð Þ ⋯ qny;nA sð Þ

0
BB@

1
CCA;

QB sð Þ ¼
q1;nAþ1 sð Þ ⋯ q1;nAþnB sð Þ
q2;nAþ1 sð Þ ⋯ q2;nAþnB sð Þ

⋮ ⋮ ⋮
qny;nAþ1 sð Þ ⋯ qny;nAþnB sð Þ

0
BB@

1
CCA

QC sð Þ ¼
q1;nAþnBþ1 sð Þ ⋯ q1;nAþnBþnC sð Þ
q2;nAþnBþ1 sð Þ ⋯ q2;nAþnBþnC sð Þ

⋮ ⋮ ⋮
qny;nAþnBþ1 sð Þ ⋯ qny;nAþnBþnC sð Þ

0
BB@

1
CCA;

QC sð Þ ¼
q1;nAþnBþnCþ1 sð Þ ⋯ q1;np sð Þ
q2;nAþnBþnCþ1 sð Þ ⋯ q2;np sð Þ

⋮ ⋮ ⋮
qny;nAþnBþnCþ1 sð Þ ⋯ qny;np sð Þ

0
BB@

1
CCA

ð12Þ
In Eq. (12), each of the elements qi,j(s), (i = 1,⋯, ny, j =

1,⋯, np) is a polynomial with the indeterminate s. As
mentioned above, the coefficients of these polynomials
will be functions of the parameters in pA, pB, pC, pD, the
elements in the input vector U(s) and in the initial condi-
tion vector x0. It can be shown from Additional file 1 that
the highest order of the polynomials in the 4 matrices in
Eq. (12) will be 2(nx − 1), 2nx − 1, 2nx − 1, 2nx, respectively.
Based on Eq. (12), Eq. (11) can be rewritten as

∂Y sð Þ
∂p

¼ 1

Δ2
q1 sð Þ q2 sð Þ ⋯ qnp sð Þ� � ð13Þ

where qj sð Þ∈Rny ; j ¼ 1;⋯; np
� �

are the columns of
the matrices in Eq. (12). To check the linear de-
pendencies of the columns in Eq. (13), we introduce
a vector α ¼ α1; ; α2;⋯; ; αnp

� �T
and let
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α1q1 sð Þ þ α2q2 sð Þ þ⋯þ αnpqnp sð Þ ¼ 0 ð14Þ
According to Eq. (11) and Eq. (12), Eq. (14) consists of ny

linear equations with respect to α1; α2;⋯; αnp
� �

as un-
knowns. Since qj(s), (j = 1,⋯, np) are explicitly expressed
polynomials, we can reorder the terms in Eq. (14) and
present it in the following polynomial form

γ i;1s
2nx þ γ i;2s

2nx−1 þ⋯þ γ i;2nx sþ γ i;2nxþ1 ¼ 0; i ¼ 1;⋯; ny

ð15Þ
where the coefficients γi,k, (k = 1,⋯, 2nx + 1) are linear
to the elements of α1; α2;⋯; αnp

� �
. Since s in Eq. (15) is

indeterminate, each coefficient of the polynomials in Eq.
(15) should be zero, i.e.

γi;k ¼ βi;k;1α1 þ βi;k;2α2 þ⋯þ βi;k;npαnp ¼ 0 ð16Þ

where the coefficients βi,k,l, (l = 1,⋯, np) are some func-
tions of the model parameters, of the elements in the in-
put vector as well as in the initial state vector.
Therefore, Eq. (16) represents a set of homogeneous lin-
ear equations with α1; α2;⋯; αnp

� �
as unknowns. The

maximum number of the equations is ny(2nx + 1).
It is to note that the highest order of the polynomials

in Eq. (15) is 2nx when all four matrices A, B,C,D con-
tain parameters to be estimated. If the problem under
consideration is not in this case, the highest order in Eq.
(15) should vary accordingly. For instance, if the model
has parameters only in matrix A, as described by Eq. (9),
the highest order in Eq. (15) will be 2nx − 2 and thus the
maximum number of the equations in Eq. (16) will be
ny(2nx − 2).
In general, the solution of Eq. (16) consists of the

following 2 possible cases.

Case 1: All unknowns are zero, i.e.

α1 ¼ α2 ¼ ⋯ ¼ αnp ¼ 0 ð17Þ
In this case, there is no correlation relationship
among the parameters. It means that all parameters
in the model are identifiable and one dataset is
enough to uniquely estimate them.

Case 2: A sub-group of k unknowns αl+1 ≠ 0, αl+2 ≠ 0,⋯,
αl + k ≠ 0 which lead to

αlþ1qlþ1 sð Þ þ αlþ2qlþ2 sð Þ þ⋯þ αlþkqlþk sð Þ ¼ 0

ð18Þ
where l + k ≤ np. This means that the corresponding
k parameters (pl+1,⋯, pl+k) are correlated in one
group. If by solving Eq. (18), U(s) and x0 are
cancelled, the solutions will be independent of the
controls and the initial condition. Then the

corresponding parameters are structurally
non-identifiable. This means that the parameters
cannot be estimated based on any datasets.
If a model is structurally non-identifiable, there will
exist identifiable combinations of the parameters and
these combinations may have one or a finite number
of solutions [34, 35, 39]. Identifiable combinations
are sub-groups of the correlated parameters
expressing their explicit interrelationships, which
can be obtained by solving the homogenous linear
partial-differential equations (from Eq. (13) and
Eq. (18)) based on the result of αl+1, αl+2,⋯, αl+k.

In contrast, if the solutions of Eq. (18) depend on
the controls U(s) and/or the initial condition x0,
the corresponding parameters are practically
non-identifiable. Since Eq. (18) describes the
parameter correlation based on U(s) and x0 which
cause a specific dataset, using (noise-free) datasets
from different controls and initial conditions,
Eq. (18) can be written as

αlþ1q
rð Þ
lþ1 sð Þ þ αlþ2q

rð Þ
lþ2 sð Þ þ⋯þ αlþkq

rð Þ
lþk sð Þ ¼ 0 ð19Þ

where (r) denotes using the dataset r caused by
U(r)(s) and x0

(r). In this paper, for one dataset we
mean the measured output profiles caused by an
initial state condition and constant control signals
during the experiment. If nd datasets with different
controls and/or initial conditions are used, i.e.
r = 1,⋯, nd, for the parameter estimation, the
columns of the following matrix will be independent

Q sð Þ ¼

q 1ð Þ
lþ1 sð Þ q 1ð Þ

lþ2 sð Þ ⋯ q 1ð Þ
lþk sð Þ

q 2ð Þ
lþ1 sð Þ q 2ð Þ

lþ2 sð Þ ⋯ q 2ð Þ
lþk sð Þ

⋮ ⋮ ⋮ ⋮

q ndð Þ
lþ1 sð Þ q ndð Þ

lþ2 sð Þ ⋯ q ndð Þ
lþk sð Þ

0
BBBB@

1
CCCCA

ð20Þ
where Q sð Þ∈R nd�nyð Þ� lþkð Þ. The number of datasets
nd should be so selected, that the total number of
equations (i.e. nd times the number of equations in
Eq. (19)) is greater than k. As a result, there will be
αl+1 =⋯= αl+k = 0. This means that the practical
non-identifiability described as Eq. (18) is remedied.
In this way, the corresponding parameters
(pl+1,⋯, pl+k) can be uniquely estimated.

In Eq. (18) and Eq. (19), the parameters are pairwise
correlated if k = 2, whereas there is a higher order
interrelationship among the parameters if k > 2.
In a model with a large number of parameters to
be estimated, there may be many sub-groups with
different numbers of correlated parameters. All

Li and Vu BMC Systems Biology  (2015) 9:92 Page 5 of 14



sub-groups can be determined by solving Eq. (16).
We denote nmax as the maximum number of
parameters among the sub-groups. Therefore,
the number of (noise-free) datasets from different
control signals and initial conditions should be equal
to or larger than the number of nmax divided by the
number of equations in Eq. (19), in order to remedy
the practical non-identifiability of the model. The
impact of control signals and the initial condition on
the linear dependency of the columns in Eq. (20) is
implicitly given in Eqs. (5)-(7).

In summary, the method presented above can be used
to identify parameter correlations related both to control
signals and to the initial condition for partially observed
linear systems. This is an extension of the method pro-
posed in [15] where the necessary conditions of param-
eter correlations were given only based on the model
structure and a full state observation. However, the ap-
plication of the method of this paper is limited due to
the computations using symbolic algebra for solving Eq.
(14), since symbolic algebra has its limits in the size of
the problem (i.e. the number of parameters) it can solve.
During this study, we have solved a series of problems
with a maximum size of ten parameters with a com-
monly used personal computer.

Results
Example 1
A linear two-compartment model [39, 45]

_x1 ¼ − p1 þ p2ð Þx1 þ p3x2 þ u; x1 0ð Þ ¼ x10
_x2 ¼ p2x1− p3 þ p4ð Þx2; x2 0ð Þ ¼ x20
y ¼ x1=V

ð21Þ

This model describes a simple biochemical reaction
network as shown in Fig. 1a. This model is partially ob-
served and the partial observation causes structural non-
identifiability. Unlike previous studies of this well-known
model, the impact of the initial conditions on the iden-
tifiability is highlighted here. In this example, there are 5
parameters, i.e. pA = (p1, p2, p3, p4)

T, pC =V and then we
have

MA X sð Þð Þ ¼ −X1 sð Þ −X1 sð Þ X2 sð Þ 0
0 X1 sð Þ −X2 sð Þ −X2 sð Þ

� �
;

MC X sð Þð Þ ¼ −
1

V 2 X1 sð Þ
ð22Þ

The Laplace form of the state variables can be
achieved by solving the state equations in Eq. (21)

X1 sð Þ ¼ 1
Δ

sþ p3 þ p4ð Þ U sð Þ þ x10ð Þ þ p3x20ð Þ

X2 sð Þ ¼ 1
Δ

p2 U sð Þ þ x10ð Þ þ sþ p1 þ p2ð Þx20ð Þ

ð23Þ
where Δ = (s + p1 + p2)(s + p3 + p4) − p2p3. According to
Eq. (13), the output sensitivity vector (not a matrix, since
there is only one output variable in this example) is
expressed as

∂Y sð Þ
∂p

¼ −1
VΔ

sþ p3 þ p4ð ÞX1 sð Þ
sþ p4ð ÞX1 sð Þ

− sþ p3 þ p4ð ÞX2 sð Þ
p3X2 sð Þ
Δ

V
X1 sð Þ

0
BBBBBB@

1
CCCCCCA

T

ð24Þ

Applying the expressions of Eq. (22) to Eq. (23), it follows

∂Y sð Þ
∂p

¼ −1
V 2Δ2

V sþ p3 þ p4ð Þ sþ p3 þ p4ð Þ U sð Þ þ x10ð Þ þ p3x20ð Þ
V sþ p4ð Þ sþ p3 þ p4ð Þ U sð Þ þ x10ð Þ þ p3x20ð Þ
−V sþ p4ð Þ p2 U sð Þ þ x10ð Þ þ sþ p1 þ p2ð Þx20ð Þ

Vp3 p2 U sð Þ þ x10ð Þ þ sþ p1 þ p2ð Þx20ð Þ
sþ p3 þ p4ð Þ U sð Þ þ x10ð Þ þ p3x20ð ÞΔ

0
BBB@

1
CCCA

T

ð25Þ
To analyze the linear dependencies of the 5 functions

in Eq. (25) we introduce 5 unknowns (α1,⋯, α5). By
using the method described in the above section (see
Additional file 1), we find α5 = 0, i.e. the parameter V is
uncorrelated with any other parameters and thus is
uniquely identifiable. This result is trivial in fact, since V
is immediately fixed if y(0) and x1(0) are known, accord-
ing to the last line of Eq. (21).
It can be seen from Eq. (25) that U(s) and x10 have the

same impact on the output sensitivities. Thus, to see the
influence of the initial conditions on the identifiability of
the 4 parameters (p1, p2, p3, p4), we let U(s) = 0 in the
following analysis.

Case 1: x10 ≠ 0, x20 = 0. The resulting output
sensitivity to the individual parameters
has the following relationship (see Additional file 1)

∂Y sð Þ
∂p1

−
∂Y sð Þ
∂p2

þ p3
p2

∂Y sð Þ
∂p3

−
p3
p2

∂Y sð Þ
∂p4

¼ 0 ð26Þ

This means that the 4 parameters are correlated in
one group and their interrelationship is independent
of the value of x10 ≠ 0, i.e. they are structurally
non-identifiable. By solving Eq. (26) we can find the
interrelationships of the sub-groups (also called
identifiable combinations) of the parameters as
{p2p3, p1 + p2, p3 + p4}. This result is the same as
reported in the literature [39, 45]. In this situation,
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it is impossible to uniquely estimate the parameters
(p1, p2, p3, p4) based on any measured datasets of
the output (y = x1).

Case 2: x10 = 0, x20 ≠ 0. Solving the linear homogenous
linear equations (see Additional file 1) in this case
leads to α3 = 0, i.e. p3 is identifiable. And the output
sensitivity to the other parameters has the following
relationship

p4−p1−p2ð Þ ∂Y sð Þ
∂p1

þ p1 þ p2−p3−p4ð Þ ∂Y sð Þ
∂p2

þ p3
∂Y sð Þ
∂p4

¼ 0

ð27Þ
which means that (p1, p2, p4) are correlated in one
group and thus structurally non-identifiable. It is
interesting to note from Eq. (27) that the correlation
relation of (p1, p2, p4) is also related to the identifiable
parameter p3.

Case 3: x10 ≠ 0, x20 ≠ 0. According to Eq. (25) and
the Additional file 1, it can be seen that the
functional relationship of the 4 parameters
(p1, p2, p3, p4) depend on the initial condition
(x10, x20) if both x10 ≠ 0 and x20 ≠ 0. In this
situation, the parameters are practically
non-identifiable. The 4 parameters are
correlated in one group, i.e., nmax = 4, and the

number of equations in the form of Eq. (19)
is ny(2nx − 2) = 2. Therefore, the 4 parameters
can be uniquely estimated based on fitting the
model to at least nd = 2 datasets (such that nd ≥
nmax/(ny(2nx − 2))) of the output (y = x1) from
different initial values of x10 ≠ 0 and x20 ≠ 0,
respectively.

To verify the above achieved results, we perform
numerical parameter estimation by using the method
developed in [46–48]. The true parameter values in the
model are assumed to be p1 = 0.7, p2 = 0.7, p3 = 1.0, p4
= 0.4 and we generate noise-free output data at 100 time
points by simulation. For case 1, one dataset for y is gen-
erated by x10 = 15, x20 = 0. To check the identifiable
combinations {p2p3, p1 + p2, p3 + p4}, we repeat the par-
ameter identification run by fixing p1 with a different
value for each run. Figure 2 shows the relationships of
the parameters after the fitting which illustrate exactly
the expected function values, i.e. p2p3 = 0.7, p1 + p2 =
1.4, p3 + p4 = 1.4.

For case 2, one dataset for y is generated by x10 = 0,
x20 = 15. Indeed, only the true value of p3 = 1.0 can be
identified when fitting the 4 parameters to the dataset.
For case 3, we generate 2 datasets for y by x10

(1) = 15, x20
(2) = 5

and x10
(2) = 5, x20

(2) = 15, respectively. Then we fit the 4
parameters simultaneously to the 2 datasets, from which

Fig. 1 Biochemical reaction networks of the compartment models used in examples 1—4. a: 2-compartment model in example 1; b: 3-compartment
model in example 2; c: 3-compartment model in example 3; d: 4-compartment model in example 4
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we obtain the estimated values of the parameters exactly as
their true values.

Furthermore, if the model in Eq. (21) is fully
observed, e.g., y1 = x1, y2 = x2, then all parameters in
the model are identifiable. This can be easily seen
from MA(X(s)) in Eq. (22), since its columns are
linearly independent. As a result, one single dataset
including the trajectories of y1 = x1, y2 = x2 is
enough to uniquely estimate the parameters in the
model.

Example 2
A linear three-compartment model [43]

_x1 ¼ p13x3 þ p12x2−p21x1 þ u; x1 0ð Þ ¼ x10
_x2 ¼ p21x1−p12x2; x2 0ð Þ ¼ x20
_x3 ¼ −p13x3; x3 0ð Þ ¼ x30
y ¼ x2

ð28Þ

The reaction network corresponding to this model
is shown in Fig. 1b. This model was studied in [43]
to demonstrate the failure of the identifiability test by
using the differential algebra methods when x30 = 0.
This can be easily recognized by using our method.
Let pA = (p21, p12, p13)

T, according to Eq. (13), the
functions in the output sensitivity vector will be (see
Additional file 1).

q1 sð Þ ¼ sþ p13ð Þ� U sð Þ þ x10ð Þs2 þ � p12 þ p13ð Þ U sð Þ þ x10ð Þ
þp12x20 þ p13x30

�
sþ p12p13

�
U sð Þ þ x10

þx20 þ x30Þ
�

q2 sð Þ ¼ − sþ p13ð Þ�x20s2 þ p21 þ p13ð Þx20 þ p21 U sð Þ þ x10ð Þð Þs
þp13k21 U sð Þ þ x10 þ x20 þ x30ð Þ�

q3 sð Þ ¼ p21x30 sþ p12 þ p21ð Þs
ð29Þ

According to Eq. (14) and Eq. (15) we obtain the
following 4 homogeneous linear equations (see
Additional file 1)

U sð Þ þ x10ð Þα1−x20α2 ¼ 0
p12 þ 2k13ð Þ U sð Þ þ x10ð Þ þ p12x20 þ p13x30ð Þα1

− p21 þ 2p13ð Þx20 þ p21 U sð Þ þ x10ð Þð Þα2 þ p21x30α3 ¼ 0

�
p13 p12 þ p13ð Þ U sð Þ þ x10ð Þ þ p12x20 þ p13x30ð Þ þ p13p12

�
U sð Þ

þx10 þ x20 þ x30ÞÞα1−
�
p13 p21 þ p13ð Þx20 þ p21 U sð Þ þ x10ð Þð Þ

þp13p21 U sð Þ þ x10 þ x20 þ x30ð ÞÞα2 þ p21 p12 þ p21ð Þx30α3

0
B@

1
CA ¼ 0

p12α1−p21α2 ¼ 0

ð30Þ

It can be easily seen that if x30 = 0, then α3 will dis-
appear from Eq. (30), i.e. α3 can be any value, which
means that p13 is non-identifiable. On the contrary, if
x30 ≠ 0, we have in Eq. (30) 4 linearly independent
homogeneous equations with 3 unknowns and thus
there should be α1 = α2 = α3 = 0, which means that all
three parameters are identifiable.

Example 3
A linear three-compartment model [39]

_x1 ¼ − p21 þ p31ð Þx1 þ p12x2 þ p13x3 þ u; x1 0ð Þ ¼ x10
_x2 ¼ p21x1− p12 þ p02ð Þx2; x2 0ð Þ ¼ x20
_x3 ¼ p31x1− p13 þ p03ð Þx3; x3 0ð Þ ¼ x30
y ¼ x1

ð31Þ

The reaction network described by this model is
shown in Fig. 1c. The parameters to be estimated in
this model are pA = (p21, p31, p12, p13, p02, p03)

T. The
solution of the state equations in Eq. (31) leads to

Fig. 2 Estimation results of example 1. The identifiable combinations of the parameters are validated by repeatedly fitting the model to one
dataset from the initial condition x10≠ 0, x20 = 0. The curves are from the results of 90 runs each of which with a different fixed value of p1.
a: p2p3 = 0.7; b: p1 + p2 = 1.4; c: p3 + p4 = 1.4
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Similar to Example 2 we can obtain the Laplace
functions in the output sensitivity vector as
follows

q1 sð Þ ¼ − sþ p13 þ p03ð Þ sþ p02ð ÞX1 sð Þ
q2 sð Þ ¼ − sþ p12 þ p02ð Þ sþ p03ð ÞX1 sð Þ
q3 sð Þ ¼ sþ p13 þ p03ð Þ sþ p02ð ÞX2 sð Þ
q4 sð Þ ¼ sþ p12 þ p02ð Þ sþ p03ð ÞX3 sð Þ
q5 sð Þ ¼ −k21 sþ p13 þ p03ð ÞX2 sð Þ
q6 sð Þ ¼ −k13 sþ p12 þ p02ð ÞX3 sð Þ

ð33Þ

By introducing 6 unknowns (α1,⋯, α6), the dependen-
cies of the output sensitivities on the control and the ini-
tial condition can be derived from Eq. (32) and Eq. (33).
If x20 = x30 = 0 and U(s) + x10 ≠ 0, the resulting homoge-
neous linear equations in the form of Eq. (16) are as
follows

α1 þ α2 ¼ 0
2aþ bþ p02ð Þα1 þ 2bþ aþ p03ð Þα2 þ p21α3 þ p31α4 ¼ 0
a2 þ 2a bþ p02ð Þ þ bp02ð Þα1 þ b2 þ 2b aþ p03ð Þ þ ap03

� �
α2

þp21 2aþ p02ð Þα3 þ p31 2bþ p03ð Þα4 þ p21p12α5 þ p31p13α6

� �
¼ 0

a2 bþ p02ð Þ þ 2abp02ð Þα1 þ b2 aþ p03ð Þ þ 2abp03
� �

α2
þp21 a2 þ 2ap02ð Þα3 þ p31 b2 þ 2bp03

� �
α4 þ 2ap21p12α5

þ2bp31p13α6

0
@

1
A ¼ 0

a2bp02α1 þ b2ap03α2 þ k21a
2p02α3

þp31b
2p03α4 þ p21p12a

2α5 þ p31p13b
2α6 ¼ 0

ð34Þ

where a = p13 + p03, b = p12 + p02. It can be seen that
U(s) + x10 ≠ 0 does not appear in Eq. (34). Solving the 5
equations for the 6 unknowns in Eq. (34) with respect to
α1, we find

α2 ¼ −α1; α3 ¼ p13
p31

α1; α4 ¼ −
p13
p31

α1;

α5 ¼ −
p12
p21

α1; α6 ¼ p12
p21

α1

ð35Þ

Thus the output sensitivities to the parameters has the
following relation

∂Y sð Þ
∂p21

−
∂Y sð Þ
∂p31

þ p13
p31

∂Y sð Þ
∂p13

−
∂Y sð Þ
∂p03

� �
−
p12
p21

∂Y sð Þ
∂k12

−
∂Y sð Þ
∂k02

� �
¼ 0

ð36Þ

which means that all 6 parameters are correlated in
one group and their interrelationship is independent of
U(s) + x10 ≠ 0. Thus the parameters in this model are
structurally non-identifiable when x20 = x30 = 0. In
addition, we can solve Eq. (36) to obtain its local solu-
tions as {p02 + p12, p03 + p13, p21 + p31, p12p21, p13p31}
as well as its global solutions as

φ1 ¼ p21 þ p31
φ2 ¼ p02 þ p12ð Þ p03 þ p13ð Þ
φ3 ¼ p02 þ p12ð Þ þ p03 þ p13ð Þ
φ4 ¼ p03p31 p02 þ p12ð Þ þ p02p21 p03 þ p13ð Þ
φ5 ¼ p31 p02 þ p12 þ p03ð Þ þ p21 p03 þ p13 þ p02ð Þ

ð37Þ

which are the identifiable combinations of the param-
eters, as given in [39]. To verify these parameter rela-
tions, numerical parameter estimation is carried out
by assuming p02 = 2, p12 = 3, p03 = 3, p13 = 0.4, p21 = 1,
p31 = 2 as the true values of the parameters. A dataset
for y containing 400 sampling points in the time
period [0, 2] is generated by x10 = x20 = x30 = 0, u(t) = 25.
Then we repeatedly fit the parameters to the dataset, ex-
cept for p21 which is fixed with different values in the
range [0.7, 1.5]. The estimation results are shown in
Fig. 3, exactly validating the global solutions expressed
as Eq. (37).
It can be seen from Fig. 3a that the relationship

between p21 and p31 is indeed a straight line, namely
p21 + p31 = 3.0. From Fig. 3b, it is interesting to see
that the relationship between p02 + p12 and p03 + p13
is shown by two separate points. This is because
both their summation and their product are con-
stant, as indicated in φ2, φ3 of Eq. (37). This special
property leads to the fact that both p02 + p12 and
p03 + p13 have two solutions, i.e., there are two lines
to represent the relationship of p02 + p12 as well as
p03 + p13, respectively, as shown in Fig. 3c and d.
Correspondingly, the relationship of p12p21as well as
p13p31 is also twofold, as shown in Fig. 3e and f, re-
spectively. The estimated results corresponding to the
last two identifiable combinations in Eq. (37) are shown
in Fig. 3g and h.
To remedy the non-identifiability, let x20 ≠ 0, x30 ≠ 0,

then similar to Eq. (34), there will be 5 linear equations
with respect to (α1,⋯, α6). This means that the 6 param-
eters are correlated in one group, i.e., nmax = 6. Since the
correlation relationships now depend on U(s) + x10 ≠ 0

X1 sð Þ
X2 sð Þ
X3 sð Þ

0
@

1
A ¼

sþ p21 þ p31ð Þ −p12 −p13
−p21 sþ p12 þ p02ð Þ 0
−p31 0 sþ p13 þ p03ð Þ

0
@

1
A

−1 U sð Þ þ x10
x20
x30

0
@

1
A ð32Þ
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and x20 ≠ 0, x30 ≠ 0, the parameters are practically
identifiable. The number of equations in the form of
Eq. (19) is ny(2nx − 2) = 4. As a result, 2 datasets with
different values of U(s) + x10 ≠ 0 and x20 ≠ 0, x30 ≠ 0
are needed to uniquely estimate the parameters of the
model.

Example 4
A linear four-compartment model [33, 39]

_x1 ¼ −p31x1 þ p13x3 þ u; x1 0ð Þ ¼ x10
_x2 ¼ −p42x2 þ p24x4; x2 0ð Þ ¼ x20
_x3 ¼ p31x1− p03 þ p13 þ p43ð Þx3; x3 0ð Þ ¼ x30
_x4 ¼ p42x2 þ p43x3− p04 þ p24ð Þx4; x4 0ð Þ ¼ x40
y1 ¼ x1
y2 ¼ x2

ð38Þ

Figure 1d shows the biochemical reaction network
of this model. In this model, there are 7 parameters
pA = (p31, p13, p42, p24, p43, p03, p04)

T and 4 state vari-
ables among which two are output variables. In the
case of u ≠ 0, x10 = x20 = x30 = x40 = 0, the parameters
are structurally non-identifiable where the identifiable
combinations of the correlated parameters are
expressed as {p31, p13, p04p42, p24p43, p03 + p43, p24 +
p42 + p04} [33, 39]. The same results of the identifiable
combinations are obtained by using our method
which is much simpler to deal with, as described in
the following.
From Eq. (38), we have

A ¼
−p31 0 p13 0
0 −p42 0 p24
p31 0 − p03 þ p13 þ p43ð Þ 0
0 p42 p43 − p04 þ p24ð Þ

0
BB@

1
CCA;

B ¼
1
0
0
0

0
BB@

1
CCA; C ¼ 1 0 0 0

0 1 0 0

� �

ð39Þ
and

MA X sð Þð Þ ¼
−X1 sð Þ X3 sð Þ 0 0 0 0 0

0 0 −X2 sð Þ X4 sð Þ 0 0 0
X1 sð Þ −X3 sð Þ 0 0 −X3 sð Þ −X3 sð Þ 0
0 0 X2 sð Þ −X4 sð Þ X3 sð Þ 0 −X4 sð Þ

0
BB@

1
CCA

ð40Þ
Since in this example we have two output variables, to

determine the parameter correlations we have to
consider

α1

∂Y 1

∂p31
∂Y 2

∂p31

0
BBB@

1
CCCAþ α2

∂Y 1

∂p13
∂Y 2

∂p13

0
BBB@

1
CCCAþ α3

∂Y 1

∂p42
∂Y 2

∂p42

0
BBB@

1
CCCAþ α4

∂Y 1

∂p24
∂Y 2

∂p24

0
BBB@

1
CCCA

þ α5

∂Y 1

∂p43
∂Y 2

∂p43

0
BBB@

1
CCCAþ α6

∂Y 1

∂p03
∂Y 2

∂p03

0
BBB@

1
CCCAþ α7

∂Y 1

∂p04
∂Y 2

∂p04

0
BBB@

1
CCCA ¼ 0

0

� �

ð41Þ
where the output sensitivities are expressed in the fol-
lowing form (see Additional file 1)

Fig. 3 Estimation results of example 3. The identifiable combinations of the parameters are validated by repeatedly fitting the model to one
dataset from x10 = x20 = x30 = 0, u(t) = 25. The curves are from the results of 82 runs each of which with a different fixed value of p21. a: p21 +
p31 = 3.0; b: The relationship between p02 + p12 and p03 + p13; c: The relationship between p02 and p12; d: The relationship between p03 and p13;
e: The relationship between p12 and p21; f: The relationship between p13 and p31; g: p03p31(p02 + p12) + p02p21(p03 + p13) = 36.8;
h: p31(p02 + p12 + p03) + p21(p03 + p13 + p02) = 21.4
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It can be clearly seen from the first two columns of
Eq. (41) and Eq. (42) that α1 = α2 = 0, which means that
p31, p13 are uniquely identifiable. From the 5th and 6th

columns of the first row in Eq. (42) we have α5 + α6 = 0 ,
i.e.

∂Y 1

∂p43
−
∂Y 1

∂p03
¼ 0 ð43Þ

Thus p43, p03 are pairwise correlated. Furthermore,
based on the second row of Eq. (41) and Eq. (42) the fol-
lowing results can be obtained (see Additional file 1):

p24
∂Y 2

∂p24
−p43

∂Y 2

∂p43
¼ 0 ð44Þ

p42
∂Y 2

∂p42
−
∂Y 2

∂p24

� �
−p04

∂Y 2

∂p04
−
∂Y 2

∂p24

� �
¼ 0 ð45Þ

Eq. (43)–Eq. (45) indicate that there exist 3 separate
correlation groups in this example. The maximum num-
ber of parameters among the groups is 3. The (local) so-
lutions of these 3 equations lead to the identifiable
combinations of the parameters in the form of p43 + p03,
p24p43, p42p04 and p42 + p04 + p24, respectively, beside the
two identifiable parameters p31, p13.
To numerically verify the results, p31 = 3.0, p13 = 5.5,

p03 = 1.0, p04 = 0.7, p24 = 3.5, p42 = 3.0, p43 = 4.0 are used
as the true values of the parameters. One noise-free
dataset for y1, y2 is generated by x10 = x20 = x30 = x40 = 0
and u = 5.0 through simulation. Then we repeatedly fit
the parameters to the dataset, except for p43 which is
fixed with a different value for each run of the fitting. As
expected, p31, p13 are always at their true values after
each run, whereas the other parameters have correlated
relationships in the forms of their identifiable combina-
tions. Figure 4 shows these relationships based on the
results of 176 runs for the parameter estimation. It can
be seen from Fig. 4a to d that, indeed, p43 + p03 = 5.0,

p24p43 = 14.0, p42p04 = 2.1, and p42 + p04 + p24 = 7.2 are
obtained by the parameter estimation.
Also in this example, we can consider x20 ≠ 0, x30 ≠ 0,

x40 ≠ 0 for remedying the non-identifiability. Since the
maximum number of correlated parameter groups is
nmax = 3, the number of equations in the form of Eq.
(19) is ny(2nx − 2) = 12. Therefore, one dataset for y1, y2
from an initial condition x10 ≠ 0, x20 ≠ 0, x30 ≠ 0, x40 ≠ 0
will be enough to uniquely estimate the 7 parameters in
the model.

Example 5
Insulin receptor dynamics model [49].
Many physiological processes such as glucose uptake,

lipid-, protein- and glycogen-synthesis, to name the
most important, are regulated by insulin after binding to
the insulin receptor. The latter is located in the cyto-
plasma membrane [50, 51]. The insulin receptor (IR) is a
dynamic cellular macromolecule. Upon insulin binding,
a series of processes follow, including endocytosis of the
IR-insulin complex, endosomal processing, sequestration
of ligand (insulin) from the receptor, receptor inactiva-
tion as well as receptor recycling to the cell surface [52].
In several early studies, simple models describing insu-

lin receptor dynamics were proposed [53–57] where ei-
ther a subset of the whole process was considered or a
few subunits were lumped into single reaction steps.
More detailed models of insulin signaling pathways were
developed and simulation studies were performed in
[58–60]. However, parameter values such as rate con-
stants in these models were partially taken from litera-
ture and partially estimated through experimental data.
A general five-compartment IR dynamics model was

developed in [49] and its parameters were estimated
based on simultaneously fitting to the measured datasets
published in [55, 61, 62]. This model describes the endo-
somal trafficking dynamics of hepatic insulin receptor

∂Y sð Þ
∂p

¼ 1
Δ

 
− b11−b13ð ÞX1 b11−b13ð ÞX3 0 0 −b13X3 −b13X3 0
− b21−b23ð ÞX1 b21−b23ð ÞX3 − b22−b24ð ÞX2 b22−b24ð ÞX4 b24−b23ð ÞX3 −b23X3 −b24X4

!
ð42Þ

Fig. 4 Estimation results of example 4. The identifiable combinations of the parameters are validated by repeatedly fitting the model to one
dataset from x10 = x20 = x30 = x40 = 0 and u≠ 0. The curves are from the results of 176 runs each of which with a different fixed value of p43.
a: p43 + p03 = 5.0; b: p24p43 = 14.0; c: p42p04 = 2.1; d: p42 + p04 + p24 = 7.2
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consisting of IR autophosphorylation after receptor
binding, IR endosomal internalization and trafficking, in-
sulin dissociation from and dephosphorylation of inter-
nalized IR, and finally recycling of the insulin-free,
dephosphorylated IR to the plasma membrane [49]. The
state equations of the general five-compartment model
are given as follows [49]

_x1 ¼ p12x2 þ p15x5− p21uþ p51ð Þx1
_x2 ¼ p21ux1− p12 þ p32ð Þx2
_x3 ¼ p32x2−p43x3
_x4 ¼ p43x3−p54x4
_x5 ¼ p51x1 þ p54x4−p15x5

ð46Þ

where the state variables denote the concentrations of
the components, with x1 as unbound surface IR, x2 as
bound surface IR, x3 as bound-phosphorylated surface
IR, x4 as bound-phosphorylated internalized IR, and x5
as unbound internalized IR. The control variable u is
considered as a constant insulin input (100 nM), while
the initial condition of Eq. (46) is given as x1(0) = 100 %,
and xi(0) = 0 for i ≠ 1 [49].
Since the control variable u is a constant, the non-

linear term p21u in Eq. (46) can be regarded as a par-
ameter p21

′ to be estimated. As a result, Eq. (46)
becomes a linear model which can be analyzed by our
method. Here, we consider three measured datasets
used in [49] for parameter estimation, i.e. IR auto-
phosphorylation from [61], IR internalization from
[55], and remaining surface IR from [55]. These mea-
sured species are mixtures of the components denoted as
state variables in Eq. (46), respectively, leading to the fol-
lowing output equations [49]

y1 ¼ x3 þ x4 ð47Þ

y2 ¼ x4 þ x5 ð48Þ

y3 ¼ x2 þ x3 ð49Þ

where y1 is the percentage of total (surface and intracel-
lular) phosphorylated IR, y2 is the percentage of total in-
ternalized IR, y3 is the percentage of total IR on the cell
surface.
We are concerned with the identifiability of the 7 pa-

rameters in Eq. (46), when one or a combination of the
above output equations is used for parameter estimation.
Based on our method, it is found that, when only Eq.
(47) is employed as an output equation, 4 parameters
(i.e. p21

′ , p51, p12, p32) are non-identifiable, while 3 param-
eters (i.e. p43, p54, p15) are identifiable. In particular, the
relationship of the 4 correlated parameters is expressed
as follows

∂Y 1 sð Þ
∂p′21

þ p51
p12−p15 þ p32−p51ð Þ

∂Y 1 sð Þ
∂p51

−
p12p

′
21−p12p32−p15p

′
21 þ p15p32 þ p′21p32−p

2
32 þ p32p51

� �
p′21 p12−p15 þ p32−p51ð Þ

∂Y 1 sð Þ
∂p12

−
p32
p′21

∂Y 1 sð Þ
∂p32

¼ 0

ð50Þ
This means that, using a dataset of IR autophosphoryl-

ation (i.e. y1 = x3 + x4), it is impossible to estimate all of
the parameters of the model (even if the data are noise-
free). Nevertheless, our computation results show that
all of the 7 parameters are identifiable, i.e. there is no
parameter correlation, when either Eq. (48) or Eq. (49) is
used as an output equation. As a result, either a dataset
of the IR internalization (i.e. y2 = x4 + x5) or a dataset of
the remaining surface IR (i.e. y3 = x2 + x3) is enough for
unique estimation of the 7 parameters of the model,
when the measured data are noise-free. Obviously,
unique estimation can also be achieved when a combin-
ation of the 3 output equations are used (i.e., simultan-
eously fitting the model to two or three datasets from
[55] and [61]), as was performed in [49].

Conclusions
A partial observation of state variables usually leads to
non-identifiable parameters even for pretty simple models.
To address this problem, a method for identifying param-
eter correlations in partially observed linear dynamic
models is presented in this paper. The basic idea is to
derive the output sensitivity matrix and analyze the linear
dependences of the columns in this matrix. Thus the
method is quite simple, i.e. only the Laplace transform-
ation and linear algebra are required to derive the results.
A special feature of our method is its explicit coupling of
parameter correlations to control signals and the initial
condition which can be used for experimental design, so
that proper (noise-free) datasets can be generated for
unique parameter estimation. In this way, the practically
non-identifiable parameters can be estimated. Several
partially observed linear compartmental models are used
to demonstrate the capability of the proposed method for
identifying the parameter correlations. Results derived
from our method are verified by numerical parameter esti-
mation. The extension of this method to partially observed
nonlinear models could be a future study.
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