Iverson et al. BMC Systems Biology (2016) 10:31

DOI 10.1186/512918-016-0276-1 BMC Systems BIOlogy

Engineering a synthetic anaerobic ® e
respiration for reduction of xylose to xylitol

using NADH output of glucose catabolism

by Escherichia coli Al21

Andrew Iverson'*? Erin Garza"? Ryan Manow'?, Jinhua Wang'", Yuanyuan Gao®, Scott Grayburn®
and Shengde Zhou'*"

Abstract

Background: Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to
high value redox-neutral and reduced commaodities. This will likely result in a higher yield of substrate to product
conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost.
To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products.
This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars
using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH
per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production
of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation.

Results: The Escherichia coli strain Al05 (AfrdBC AldhA AackA A(focA-pfiB) AadhE AptsG ApdhR:pflBps-(aceEF-Ipd)),
previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism,
was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose
from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for
succinate dehydrogenase, a-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically
functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing
equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, Al21
(pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of
xylitol per glucose consumed (Ygpg) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 %
increase in xylitol yield per glucose catabolized over that achieved by Al05 (pAl02).

Conclusions: Increasing reducing power (NADH equivalent) output per glucose catabolized was achieved by anaerobic
expression of both the pdh operon (pyruvate dehydrogenase) and the sdhCDAB-sucABCD operon, resulting in a strain
capable of generating 10 NADH equivalent per glucose under anaerobic condition. The new E. coli strain Al21 (pAl02)
achieved an actual 96 % conversion of xylose to xylitol (via synthetic respiration), and 6 xylitol (from xylose) per glucose
catabolized (Ygpg = 6, the highest known value). This strategy can be used to engineer microbial strains for the
production of other reduced products from redox neutral sugars using glucose as a source of reducing power.
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Background

Promising technologies are continuing to be developed
for the conversion of cellulosic biomass into value-added
commodities via microbial fermentation [4]. In order to
be an economically viable process, however, anaerobic
rather than aerobic microbial fermentation will most
likely be used to produce redox neutral and reduced
products. The anaerobic process will achieve a high sub-
strate to product conversion yield since substrates often
account for a significant portion of the production cost.
To this end, metabolic pathway engineering has been
used to optimize carbon flow from biomass-derived
sugars to final products at high yields through manipula-
tion of enzyme levels by over-expression, addition and/
or deletion of target pathway genes [21]. Nevertheless,
the insufficient supply of reducing power NADH
(nicotinamide adenine dinucleotide, reduced) equivalent
output of sugar catabolism remains a significant challenge
for the production of reduced products from redox neu-
tral biomass derived sugars under anaerobic conditions.

Most, if not all, microbial species can obtain a fixed
number of NADH from any given carbon source under
anaerobic conditions (e. g. two NADH can be formed
from glycolysis by E. coli grown anaerobically). While lim-
ited, these NADH outputs provide the reducing power for
the reduction of metabolic intermediates into fermenta-
tion products. In nature, with the limited NADH available
from catabolism, some microorganisms have evolved mul-
tiple fermentation pathways to produce a mixture of redox
neutral, oxidized, and reduced products to achieve a bal-
anced redox in the absence of a suitable terminal electron
acceptor. For example, under anaerobic conditions, E. coli
carries out a mixed acid fermentation using the two
NADH from glycolysis, producing oxidized (formic acid
and succinic acid), redox neutral (acetic acid and lactic
acid), and reduced (ethanol) products [8]. Genetic engin-
eering has been successfully used to divert carbon flow
and the reducing power (NADH) to produce redox neu-
tral products, such as lactic acid, with a 100 % theoretical
yield [25, 27]. Nevertheless, NADH availability from glu-
cose catabolism often limits the yield of reduced products
by anaerobic E. coli fermentation [13].

Increasing NADH availability, at least in theory, will
accordingly increase the vyield of reduced product via
anaerobic fermentation. In prior studies, alteration of the
NADH/NAD ratios by growing cells on carbon sources of
various oxidative states [2, 15], or through supplementation
of alternative electron acceptors [11], did indeed increase
the proportion of reduced products from mixed acid fer-
mentation of E. coli. In addition, Berrios-Rivera [5] in-
creased the intracellular NADH availability two-fold
through heterologous expression of a NAD"-dependent for-
mate dehydrogenase (regenerating NADH) from Candida
boidinii in E. coli, which resulted in a significant shift to
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reduced product (ethanol) accumulation and a dramatic
increase in the ethanol-to-acetate ratio [6]. Furthermore,
Cirino et al. [7] increased the NADH output of glucose
catabolism by using an E. coli mutant with an anaerobic
functional pyruvate dehydrogenase (PDH). Improved xylitol
(a reduced product) yield was achieved from xylose reduc-
tion using the NADH output of glucose metabolism by this
mutant.

Previously, we engineered E. coli SZ420, a strain with a
doubled reducing power output through anaerobic ex-
pression of pyruvate dehydrogenase (aceEF-Ipd), establish-
ing a homoethanol pathway (glucose = > glycolysis= > 2
NADH + 2 pyruvate = > anaerobically synthesized pyru-
vate dehydrogenase = > 2 acetyl-CoA + 4 NADH = > alco-
hol dehydrogenase =>2 ethanol) [28, 29]. Subsequently,
SZ420 was engineered for reduction of xylose to xylitol
(via synthetic respiration) using the reducing power of
glucose catabolism by: 1) deleting the alcohol dehydrogen-
ase (adhE) gene; 2) deleting the glucose-specific PTS per-
mease complex (ptsG) to remove catabolic repression and
allow simultaneous glucose and xylose uptake; and 3) ex-
pressing the aldose reductase gene (xyll) from C. boidinii
[13]. The resulting strain, AI05 (pAl02), achieved a xylose
to xylitol conversion ratio of 1:0.72, and a yield of 3.6 xyli-
tol (from xylose) per glucose catabolized, with acetate as a
minor by-product.

In this study, we report further engineering of E. coli
AIO5 with increased NADH output from glucose catab-
olism for effective reduction of xylose to xylitol by: 1)
completely blocking xylose from entering the pentose
phosphate pathway through deletion of genes encoding
for xylose isomerase (xy/A) and xylulokinase (xylB); 2)
activation of an anaerobic TCA (tricarboxylic acid) cycle
through anaerobic expression of the sdhCDAB-sucABCD
operon, which encodes for succinate dehydrogenase
(sdhCDAB), the a-ketoglutarate dehydrogenase complex
(sucAB), and succinyl-CoA synthetase (sucCD). The result-
ing strain, AI21 (pAl02), achieved a xylose-to-xylitol
conversion ratio of 1:1, a yield of 6 xylitol per glucose catab-
olized, and lacked acetate by-product accumulation.

Methods

Strains, plasmids, media, and growth conditions

Bacterial strains, plasmids and primers used in this study
are listed in Table 1. For plasmid and strain construction,
cultures were grown in Luria-Bertani (LB) broth (g/L:
tryptone 10, yeast extract 5, NaCl 5) or on LB plates (agar
15 g/L). For enzymatic and NAD/NADH assays, cultures
were grown in mineral salts medium broth (g/L: KH,PO,
3.5, K;HPO, 5.0, (NH,),HPO,, MgSO.7H,O 0.25,
CaCl,:2H,O .015, thiamine 0.0005, and 1 mL of trace
metal stock) [27]. Antibiotics were included in the media
as needed at the following concentrations: kanamycin and
ampicillin, 50 pg/mL; chloramphenicol, 40 pg/mL.
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Table 1 E coli strains, plasmids, and primers used in this study
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Strains Relevant characteristics Sources
B Wild type ATCC11303
S7420 E. coli B, AfrdBC AldhA AackA AlfocA-pfiB) ApdhR:pfiBpey-(aceEF-Ipd) Zhou et al. [28]
AlO3 E. coli S7420, AadhE Iverson et al. [13]
AlO5 E. coli S7420, AadhE AptsG Iverson et al. [13]
Al09 E. coli SZ420, AadhE AptsG AxylB This study
A2 E. coli SZ420, AadhE AptsG AxylB AsdhCp:Fnr box- pflBp)-(sdhCDBA-sucABCD) This study
Al21 E. coli SZ420, AadhE AptsG AxylB AxylA AsdhCp:Fnr box- pflBpe)-(sdhCDBA-sucABCD) This study
Plasmids
pKD4 bla, FRT-km-FRT Datsenko and Wanner [10]
pKD46 bla, y B exo (red recombinase), temperature-conditional replicon Datsenko and Wanner [10]
pFT-A bla, fp, temperature-conditional replicon Posfai et al. [19]
pUC19 bla cloning vector NE Biolab
pSD105 PCR amplified 0.35 kb pfIB promoter region (BamHI- pflBpe-Hindlll) was inserted into pSD101 Zhou et al. [29]
at BamHI and Hindlll sites
pAGI02 PCR amplified 0.966 kb xyll region from C. boidinii was inserted into pSD105 at Hindlll site Iverson et al. [13]
Primers®

AxylB N-primer
AxylB C-primer
AxylA N-primer
AxylA C-primer

Integration primer 1

atgtatatcgggatagatcttggcacctcgggcgtaaaagttattgtgtaggctggagatgcttc
ttacgccattaatggcagaagttgctgatagaggcgacggaacgtcatatgatatcctecttag

ccgeggcattacctgattatggagttcaatatgcaagcctattttggtgtaggetggagatgcttc
gttatttgtcgaacagataatggtttaccagattttccagttgttccatatgaatatcctecttag

ccgacaaactatatgtaggttaattgtaatgattttgtgaacagcctatactgccgccaggtgtaggctggagetgcttc

This study
This study
This study
This study
This study

(used as N-terminal primer for amplifying FRT-kan-FRT-Fnr box- pflBp-sdhC)

Integration primer 2

gaaccggatggtctgtaggtccagattaacaggtctttgttttttcacatttcttatcatgtaacacctacctictgttgctgtgatatagaagac

This study

(used as C-terminal primer for amplifying FRT-kan-FRT- pflBps-sdhC))

rrsA primer 1 cggtggagcatgtggtttaa (used for qt-PCR)

rrsA primer 2 gaaaacttccgtggatgtcaaga(used for qt-PCR)
sdhC primer 1

sdhC primer 2

cgccagecgeccagcacag (used for gt-PCR)
SucA primer 1 cagggcggttgcttcaccatctcca (used for gt-PCR)

SUcA primer 2 gcggcacgaactctttaccattccacace (used for gt-PCR)

ggtatggaaggtctgttccgtcagattggtatttacagecec (used for qt-PCR)

Nishino et al. [18]
Nishino et al. [18]
This study
This study
This study
This study

2 The underlined sequence of AxylB N-primer, AxylA N-primer and intergration primer 1 is corresponding to primer 1 of pKD4; The underlined sequence of Axy/B
C-primer and AxylA C-primer is corresponding to the primer 2 of pKD46; the bold sequence of integration primer 1 is corresponding to the =219 to —174 bp
upstream region of sdhC; the bold sequence of integration primer 2 is corresponding to the +1 to +45 of the sdhC coding sequence; The italicized sequence of

integration primer 2 is corresponding to the 16 bp ribosomal binding site of pfiB

Genetic methods

Standard methods were used for plasmid construction,
transformation, electroporation, and PCR [16, 20].
Chromosomal gene deletions were constructed using
procedures developed by Posfai et al. [19] and Datsenko
and Wanner [10]. Briefly, hybrid primer pairs were de-
signed as follows: part of the primer is complementary
to the deletion target gene and part complementary to
the antibiotic cassette (FRT-kan-FRT) of pKD4 [10]. The
amplified DNA, using these primer pairs and pKD4 as
the template, was purified and electroporated into E. coli
AIOQ5 or its derivative (transformed with pKD46) using a
micropulser (Bio-rad laboratories). As a result, the target
gene was replaced by the FRT-kan-FRT cassette through

homologous recombination (double crossover), resulting
in kanamycin-resistant colonies. After streak-plate puri-
fication, the isolated colonies were verified by PCR ana-
lysis. The antibiotic marker cassette (FRT-kan-FRT) that
was integrated onto the chromosome was then removed
through FRT site-specific recombination via a flipase
(FLP recombinase encoded by pFT-A, a temperature-
conditional helper plasmid [19]).

Transcriptional fusion of the sdhCDAB-sucABCD operon

The pflBp6-sdhCDAB-sucABCD transcriptional fusion
(Fig. 1b) was constructed using previously described pro-
cedures [28, 29]. Hybrid primers were designed as fol-
lows (Table 1): the integration primer 1 consists of 45 bp
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2 NAD 2 NADH

a  Aecrobic glucose catabolism 2 a-Ketoglutarate

\/ 2NAD
sSucAB
2NAD  2NADH 2NAD 2NADH Ny 2 NADH
Glucose 2 Pyruvate \J, 2 Acetyl-CoA TCA Cycle 2 Succinyl-CoA
Glycolysis PDH sucCD ADP+Pi
Wy ATP
2 Succinate
2 NADH sdhCDAB

2 NAD 2 Fumarate X

b Anaerobic expression of the sdhCDAB-sucABCD operon by promoter replacement

ArcA FNR sdhCDAB sucABCD
Wild type (aerobic)
sdhCp

FNR sdhCDAB sucABCD
Anaerobic promoter fusion

pf1Bp6

Cc Constructing a homoxylitol pathway by engineering an anaerobically active PDH complex
and TCA cycle

Glycolysis PDH
Glucose 2 Pyruvate 2 Acetyl-CoA
TCA
2NAD 2 NADH 2NAD 2NADH

D-xylulose-5P

xylB
xylA QT

10 Xylose === D-xylulose

6 NAD 6 NADH

10 Xylitol k /

Aldose reductase (xyll)

Fig. 1 Engineering a homoxylitol pathway with an anaerobically active pyruvate dehydrogenase and TCA cycle. a NADH output of aerobic
glucose catabolism; b Replacing the promoter of the sdhCDAB-sucABCD operon with an anaerobically functional promoter pflBp6; ¢ Homoxylitol
pathway with anaerobically active pyruvate dehydrogenase and TCA cycle but without active pentose phosphate pathway. Symbols: the dashed
line in a indicates the step is not active under anaerobic condition; the prohibition sign in ¢ indicates the step was blocked by deletion of the
gene; ArcA, aerobic regulator binding box; FNR, anaerobic regulator binding box; pflBp6, a promoter of pfiB (pyruvate formate-lyase). Genes and
abbreviations: PDH, pyruvate dehydrogenase complex; TCA, tricarboxylic acid cycle; sdhCDAB-sucABCD operon, an eight gene operon that
encodes for three enzymes: succinate dehydrogenase (sdhCDAB), the a-ketoglutarate dehydrogenase complex (sucAB), and succinyl-CoA synthetase
(sucCDy); xylA, xylose isomerase gene; xylB, xylulose kinase gene

corresponding to the —-219 to -174 bp upstream region  binding site of pfIB and a 20 bp pfIBp6 promoter se-
of sdhC, accompanied by a 20 bp sequence correspond-  quence. A FRT-kan-FRT-pflBp6-pfiBrbs product was
ing to primer 1 of pKD4; the integration primer 2 con- amplified by PCR using the hybrid primer pair and
sists of 45 bp corresponding to +1 to +45 of the sdhC  pSD105 as the template, which contains the pfIBp6 pro-
coding sequence, followed by the 16 bp ribosomal moter and an upstream FNR-box (0.35 kb) derived from
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E. coli B [29]. Following purification, the amplified prod-
uct (~2 kb) was electroporated into E. coli AIO9 (trans-
formed with pKD46). The resulting kanamycin-resistant
recombinant colonies contained the transcriptional fu-
sion of the FNR box, pflBp6 promoter, pfIB ribosomal
binding site, and the coding sequence of the sdhCDAB-
sucABCD operon (Fig. 1b). After verification of this
chromosomal gene fusion by analysis of the PCR prod-
ucts, the antibiotic marker (kan) was removed from the
chromosome with the pFT-A encoded FLP recombinase
as described previously.

Enzymatic assays

Bacterial cells were grown (100 rpm or 200 rpm, 37 °C)
to mid-log phase in 250 mL flasks containing 50 mL
mineral salts broth supplemented with 50 mM succinate
or a-ketoglutarate. These cells were pelleted, resus-
pended either in 10 mL 1x Tris buffer (a-ketoglutarate:
100 mM Tris, 2 mM dithiothreitol, pH 8.5) or potassium
phosphate buffer (succinate dehydrogenase: 100 mM po-
tassium phosphate, pH 7.4), cooled on ice for 20 min,
and sonicated 3 times (10 s each round) using a Sonifier
Cell Distributor W-350 (Branson Sonic Power Inc.).
After centrifugation at 4 °C (5000 rpm), the sonicated
cell broth supernatant was used as crude extract for the
assays. The o-ketoglutarate dehydrogenase assay was
performed using the following method [3]: 650 pL of
Tris buffer (200 mM, 2 mM DTT, pH 8.5) and 150 pL of
each of the following 10x components were added to
a 1.5 mL quartz cuvette: a-ketoglutarate potassium
salt (80.4 mM), 3-acetylpyridine adenine dinucleotide
(20 mM), coenzyme A (0.87 mM), L-cysteine hydro-
chloride (20.6 mM). The reaction was initiated by
adding 100 pL of the crude extract, with the absorb-
ance read at 363 nm for 5 min using a UV-2401PC
UV-VIS Recording Spectrophotometer (Shimadzu). All
components without a-ketoglutarate potassium salt were
used as the blank. One unit of enzyme activity was calcu-
lated as micromoles of 3-acetylpyridine adenine dinucleo-
tide reduced per minute per mg of cell dry mass. The
succinate dehydrogenase assay was performed using the
following method [12]: 1.35 mL of potassium phosphate
buffer (0.1 mM, pH 7.4) and 30 pL of each of the follow-
ing 10x components were added to a 1.5 mL quartz
cuvette: potassium cyanide (6.5 mg/mL buffer), 2,6-
dichlorophenol indophenol (DCIP) (0.6 mg/mL), phena-
zine methosulfate (20 mg/mL), disodium succinate
(54 mg/mL). The reaction was initiated by adding
30 pL of the crude extract, with the absorbance read
at 600 nm for 8 min. All components without diso-
dium succinate were used as the blank. One unit of
enzyme activity was calculated as micromoles of DCIP
reduced per minute per mg of cell dry mass. Assays
were performed in triplicate.
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NADH/NAD assay

The NADH/NAD concentrations were analyzed using
adapted methods of Wimpenny and Firth [26]. Bacterial
cells were grown to ~1.0 ODs5o in LB broth (50 mL)
containing 2 % glucose at 37 °C under aerobic and oxy-
gen limiting conditions. These cells were pelleted, and
either treated with 300 uL HCI (200 mM, pH 1.5) for
NAD extraction or with 300 pL KOH (200 mM,
pH 11.5) for NADH extraction. The cells were then in-
cubated at 50 °C for 10 min, cooled to 4 °C, and then
neutralized by adding 300 uL either 100 mM NaOH (for
NAD) or 100 mM HCI (for NADH). After centrifuga-
tion, the supernatants were used for the NADH/NAD
assays which were performed in a 1.5 ml cuvette as
follows: 400 pL mixed solution (maintained at 30 °C)
containing equal amount of 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide (4.2 mM), EDTA
(40 mM), Tris (1 M, pH 8.0), and 95 % ethanol; 300 uL
H,O; 200 pL phenazine ethosulfate (33.2 mM); and
50 pL sample supernatant. The reaction was initiated
by adding 50 uL yeast alcohol dehydrogenase II (500
U/mL), and the absorbance was read at 570 nm for
5 min using a UV-2401PC UV-VIS Recording Spec-
trophotometer (Shimadzu). All components except
ethanol were used as the blank. All assays were per-
formed in triplicate.

Quantitative real-time PCR

E. coli S7420 and its derivatives were grown to ~1.5
ODs50 in 250 ml screw-cap flasks containing 100 ml
mineral salts media broth supplemented with either
50 mM glucose, 50 mM succinate, or 50 mM a-
ketoglutarate (37 °C, shaking at 100 rpm). Bacterial cells
(40 ml) were pelleted at 4 °C, resuspended by vortexing
in 1 ml Tris-EDTA buffer (10 mM, pH 8.0, 0.1 mM
EDTA, 1 mg of lysozyme), and mixed with 5 ul of 10 %
SDS at 25 °C. From the cell suspension, 100 puL was ex-
tracted and total RNA was isolated using the PureLink
RNA mini kit (Invitrogen) as described for bacterial
cells. Extracted RNA was treated with RQ1 RNase-Free
DNase (Promega Corp., Madison, WI) to remove re-
sidual chromosomal DNA. The RNA was then used
for cDNA synthesis and qPCR analysis of sdhCDAB-
sucABCD expression using the methods described
previously [25, 29].

Fermentations

For anaerobic cell growth and fermentations, the culture
were inoculated in media that became essentially anaer-
obic as the growing cells consumed the small amount of
oxygen present in the media, rather than by inoculating
cells into anaerobic media under strictly anaerobic con-
ditions. Specifically, seed cultures were prepared by in-
oculating a single colony from a fresh plate into 50 ml
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mineral salts broth containing 2 % glucose (kanamycin
added for maintaining plasmid pAI02) and incubating
(30 °C, 100 rpm) to ~2.0-4.0 ODss. After centrifugation,
cell suspensions were used to inoculate (initial 0.05
ODs50) 250 ml screw-cap flasks containing 100 ml min-
eral salts medium supplemented with 5 g L™" glucose,
15 g L™* xylose and 100 pl kanamycin. The flasks were
then sealed by rubber caps. The fermentations were car-
ried out in triplicate at 30 °C, 100 rpm shaking, and sup-
plementation of 20 pul kanamycin every 24 h to maintain
the plasmid. Samples were taken every 24 h for analysis
of cell mass and concentration of sugars and fermenta-
tion products.

Resting cell fermentation

Methods were adapted from previously described proce-
dures [7]. Seed cultures were prepared by inoculating a
single colony from a fresh plate into 100 ml mineral salts
medium broth containing 2 % glucose, 1 % xylose, and
100 pl kanamycin and then incubated (30 °C, 100 rpm)
until ~2.0-4.0 ODs5. After centrifugation, cells were in-
oculated (initial 2.0 ODs50) into 250 ml screw-cap flasks
containing 50 ml modified mineral media (lacking am-
monium phosphate, no new amino acids and enzymes
will be synthesized) supplemented with 5 g L™ glucose,
20 g L™ xylose, and 50 pl chloramphenicol (inhibiting
protein synthesis). Resting cell cultures were maintained
at 30 °C and 100 rpm shaking for 48 h. Samples were
taken every 24 h for analysis of cell mass and the con-
centration of sugars and fermentation products [13].

Analyses

Cell mass was estimated by measuring the optical dens-
ity at 550 nm (1.0 ml cells of 1.0 ODs50,,, Was approxi-
mately 0.33 mg dry weight) using a Unicoll00
spectrophotometer with a round culture tube (1 cm
diameter) as a cuvette [30]. The concentrations of sugars
and fermentation products were determined by using
high performance liquid chromatography (Waters
HPLC) equipped with dual A absorbance and refractive
index detectors. Products were separated by using a Bio-
Rad HPX 87H column with 4 mM H,SO, as the mobile
phase (10 ul injection volume, 0.4 ml/min, 45 °C) [25].

Results and discussion

Deletion of the xylB gene improved the xylose to xylitol
conversion ratio

E. coli AIO5 (pAl02) was previously engineered for the
reduction of xylose to xylitol using the NADH output
from glucose catabolism. The fermentation results of
AIO5 suggested that significant amounts of xylose were
metabolized through the pentose phosphate pathway
without being reduced to xylitol, representing a signifi-
cant “substrate loss” [13]. Further analysis showed that
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the metabolized xylose was at least partially converted
into acetate as a by-product [1, 13] (Fig. 1c). To prevent
xylose loss and minimize acetate by-product accumula-
tion, the xy/B gene encoding for xylulokinase was de-
leted from AIO5, resulting in strain AI09.

Xylose is still expected to be transported into AI09 cells
via the XylE transporter, converted to D-xylulose by XylA,
but blocked from further metabolism through the pentose
phosphate pathway because xy/B deletion blocks D-
xylulose to D-xylulose-5 phosphate conversion (Fig. 1c).
To evaluate the impact of the xy/B deletion, fermentations
were compared using AIO5 and AIO09 (Fig. 2). The results
showed that the xy/B deletion likely prevented some xy-
lose loss from metabolism via the pentose phosphate path-
way. During the 144 h fermentation, compared to that of
AIO05, AI09 produced more xylitol (42.5 vs 34 mM) and
less acetate (31 vs 56 mM), but used an equivalent amount
of xylose (60 vs 64 mM), resulting in an increased xylose
to xylitol conversion ratio (1:0.71 vs 1:0.55). Nevertheless,
the xylB deletion resulted in D-xylulose accumulation
(data not shown); meaning some of the substrate was lost
as an intermediate of the pentose phosphate pathway.

Anaerobic expression of the sdhCDAB-sucABCD operon by
promoter replacement
Although the xy/B gene deletion improved the xylose to
xylitol conversion ratio, the observed molar yield of xyli-
tol per glucose metabolized (Yrpg = 3.6) of AI09 in rest-
ing cell fermentation was expected to be similar to the
one obtained by the parent AIO5 (Ygpg = 3.68) because a
maximal 4 NADH output per glucose catabolized
remained the same in both strains. Although this Ygpg
was comparable to the one reported in literature [1], the
majority of the potential reducing power of glucose ca-
tabolized remained in the excess acetate due to the fact
that the anaerobically growing E. coli cells have an in-
complete TCA cycle for acetyl-CoA oxidation (partial
oxidative and reductive branches). Furthermore, the re-
ductive branch had been blocked by the frdBC deletion
in our engineered strain AIO5 [13, 29], making the oxi-
dative branch irrelevant. The acetyl-CoA derived from
pyruvate oxidation by the anaerobically transcribed
pyruvate dehydrogenase complex was unable to be oxi-
dized through TCA cycle, resulting in accumulation of
acetate as a by-product. Our hypothesis is that a theor-
etical Yrpg of 10 could be achieved if all of the reducing
power had been extracted from glucose catabolism with
the anaerobically active pyruvate dehydrogenase com-
plex and a complete TCA cycle (10 NADH output per
glucose catabolized for reduction of 10 xylose to 10
xylitol) (Fig. 1a and c).

Although the enzymatic activity has not been mea-
sured, the IcdA (isocitrate dehydrogenase) and AcnAB
(isocitrate hydrolyase) should be active (at least in some
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degree) in our engineered strain because the parent strain
can grow anaerobically in glucose minimal medium with-
out supplement of glutamate (data not shown). The
incomplete TCA cycle is probably due to the anaerobic
repression of the sdhCDAB-sucABCD operon, which
encodes for succinate dehydrogenase (sdhCDAB), the
a-ketoglutarate dehydrogenase complex (sucAB), and
succinyl-CoA synthetase (sucCD), three key enzymes
needed for a complete TCA cycle [9, 23] (Fig. 1a, broken
line). Although there is no guarantee, but very likely, a
functional TCA cycle can be established, at least in some
degree, by anaerobic expression of sdhCDAB-sucABCD
operon. Therefore, a synthetic respiration pathway can be
established for reduction of xylose to xylitol, using (theor-
etic 10) NADH from glucose catabolism via glycolysis,

anaerobic expressed pyruvate dehydrogenase and func-
tional TCA cycle.

To enable an anaerobically functional TCA cycle,
chromosomal replacement of the native aerobic promoter
of the sdhCDAB-sucABCD operon with the highly anaer-
obically functional promoter of the pflB gene (pfIBp6) was
performed. In the past, the pflBp6 promoter has been
proven quite efficient in the expressing pyruvate dehydro-
genase complex (aceEF-Ipd, an aerobic operon) under an-
aerobic conditions [28, 29]. In addition, an upstream FNR
(DNA-binding transcriptional regulator) box and the pfIB
ribosomal binding site were included in the promoter re-
placement for maximal expression of the sdhCDAB-
sucABCD operon. The resulting strain was designated AI12
(Fnr box-pflBp s)-sdhCDAB-sucABCD) (Fig. 1b).
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The functionality of the transcriptional fusion of pflBp6
and the sdhCDAB-sucABCD operon engineered in E. coli
AI12 was initially analyzed by quantitative PCR of the
sdhC and sucA transcripts. The results showed that there
was a 97, 15, and 10-fold increase in sdhC transcripts
in AI12 cells grown on glucose, succinate, and a-keto-
glutarate, respectively, compared to that of the control.
qPCR analysis of the sucA transcripts revealed a similar
trend of higher expression in AI12 than that of the con-
trol. These results confirmed that the pflBp6 promoter
allowed for effective expression of the sdhCDAB-
sucABCD operon under oxygen-limiting conditions.

The transcriptional fusion of pflBp6 and sdhCDAB-
sucABCD was further evaluated by analysis of the activ-
ities of a-ketoglutarate dehydrogenase and succinate
dehydrogenase. The observed succinate dehydrogenase
activity of AI12 displayed an 85 and 73 % increase for
cells grown in glucose and succinate, respectively, com-
pared to that of the control strain. Similarly, the ob-
served a-ketoglutarate dehydrogenase activity displayed
a 68 % increase in AI12 over that of the control strain.

Anaerobically functional TCA cycle increased NADH
output and xylitol yield per glucose catabolized
The enhanced enzymatic activities of a-ketoglutarate de-
hydrogenase and succinate dehydrogenase would allow
acetyl-CoA oxidation via TCA cycle (Fig. 1a) and result-
ing in an improved NADH output from glucose catabol-
ism. To evaluate the improvement in the NADH output
of the engineered strain, AI12 was compared to its
parent strain for cellular concentrations of NADH,
NAD, and NADH/NAD ratios by growing cells in sealed
screw-cap Erlenmeyer flasks containing 2 % glucose
mineral salts medium. Subsequent assays showed a clear
increase in the cellular NADH concentration of AI12
(0.0945 mM g DW ') compared to that of the parent
strain (0.0733 mM g DW'). The calculated NADH/
NAD ratios showed that there was about a 45 % increase
in reducing power output in AI12 (0.7875) compared to
that of the control (0.5414). These results are compar-
able to NADH/NAD ratios observed in arcA deletion
mutants grown under similar conditions [22]. These re-
sults demonstrated that it is possible to increase the po-
tential redox output of the TCA cycle (under anaerobic
growth condition) without having to remove the ArcA
(transcriptional regulator) and FNR global regulators.
One issue still remains from the performed reducing
power assays, the loss of reducing power from NADH
oxidation by NADH dehydrogenases. However, there is
still a clear indication that the anaerobic expression of
the sdhCDAB-sucABCD operon increases the reducing
power output.

Theoretically, the increased NADH output of glucose
catabolism in AI12 would be used to reduce additional
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xylose to xylitol, resulting in an increase in xylitol yield
per glucose catabolized. To test this hypothesis, xylitol fer-
mentations were carried out by the engineered strains car-
rying plasmid pAI02 using mineral salts medium
supplemented with glucose/xylose mixtures (5 g L™
glucose, 15 g L™" xylose) (Fig. 2). During the 144 h fer-
mentation, strain AI12 used a similar amount of glucose
(~30 vs 28 mM) (Fig. 2b), more xylose (~85 vs 60 mM)
(Fig. 2c), and produced a significantly higher concentra-
tion of xylitol (63 vs 42 mM) (Fig. 2d) compared to that of
the control strain, AI09. Based on these results, the calcu-
lated xylitol yield per glucose catabolized in AI12 (Ygpg =
2.1) is significantly higher than that of AI09 (Ygpg =1.5),
which suggests that at least some of the acetyl-CoA was
oxidized through TCA cycle, generating extra NADH for
xylose reduction. Nevertheless, the xylose to xylitol con-
version ratio of AI12 (1:0.74) is similar to the one achieved
by AI09 (1:0.72), suggesting that significant amounts of
xylose was still lost as D-xylulose.

Deletion of the xylA gene resulted in a 1:1 xylose to
xylitol conversion

To improve the xylose to xylitol conversion ratio and
minimize xylose loss as D-xylulose, the xylA gene, the
first gene in the pentose phosphate pathway for xylose
metabolism (Fig. 1c), was deleted from AI12, resulting in
strain AI21. This deletion channeled all xylose into xyli-
tol production as confirmed by AI21 fermentations
(Fig. 2). Approximately 77 mM xylose was metabolized
(Fig. 2¢) to produce ~82 mM xylitol (Fig. 2d), suggesting
an approximate 1:1 xylose to xylitol conversion in AI21.
During this period, ~32 mM glucose was used as a
source of reducing power. The calculated Ygpg of AI21
was 2.56, although the actual Ygrpg would be over 3 if
the glucose used for cell growth (0.79 g L™") was consid-
ered (Table 2). It is interesting to note that a significantly
decreased acetate accumulation by AI21 strain than that
of AI12. This might be attributed to the re-use of acetate
by conversion to acetyl-CoA (via acetate synthase (acs))
in AI21 (Fig. 2e) when glucose was completely metabo-
lized after 96 h fermentation (Fig. 2b). In AI12 fermenta-
tion, however, acetate was not re-used because there was
some glucose available until 144 h, resulting in accumu-
lation of acetate.

The Yrpg of 2.56 achieved by AI21 was greater than
that of other parent strains, illustrating that greater
reducing power output does increase fermentative
production of a reduced product. Though this Yrpg
value is approximately one-third of the theoretical po-
tential of our engineered strain, this is the highest re-
ported molar yield of xylitol produced per glucose
consumed in batch cultures grown either aerobically
or anaerobically [7, 17, 24].
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Table 2 Summary of E coli AlO5 (pAGI02) and AI21 (pAGI02)
fermentations °

Parameters AlO5 Al21

Batch Resting Batch Resting

cell cell

Growth (g () 0825+002 O 079+0024 0
Glucose used (mM) 24+0.89 76+£005 32+033 751063
Xylose used (mM) 75+ 6.63 39+02 77 +£0.11 47+0.28
Xylitol produced (mM) 34 + 3.63 28+068 82+0.85 45 +0.35
Acetate produced 56 +3.04 18+143 0 1+£063
(mM)
Yeec ° 1.86 368 3.09 60
Xylitol produced/ 045 0.72 1.06 0.96
xylose used
Carbon recovery (%) © 72 81 77 81

@ The data refers to that obtained at the end of fermentation (48 h for resting
cell; 144 h for batch). A 0.5 % glucose and 1.5 % xylose sugar mixture was
used for batch fermentation; while a 0.5 % glucose and 2 % xylose sugar
mixture was used for resting cell fermentation

P The Ygp Was calculated from the total xylitol produced (mM) divided by the
total glucose used (mM). For batch fermentation, the glucose used for cell
growth was deducted from the total glucose consumed, yielding a Ygpg of
1.86 and 3.09 for AlO5 and Al21, respectively

€ The carbon recovery was calculated based on two assumptions: 1) the
amount of CO, produced (mM) equals the amount of acetate produced (mM);
2) the carbon weight accounts for 50 % of the cell mass

Resting cell fermentation

To evaluate the maximal NADH output potential of glu-
cose catabolism by the engineered strain AI21, resting
cell fermentations were performed using an equivalent
cell density of ODs59 2.0 (0.67 g L' cell mass) in a
screw-cap flask filled completely with modified mineral
salts medium containing a glucose (5 g L™!) and xylose
(20 g L") mixture, and chloramphenicol. This culture
environment allowed cells to be metabolically active with
the already available enzymes, but incapable of growth
due to the lack of a nitrogen source and inhibition from
chloramphenicol (no new enzyme synthesized). During
resting cell fermentation, the observed Ygrpg values
exceeded those of batch fermentations (Table 2). AI21
achieved an Ygpg of 6, which is over 60 % higher than
that achieved by the parent strain AIO5 (Yrpg of 3.68).
In addition, there was no loss of xylose to by-products
such as xylulose or acetate, confirming the 1:1 xylose to
xylitol conversion. Furthermore, the apparent Yrpg of 6
achieved by AI21 is significantly greater than the max-
imum previously reported by Cirino et al. (Yrpg 4.7)
(2006).

It is worthy to note that when cell growth is restricted,
the theoretical maximum value of Ygpg is 10, correlating
with the maximum vyield of 10 NADH from the
complete oxidation of a molecule of glucose (Fig. 1c).
Our most efficient strain, AI21, achieved 60 % of the
theoretical maximum Ypypg. Since there was little acetate
production (~1 mM) during resting cell fermentation,
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acetate accumulation was not attributed to the “missing
NADH” per glucose catabolized (10 NADH equivalent
potentially). Two possible outcomes of the “missing
NADH” would be: 1) the oxidation of NADH through
the electron transport system, although this pathway
shouldn’t be active under anaerobic conditions; 2) the
conversion of NADH to NADPH by the transhydrogen-
ase or NADH kinase, although NADPH was reported to
be the preferred reducing power used by the aldose re-
ductase of C. boidinii (xyll) [14].

Conclusion

The E. coli strain AIO5 (pAI02) previously engineered
for reduction of xylose to xylitol (via synthetic respir-
ation) using the reducing power output from anaerobic
glucose catabolism, was further improved by: 1) deleting
the xy[AB operon to block xylose loss through the
pentose phosphate pathway, achieving a 100 % reduction
of xylose to xylitol; 2) anaerobic expressing of the
sdhCDAB-sucABCD operon to allow acetyl-CoA oxida-
tion via TCA cycle, generating a theoretical 10 NADH
output from the catabolism of one glucose for the reduc-
tion of 10 xylose to 10 xylitol. The resulting E. coli strain
AI21 (pAI02) achieved an actual 100 % reduction of xy-
lose to xylitol, and 60 % of the theoretical maximum
xylitol yield per glucose catabolized (Yrpg=6). Never-
theless, an Ygpg of 6 is the highest known value reported
in literature. Further improvements in the xylitol yield
could be achieved by enhancing the conversion of
NADH to NADPH, the preferred reducing power of the
aldose reductase of C. boidinii (xyll) [14]. In addition,
this strategy can be used to engineer microbial strains
for the homofermentative production of other reduced
products from pentose sugars using glucose as a source
of reducing power.
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