
PROCEEDINGS Open Access

UbiSite: incorporating two-layered machine
learning method with substrate motifs to
predict ubiquitin-conjugation site on lysines
Chien-Hsun Huang1,2, Min-Gang Su1, Hui-Ju Kao1, Jhih-Hua Jhong1, Shun-Long Weng3,4,5* and Tzong-Yi Lee1,6*

From The Fourteenth Asia Pacific Bioinformatics Conference (APBC 2016)
San Francisco, CA, USA. 11 - 13 January 2016

Abstract

Background: The conjugation of ubiquitin to a substrate protein (protein ubiquitylation), which involves a
sequential process – E1 activation, E2 conjugation and E3 ligation, is crucial to the regulation of protein function
and activity in eukaryotes. This ubiquitin-conjugation process typically binds the last amino acid of ubiquitin
(glycine 76) to a lysine residue of a target protein. The high-throughput of mass spectrometry-based proteomics
has stimulated a large-scale identification of ubiquitin-conjugated peptides. Hence, a new web resource, UbiSite,
was developed to identify ubiquitin-conjugation site on lysines based on large-scale proteome dataset.

Results: Given a total of 37,647 ubiquitin-conjugated proteins, including 128026 ubiquitylated peptides, obtained from
various resources, this study carries out a large-scale investigation on ubiquitin-conjugation sites based on sequenced
and structural characteristics. A TwoSampleLogo reveals that a significant depletion of histidine (H), arginine (R) and
cysteine (C) residues around ubiquitylation sites may impact the conjugation of ubiquitins in closed three-dimensional
environments. Based on the large-scale ubiquitylation dataset, a motif discovery tool, MDDLogo, has been adopted to
characterize the potential substrate motifs for ubiquitin conjugation. Not only are single features such as amino acid
composition (AAC), positional weighted matrix (PWM), position-specific scoring matrix (PSSM) and solvent-accessible
surface area (SASA) considered, but also the effectiveness of incorporating MDDLogo-identified substrate motifs into a
two-layered prediction model is taken into account. Evaluation by five-fold cross-validation showed that PSSM is the
best feature in discriminating between ubiquitylation and non-ubiquitylation sites, based on support vector machine
(SVM). Additionally, the two-layered SVM model integrating MDDLogo-identified substrate motifs could obtain a
promising accuracy and the Matthews Correlation Coefficient (MCC) at 81.06 % and 0.586, respectively. Furthermore,
the independent testing showed that the two-layered SVM model could outperform other prediction tools, reaching at
85.10 % sensitivity, 69.69 % specificity, 73.69 % accuracy and the 0.483 of MCC value.

Conclusion: The independent testing result indicated the effectiveness of incorporating MDDLogo-identified motifs
into the prediction of ubiquitylation sites. In order to provide meaningful assistance to researchers interested in
large-scale ubiquitinome data, the two-layered SVM model has been implemented onto a web-based system (UbiSite),
which is freely available at http://csb.cse.yzu.edu.tw/UbiSite/. Two cases given in the UbiSite provide a demonstration
of effective identification of ubiquitylation sites with reference to substrate motifs.
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Background
In 1975, Goldstein et al. [1] discovered ubiquitin, which is
a small protein of approximately 8.5 kDa and is composed
of 76 amino acids [2]. The attachment of mono-ubiquitin
or poly-ubiquitin chains to proteins at particular lysines is
a critical post-translational modification (PTM), which is
called protein ubiquitylation or ubiquitination [3, 4]. Pro-
tein ubiquitylation, involving a sequential process – E1
activation, E2 conjugation and E3 ligation enzyme, is im-
portant for modulating various cellular functions, such as
transcriptional regulation, signal transduction, develop-
ment, apoptosis, endocytosis, and cell proliferation [5–7].
These three major classes of enzymes have critical roles in
promoting and controlling the activities that are involved
in the process of protein ubiquitylation system. In particu-
lar, the E3 ligases recognize a specific substrate protein
and then catalyze the attachment of ubiquitin to the target
lysine of a protein [8, 9]. The HECT domain of E3 ligases
plays prominent roles in trafficking, immune response,
and several signaling pathways that regulate cellular
growth and proliferation [10]. As illustrated in Figure S1
(Additional file 1), the HECT domain consists of two
major components: a N-terminal N-lobe that interacts
with the E2, and a C-terminal C-lobe which contains the
active-site cysteine forming the thioester linkage with
ubiquitin [11–13]. The conserved HECT domain is lo-
cated at the C-terminus of these enzymes, whereas their
N-terminal domains are diverse and mediate substrate
targeting.
With the biological importance of protein ubiquityla-

tion, the high-throughput of mass spectrometry-based
proteomics has stimulated a large-scale identification of
ubiquitin-conjugated peptides [14–16]. Thus, numerous
databases [9, 17–20] of protein ubiquitylation sites have
been developed to date, owing to the regulatory signifi-
cance of ubiquitin in cellular processes. In addition, the
labor-intensive experiment in site-specific identification
of ubiquitin-conjugated peptides motivated an increasing
number of computational methods [14, 16, 21–25] de-
veloped for the identification of ubiquitylation sites. As
the number of experimentally verified ubiquitylation
sites is increasing, the development of new bioinformat-
ics tools that can be applied to large-scale proteome data
is required. Recently, an ensemble classifier was devel-
oped to identify ubiquitylation sites based on lysines
[26]. The WPNNA (weighted passive nearest neighbor
algorithm) classifier for identifying ubiquitylation sites
based on hybrid features has also been proposed [27].
The UbiProber [28], which integrates key position and
amino acid residue features, was designed to predict both
general and species-specific ubiquitylation sites. Addition-
ally, independent testing has demonstrated that the com-
bined model improves the area under the operating
characteristic curve of the receiver (AUC) by ~15 %.

Although the fact that the accuracy and stability of these
prediction tools have been demonstrated, room typically
exists to improve its predictive power. Moreover, as more
experimentally confirmed ubiquitylation sites become
available, the lack of methods for characterizing the
substrate site specificities based on large-scale data-
sets is serious.
An increasing number of site-specific ubiquitylated pep-

tides obtained from mass spectrometry-based proteomics
has stimulated this work to characterize and identify sub-
strate sites of ubiquitin conjugation based on large-scale
dataset. Experimentally confirmed ubiquitin-conjugated
peptides were mainly collected from several online re-
sources, including hCKSAAP_UbiSite [22], dbPTM [19, 20]
and mUbiSiDa [18]. Not only are sequence-based features,
such as amino acid composition (AAC), amino acid pair-
wise composition (AAPC), positional weighted matrix
(PWM) and position-specific scoring matrix (PSSM)
assessed, but also the effectiveness of solvent-accessible sur-
face area (SASA) or secondary structure is examined. A
best feature for the prediction of ubiquitylation sites was
determined based on five-fold cross-validation. Addition-
ally, a motif discovery tool, MDDLogo [29], was adopted to
characterize the potential substrate motifs of ubiquitylation
sites and to generate a two-layered prediction model by in-
tegrating the MDDLogo-identified substrate motifs. The in-
dependent testing showed that the two-layered SVM model
could provide a promising accuracy (73.69 %) and perform
better than other prediction tools. Finally, the two-layered
prediction model was adopted to implement a web-based
system (UbiSite) for providing effective assistance to re-
searchers who are interested in large-scale proteome data.

Methods
Collection and preprocessing of training dataset
Experimentally validated ubiquitin-conjugated peptides
were mainly obtained from several online resources, in-
cluding hCKSAAP_UbiSite [22], dbPTM [19, 20], and
mUbiSiDa [18]. As presented in Table 1, totally 6118 ubi-
quitylated lysines were taken from 2500 ubiquitylated pro-
teins. The dataset associated with protein ubiquitylation
was also obtained from version 3.0 of dbPTM, which
is a comprehensive database of protein post-translational
modifications that has accumulated 23,949 ubiquitylated
lysines from 6259 proteins. Additionally, a large-scale
ubiquitin-conjugated peptides (110,695 ubiquitylated ly-
sines in mammals) were obtained from mUbiSiDa, which
is a comprehensive database containing 35,494 ubiquity-
lated proteins. After redundant data were removed, 37,647
ubiquitylated proteins, consisting of 128,026 ubiquitylated
lysines, were regarded as the training dataset.
To construct positive data of training dataset, herein, a

window of length 2n + 1 was used to extract sequence
fragments that were centered at the ubiquitylated lysine
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(K) residue and contained n upstream and n down-
stream flanking amino acids. Given 37,647 experimen-
tally verified ubiquitylated proteins, the sequence
fragments that contained window length of 2n + 1 amino
acids and were centered at the lysine residue without an
annotation of ubiquitylation were regarded as the nega-
tive data of training dataset (non-ubiquitylated lysines).
According to another work [14] and the preliminary
evaluation using windows of various lengths, a window
size of 13 (n = 6) maximizes the accuracy in the predic-
tion of ubiquitylation sites. Based on a window size of
13, the training dataset contains 128,026 positive data
and 1,317,734 negative data.
As for binary classification, the performance of the

predictive models may be overestimated or underesti-
mated owing to the homologous sequences in positive
and negative datasets. In order to obtain a reasonable
prediction performance, the homologous sequences
should be removed from the training dataset by using
CD-HIT [30] program. Additionally, an analysis of se-
quence fragments indicates that, owing to the incom-
pleteness of available information about experimentally
validated ubiquitylation sites, some negative data may be
homologous to positive data in the training dataset,
potentially resulting in false positive or false negative
predictions. Accordingly, CD-HIT was used again by
running cd-hit-2d across positive and negative training
data with 50 % sequence similarity to filter out the hom-
ologous sequences in negative data. Table S1 (Additional
file 2) presents statistics concerning the data after the
homologous sequences had been removed using CD-
HIT, based on various values of sequence identity. After
homologous sequences with 30 % sequence identity had
been filtered out using cd-hit and psi-cd-hit, the training
dataset comprised 5438 positive sequences and 12,663
negative sequences.

Features extraction and encoding
In this work, several sequence-based features, including
amino acid composition (AAC), amino acid pairwise

composition (AAPC), positional weighted matrix (PWM),
and position-specific scoring matrix (PSSM), were exam-
ined. Additionally, the solvent-accessible surface area
(SASA) and secondary structure around the ubiquitylation
sites were also investigated. Amino acid sequences with a
lysine in the center were individually extracted from posi-
tive and negative training sets using a window of length
2n + 1, where n was set to six. To transform the amino
acid sequence into a numeric vector for model construc-
tion, a basic encoding method, namely 20-dimensional
binary coding (20D), was adopted. For instance, Alanine
(A) was encoded as “10000000000000000000”, and Cyst-
eine (C) was encoded as “01000000000000000000”. The
number of dimensions for 20D feature was (2n + 1) × 20
to represent the flanking amino acids surrounding the ubi-
quitylation sites. The training data contained k vec-
tors {xi, i = 1, 2 …, k} corresponding to the k fragment
sequences. The labels +1 and −1 were used to mark the
positive and negative data classes, respectively, for each
numeric vector.
For the coding of amino acid composition, each se-

quence fragment was encoded as a 21-dimensional vec-
tor {xi, i = 1,…,21} that comprised 20 types of amino acid
and an non-existing residue, which specify the number
of occurrences of the 20 types of amino acid normalized
with the total number of residues in a sequence frag-
ment. For the coding of amino acid pair composition, a
21x21-dimensional matrix {xij, i ,j = 1, …, 21} was used
to encode each sequence fragment. Each element xij spe-
cifies the number of occurrences of amino acid pairs
normalized with the total number of amino acid pairs in
a sequence fragment. By referring to the SulfoSite
method [31], PWM was determined by calculating
the occurrence rate of 20 amino acids surrounding a
substrate sites, and was utilized in encoding the
fragment sequences. Each sequence fragment of the
training dataset was represented by a matrix of (2n +
1) × w elements, where w stands for 21 elements in-
cluding 20 types of amino acids and one for the
non-existing residue.

Table 1 Data statistics in the construction of training dataset and independent testing dataset

Data set Data resource Number of ubiquitylated
proteins

Number of ubiquitylated
lysines

Number of non-ubiquitylated
lysines

Training set hCKSAAP_UbiSite 2500 6118 6118

dbPTM 3.0 6259 23,949 228,441

mUbiSiDa 35,494 110,695 1,217,977

Combined non-redundant data 37,647 128,026 1,317,734

Non-homologous data
(sequence identity ≦ 30 %)

4828 5438 12,663

Independent testing set CPLM 2.0 32,429 139,950 1,109,432

Non-homologous data
(sequence identity ≦ 30 %)

2894 3732 10,664
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In the viewpoint of protein sequence evolution, sev-
eral amino acid residues of a protein can be mutated
without changing its core structure or functional do-
main, and two proteins may have similar tertiary
structures with different amino acid compositions.
Position Specific Scoring Matrix (PSSM) profiles,
which have been extensively utilized in protein domain
finding, secondary structure prediction, subcellular
localization and other biological problems [32–34], was
adopted with evolutionary significance. As presented in
Figure S2 (Additional file 3), the PSSM profiles were ob-
tained by PSI-BLAST [35] against non-redundant set of
ubiquitylated protein sequences. Then, matrices of (2n +
1) × 20 elements, with rows that were centered at ubiqui-
tylation sites and non-ubiquitylation sites, were extracted
from PSSM profiles. Then, the (2n + 1) × 20 matrix was
transformed into a 20 × 20 matrix by summing up the
rows that were associated with the same type of amino
acid. Finally, every element in 20 × 20 matrix was divided
by the window length 2n + 1 and normalized using the ex-
pression: 1

1þe−x.
It has been reported that a side-chain of amino acid

that undergoes post-translational modification prefers to
be accessible on the surface of a protein [36]. Thus, the
solvent-accessible surface area (SASA) was used to
evaluate the ability of predicting ubiquitylation sites. In
this investigation, the RVP-Net [37, 38] was applied to
compute the ASA value from the full-length protein se-
quence. The computed ASA was the percentage of the
solvent-accessible area of each amino acid on the pro-
tein. The ASA values of amino acids around the ubiqui-
tylation and non-ubiquitylation sites were extracted and
normalized to be between zero and one. In the investiga-
tion of secondary structure, version 2.0 of PSIPRED [39]
was employed to compute the secondary structure from
the protein sequence. The output of PSIPRED is given in
terms of “H,” “E” and “C” which represent helix, sheet
and coil, respectively. The full-length protein sequences
with ubiquitylated lysines were submitted to PSIPRED
to obtain the secondary structure of all residues.
Then, an orthogonal binary coding scheme was used
to transform the three types of secondary structure
into numeric vectors: “100” for helix, “010” for sheet,
and “001” for coil structure.

Model building and performance evaluation
Based on binary classification, the positive and nega-
tive datasets were used to build a predictive model
using support vector machine (SVM). We employed
a public SVM library, LIBSVM [40], to implement
the construction of predictive model and the evalu-
ation of prediction performance. The radial basis
function (RBF):

K Si; Sj
� � ¼ exp −γ Si−Sj

�� ��2� �
ð1Þ

was adopted as the kernel function for transforming the
input samples into a higher dimensional space, and find-
ing a hyper-plane to discriminate between the two clas-
ses with maximal margin and minimal error. The power
of RBF kernel could be determined by tuning the gamma
(g) parameter, while the cost (c) parameter controls the
hyper-plane softness. In this work, each feature was
adopted to generate a predictive model by LIBSVM li-
brary; then, the feature performing best was selected as
the final feature to implement the prediction tool.
In the evaluation of predictive power, the five-fold

cross-validation was carried out for each SVM model
trained with different feature to test their predictive per-
formances. The method of cross-validation could in-
crease the reliability of performance evaluation, because
it considers all original data in both the training and
testing data sets; typically, each data was regarded as a
test set only once [41]. To gauge the predictive perform-
ance of training model, the following measures were
used: sensitivity (Sn), specificity (Sp), accuracy (Acc) and
Matthews Correlation Coefficient (MCC):

Sn ¼ TP
TPþ FN

ð2Þ

Sp ¼ TN
TN ¼ FP

ð3Þ

Acc ¼ TPþ TN
TPþ FPþ TNþ FN

ð4Þ

MCC ¼ TP � TNð Þ− FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð5Þ

where TP, TN, FP and FN represent the numbers of true
positives, true negatives, false positives and false nega-
tives, respectively. Sensitivity is the percentage of true
positive predictions, while specificity represents that of
true negative predictions. Accuracy reflects the overall
proportion of true positive and true negative predictions.
As for binary classifications, accuracy is sometimes not
useful when the two classes are of very different sizes.
Accordingly, the MCC is typically considered as a bal-
anced measure, even if the two classes are of very differ-
ent sizes [42]. The MCC value is ranging from −1 to +1:
a coefficient value of +1 represents a perfect prediction,
while the values 0 and −1 represent random and oppos-
ite predictions, respectively. In this work, the model con-
taining a higher positive MCC value indicates a better
prediction performance for classifying positive and nega-
tive data correctly.
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Discovery of substrate motifs of ubiquitin-conjugation
sites
Along the protein ubiquitylation pathway, E3 ubiquitin
ligase has a critical role in catalyzing the attachment of
ubiquitin to lysine residue of a protein by recognizing a
specific substrate site. Owing to an increasing number of
large-scale ubiquitylation data obtained from mass
spectrometry-based proteomics, we are motivated to ex-
plore potential substrate motifs for ubiquitin-conjugated
sites. Although the WebLogo [43] can display position-
specific amino acid composition for a group of aligned sig-
nal sequences, it is difficult to explore conserved motifs
for large-scale sequence data. For instance, a sequence
logo for all phosphorylation data involved with various
catalytic kinases fails to obviously present the kinase-
specific substrate specificity. Hence, the MDDLogo [29]
was applied to the training data in an attempt to discover
substrate motif signatures at ubiquitylation sites. Previous
works [44–55] have demonstrated the effectiveness of div-
iding a group of protein sequences into smaller subgroups
before the computational identification of PTM sites.
MDDLogo applies chi-square test to evaluate the de-
pendence of the occurrence of amino acids between
two positions, Ai and Aj, which are adjacent to the
modification site (Figure S3 in Additional file 4).
After the recursive chi-square test, MDDLogo divides
a group of aligned sequences into subsets that capture
the most significant dependencies of positions on
each other. When applying MDDLogo, a parameter,
i.e., the maximum-cluster-size, should be set. If the
size of a subgroup is less than a specified value of
maximum-cluster-size, the subgroup will not be di-
vided any further. The MDDLogo terminates after all
of the subgroup sizes are less than the value of the
specified value of maximum-cluster-size.

Construction of two-layered predictive model
In this investigation MDDLogo was utilized to sub-divide
5438 ubiquitylated sequence fragments (positive training
data) into 12 subgroups that contain significant substrate
motifs. As presented in Fig. 1, the LIBSVM was employed
to generate first-layered SVM model for each MDDLogo-
identified substrate motifs. The negative data for each
MDDLogo-clustered subgroup were selected from the
negative training data (12,663 non-ubiquitylated sequences)
with a ratio of approximately 1:2.33 (which almost equals
the ratio of the number of positive data to the number of
negative data, 5438:12663). In first layer, each SVM model
will output a value of probability estimate ranging from 0
to 1 for each prediction. Thus, the values of probabil-
ity estimates from each SVM classifier trained accord-
ing to a specific motif were adopted to form an input
vector for second-layered SVM classifier. The so-called
two-layered prediction model could be used to identify

ubiquitin-conjugation sites along with their corresponding
substrate motifs.

Construction of independent testing dataset
In the prediction of PTM sites, after selecting the best
predictive model with the highest MCC value in cross-
validation process, an independent testing dataset, which
was definitely blind to the training dataset, was gener-
ated to evaluate the real determinant of the predictive
performance of the selected model. The dataset for inde-
pendent testing was collected from version 2.0 of CPLM
[17], which is a comprehensive database of protein lysine
modifications. The positive and negative testing datasets
were generated using the same method as was applied to
the training dataset. The program cd-hit-2d was used
with a sequence identity cutoff of 30 % to remove hom-
ologous sequences between independent testing set and
training set, yielding the final independent testing data-
set that contained 3732 positive and 10,664 negative data
(Table 1). The testing dataset was also used to evaluate
the predictive power of other prediction tools, which
were compared with our method in terms of predictive
performance.

Results and discussion
Investigation of amino acid composition and structural
characteristics neighboring with ubiquitin-conjugation
sites
Based on the analysis of amino acid composition, the
frequency of occurrence of 20 amino acids surrounding
the substrate site could be determined to find the poten-
tial consensus motifs. The flanking amino acid se-
quences of 5438 ubiquitylation sites (at position 0) can
be graphically visualized in the entropy plots of the se-
quence logo by WebLogo; however, there is no conser-
vation of amino acids around the ubiquitylation sites
[14]. Hence, an effective tool, TwoSampleLogo [56], was
applied to detect statistically noteworthy differences in
position-specific amino acid composition between posi-
tive and negative training datasets. As presented in
Fig. 2a, the lysine residue was placed in the middle of
the fragment sequences, and positions of the flanking
amino acids were described in range from −6 to +6. The
comparison of position-specific amino acid composition
between 5438 ubiquitylated and 12,663 non-ubiquitylated
sites reveals that the nonpolar and aliphatic amino
acids, such as alanine (A), leucine (L) and glycine
(G), are enriched around ubiquitylation sites at posi-
tions −3, −2, −1, +1, +2, +4 and +5 (with p-value < 0.01).
Additionally, negatively charged amino acids, aspartic acid
(D) and glutamic acid (E), are found at positions −5, +2,
and +3. By contrast, non-ubiquitylated sites have the en-
richment of positively charged amino acids, histidine (H)
and arginine (R) at positions −5, −3, −2, −1, +1, +2, +3
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and +4. It would be noticed that a neutral amino acid,
cysteine (C), is enriched around non-ubiquitylation sites;
oppositely, cysteine is highly depleted in close to ubiquity-
lation sites. In summary, this investigation indicates a
significant depletion of H, R and C residues for ubiquityla-
tion sites.
To investigate the preference of the solvent-accessible

surface area (SASA) that surrounds ubiquitin conjuga-
tion sites in protein tertiary structures, all experimentally
identified ubiquitylation sites were mapped to the corre-
sponding positions of the protein entries in the Protein
Data Bank (PDB) [57]. However, only 302 ubiquitylation
sites have the corresponding positions in PDB. Based on
protein tertiary structures, Figure S4 (Additional file 5)
indicates that the substrate sites of ubiquitin conjugation
prefer to be accessible on the surface of proteins. Since
most of the ubiquitylated proteins do not have correspond-
ing protein tertiary structures in PDB, RVP-Net and
PSIPRED have been adopted to compute the SASA value
and secondary structure, respectively, from the protein

sequence. Figure 2b presents the comparison of flanking
SASA between ubiquitylation and non-ubiquitylation sites.
This investigation reveals that most of the ubiquitylation
sites prefer to locate in a region with higher SASA (≧35 %),
especially at positions +1, +2 and +3. Overall, the mean
SASA that surrounds the ubiquitylation sites slightly ex-
ceeds that around non-ubiquitylation sites. In the investiga-
tion of secondary structure, Fig. 2c indicates a higher
preference of coil (loop) or helix structures around ubiqui-
tylation sites, which is consistent with the analysis from
Catic et al. [58].

Performance evaluation of the investigated features in
identifying ubiquitylation sites
To examine the effectiveness of various features, namely
20D, AAC, AAPC, PWM, PSSM, SASA and SS, in dis-
criminating between 5438 ubiquitylation sites and 12,663
non-ubiquitylation sites, the LIBSVM was employed to
learn a predictive model for each feature. As shown in
Table 2, the SVM model trained with PSSM profile has

Fig. 1 Flowchart of constructing two-layered prediction model based on MDDLogo-identified substrate motifs
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Fig. 2 Sequenced and structural characteristics of ubiquitin-conjugation sites. a Comparison of position-specific amino acid composition between
ubiquitylation and non-ubiquitylation sites. b Comparison of solvent-accessible surface area between ubiquitylation and non-ubiquitylation sites. c
Distribution of secondary structure around ubiquitylation sites

Table 2 Performance evaluation of the investigated features in identifying ubiquitylation sites based on five-fold cross-validation

Investigated features Sensitivity Specificity Accuracy MCC

20D binary coding (20D) 65.59 % 67.09 % 66.64 % 0.303

Amino Acid Composition (AAC) 64.34 % 65.44 % 65.11 % 0.275

Amino Acid Pair Composition (AAPC) 68.70 % 70.72 % 70.11 % 0.367

Position Weight Matrix (PWM) 68.08 % 67.99 % 68.01 % 0.334

Position-Specific Scoring Matrix (PSSM) 69.46 % 70.69 % 70.32 % 0.374

Solvent-Accessible Surface Area (SASA) 64.58 % 65.47 % 65.20 % 0.278

Secondary Structure (SS) 55.20 % 60.51 % 58.91 % 0.145
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the highest MCC value at 0.0.374, and relatively high sen-
sitivity, specificity and accuracy at 69.46 %, 70.69 % and
70.32 %, respectively. Based on the large-scale dataset, the
SVM model, learned from AAPC with 441-dimensional
vector, also performs as best as PSSM model. In the evalu-
ation of structural characteristics, the SVM model trained
with SASA yields an acceptable performance, including
64.58 % sensitivity, 65.47 % specificity, 65.20 % accuracy,
and MCC value at 0.278. On the other hand, the second-
ary structure (SS) is found to be the worse feature for the
prediction of ubiquitylation sites, with sensitivity at
55.20 %, specificity at 60.51 %, accuracy at 58.91 %, and
MCC at 0.145. In addition, the best feature (PSSM) was
considered to combine with other features for obtaining a
better performance in identifying ubiquitylation sites.
However, the hybrid features that incorporated PSSM with
other single features provide similar prediction perform-
ance with using only PSSM feature. Overall, the SVM
model learned from PSSM profiles could provide best pre-
dictive performance based on the large-scale ubiquityla-
tion data. This investigation indicates that the PSSM
profile, obtained by PSI-BLAST against non-redundant set
of ubiquitylated protein sequences, could reflects the
evolutionary conservation of amino acids which are
prone to occur in the conserved domains for ubiqui-
tin conjugation.
In order to assess the practicability of the con-

structed models, an independent testing dataset was
generated from CPLM database. After the removal of
homologous sequences with sequence identity ≦ 30 %,
the independent testing dataset is composed of 3732
positive and 10,664 negative data. Table 3 reveals that
the PSSM model could yield best MCC and accuracy
at 0.369 and 69.68 %, respectively, in the independent
testing dataset. Interestingly, the PWM model, reach-
ing highest sensitivity at 73.90 %, has similar predic-
tion performance with PSSM model; otherwise, the
AAPC model has the best predictive specificity at
69.05 %. Overall, the SVM model learned from PSSM
profiles outperforms all others based on the large-
scale independent testing dataset.

Effectiveness of incorporating substrate motifs into the
identification of ubiquitylation sites
In this investigation, the MDDLogo was adopted to ex-
plore the conserved motifs by dividing positive training
dataset (5438 sites) into 12 subgroups. Each subgroup
represents a potential ubiquitin-conjugated motif that
contains statistically significant dependencies of amino
acid composition between specific positions. Figure 3
provides a tree-like visualization of MDDLogo-clustered
subgroups with statistically significant motifs for 5438
ubiquitylation sites. On the left subtree, six motifs (sub-
groups Ub1 to Ub6) out of all MDDLogo-clustered sub-
groups were detected based on the occurrence of acidic
and amide amino acids (D, E, N and Q) at position +3,
with maximal dependence value. At the same time, sub-
groups Ub1 (192 sites), Ub2 (266 sites) and Ub3 (248
sites) represented the occurrence of aromatic amino
acids (F, Y and W) at positions +1, +2 and −1, respect-
ively, with maximal dependence values. Subgroup Ub4
(378 sites) had another motif of acidic and amide amino
acids at position −4. Additionally, subgroup Ub5 (467
sites) had the occurrence of polar amino acids at pos-
ition +6, whereas subgroup Ub6 (792 sites) had no oc-
currence of polar amino acids at position +6. On the
right subtree of Fig. 3, subgroups Ub7 (847 sites) and
Ub8 (563 sites) had the motif of acidic and amide amino
acids at positions −3 and −1, respectively. Subgroups
Ub9 (672 sites), Ub10 (323 sites) and Ub11 (149 sites)
represented the motif of aromatic amino acids at posi-
tions +1, +2 and −5, respectively, with maximal depend-
ence values. Finally, the remaining 541 positive data
resulted in the twelfth subgroup (Ub12), which contains
a little conservation of amino acids at position +3.
In order to evaluate the effectiveness of MDDLogo-

identified substrate motifs in identifying ubiquitylation
sites, the LIBSVM was utilized to generate a predictive
model for each subgroup based on PSSM feature. Table
S2 (Additional file 6) presents the five-fold cross-
validation performance for 12 MDDLogo-identified motifs
obtained from 5438 non-homologous ubiquitylation sites.
Overall, the subgroups containing motif of aromatic

Table 3 Performance evaluation of the SVM models trained with various features based on independent testing dataset (3732
ubiquitylation sites and 10,664 non-ubiquitylation sites)

Training features Sensitivity Specificity Accuracy MCC

20D binary coding (20D) 62.59 % 65.85 % 65.00 % 0.253

Amino Acid Composition (AAC) 66.37 % 64.63 % 65.08 % 0.274

Amino Acid Pair Composition (AAPC) 69.05 % 69.05 % 69.05 % 0.340

Position Weight Matrix (PWM) 73.90 % 67.29 % 69.01 % 0.364

Position-Specific Scoring Matrix (PSSM) 73.20 % 68.45 % 69.68 % 0.369

Solvent-Accessible Surface Area (SASA) 63.91 % 61.36 % 62.02 % 0.223

Secondary Structure (SS) 55.60 % 51.34 % 52.45 % 0.061
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amino acids (F, Y and W) appeared to generate better pre-
dictive performances. For instance, the subgroup Ub2,
containing the conserved motif of aromatic residues at
position +2 as well as acidic and amide residues at pos-
ition +3, yielded the highest MCC and accuracy at 0.881
and 94.70 %, respectively. Having similar substrate motifs
with Ub2, subgroups Ub1 and Ub3 obtained predictive ac-
curacies at 90.61 % and 89.70 %, respectively. Additionally,
subgroups Ub9, Ub10 and Ub11, which contain the con-
served motif of aromatic residues at specific positions, also
obtained relatively high accuracies at 89.40, 91.16 and
86.04 %, respectively. In particular, subgroup Ub4, con-
taining the conserved motif of acidic and amide residues
at positions −4 and +3, yielded the second high accuracy
at 92.84 %. The subgroups without clearly conserved mo-
tifs of aromatic residues generally showed relatively low
accuracy (≤ 80.0 %). Subgroup Ub12, which has no con-
served motif, yielded the lowest accuracy at 67.18 %.
In general, almost all subgroups, containing the con-

served motif of aromatic amino acids at specific positions,
could yield a promising accuracy. This investigation indi-
cates that the substrate sites for ubiquitin conjugation
may depend on the occurrence of aromatic residues. Table
S2 (Additional file 6) shows that most of the SVM models
trained with MDDLogo-identified motifs outperformed
the SVM models trained with all training dataset. The
mean accuracy of combining the 12 SVM models was
81.06 %, and the mean MCC was 0.586. Additionally, the

independent testing dataset was used to examine the ef-
fectiveness of the two-layered SVM model, which inte-
grates 12 MDDLogo-identified motifs, against that of
single SVM model, based on the best feature (PSSM). As
presented in Fig. 4, the testing results further support the
effectiveness of the MDDLogo-identified motifs in the
prediction of ubiquitylation sites. Moreover, the independ-
ent testing dataset was used to compare the two-layered
SVM model with three available prediction tools, namely
UbiPred [59], UbiProber [28] and hCKSAAP_UbiSite [22].
As shown in Table S3 (Additional file 7), the two-
layered SVM model obtained highest performance
when compared to others, reaching at 85.10 % sensi-
tivity, 69.69 % specificity, 73.69 % accuracy and the
0.483 of MCC value.

Web resource for identifying ubiquitylated lysines with
substrate motifs
Owing to the time-consuming and lab-intensive experi-
mental identification of site-specific ubiquitinome, a
biologist may only concluded that a protein can be ubi-
quitylated but the precise substrate sites for ubiquitin
conjugation remains unknown. Hence, an effective pre-
diction system can help focusing efficiently on potential
substrate sites. After evaluation by cross-validation and
independent testing, the two-layered SVM model incorp-
orating 12 MDDLogo-identified substrate motifs has been
adopted to develop a web resource, named UbiSite, for

Fig. 3 Tree view of MDDLogo-clustered subgroups with statistically significant motifs for 5438 ubiquitylation sites
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Fig. 4 Comparison of independent testing performance between single SVM model and two-layered SVM model

Fig. 5 Case study of identifying ubiquitylation sites on E3 ubiquitin-protein ligase DMA2 of Saccharomyces cerevisiae
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identifying lysine ubiquitylation sites based on MDDLogo-
identified substrate motifs. UbiSite allows users to submit
their protein sequences in FASTA format; then, the sys-
tem returns the prediction results, including ubiquitylated
positions, flanking amino acids, and corresponding sub-
strate motifs. A case study of E3 ubiquitin-protein ligase
DMA2 from Saccharomyces cerevisiae, which is not in-
cluded in the training dataset, was provided to demon-
strate the effectiveness of UbiSite. As presented in Fig. 5,
the DMA2 had 12 experimentally confirmed ubiquityla-
tion sites located at positions 211, 256, 258, 288, 310, 333,
343, 346, 366, 406, 412 and 423 [60]. UbiSite predicted ten
ubiquitylation sites for the protein sequence of DMA2, at
positions 211, 258, 288, 310, 343, 346, 366, 412, 423 and
516, as well as their corresponding substrate motifs. The
position 516 is a false positive prediction resulting in the
predictive accuracy of 90.0 %. Another case study regards
to the prediction on tumor antigen p53 (TP53) in Homo
sapiens (Human). TP53 has 11 ubiquitylation sites at posi-
tions 101, 120, 132, 164, 291, 292, 305, 320, 321, 357 and
370 [15, 61, 62]. As shown in Figure S5 (Additional file 8),
UbiSite identified 11 ubiquitylation sites at positions 101,
120, 291, 292, 305, 319, 320, 321, 351, 357 and 382, with
corresponding substrate motifs. Positions 319, 351 and
382 are false positive predictions, while positions 132, 164
and 370 are false negative predictions.

Conclusion
In proteomics, understanding the mechanisms that under-
lie ubiquitylation and ubiquitin binding specificity is both
essential and challenging. The high throughput of mass
spectrometry-based proteomics has provided an opportun-
ity to explore the substrate motifs for ubiquitin conjugation,
based on large-scale ubiquitinome dataset. Through Two-
SampleLogo, the analysis of position-specific amino acids
composition between ubiquitylation and non-ubiquitylation
sites revealed the significant dependencies of flanking
amino acids around the substrate sites. This investigation
also found that the solvent-accessible surface area of amino
acids surrounding ubiquitylation sites have a tendency to
higher than that around non-ubiquitylation sites. Based on
the results of five-fold cross-validation, the PSSM, which
reflected the evolutionary conservation of amino acids in
the domain of ubiquitin conjugation, was estimated as the
best feature with the highest proportion of sensitivity, speci-
ficity, accuracy and MCC value. By using MDDLogo, all
ubiquitylated sequences were clustered into 12 subgroups
corresponding with 12 conserved motifs. The 12 identified
motifs can thus be adopted to construct a two-layered
SVM model to identify ubiquitylation sites based on large-
scale ubiquitylation dataset. As expected, the two-layered
SVM model, which combined 12 MDDLogo-identified
substrate motifs, could yield the best performance in dis-
criminating between ubiquitylation and non-ubiquitylation

sites. Consequently, the two-layered SVM model was
employed to set up a web-based resource, named UbiSite,
to identify ubiquitylation sites and their corresponding sub-
strate motifs.

Availability
The proposed method is implemented as a web-based
resource, which is now freely available to all interested
users at http://csb.cse.yzu.edu.tw/UbiSite/. All of the
data set used in this work is also available for download
in the website.
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