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Abstract

Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying
the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed
through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters.
Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.

Results: In this work, we compared the local transient response properties of dynamic models constructed using
rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law
with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the
convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption,
and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics.
We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop
of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured
enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions
cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws
with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this
consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network
were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic
reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more
suitable for rate law approximations.

Conclusions: Overall, our work generally supports the use of approximate rate laws when building large scale
kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining
network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction
accuracy when data is available. The work here should help to provide guidance to future kinetic modeling
efforts on the choice of rate law and parameterization approaches.
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Background
Kinetic models of biochemical networks continue to grow
in scope and scale [1–7]. The promise of these models is to
serve as in silico platforms for prediction of complex sys-
tem behavior and corroboration of experimental results.
Specifically within metabolism, kinetic models have the po-
tential to elucidate the control mechanisms underlying
metabolic homeostasis and regulatory responses [8–10], as
well as to identify ‘flux bottlenecks’ impeding optimal per-
formance of production strains [11]. To date, these models
have been used to study such problems as the systemic
effect of enzyme mutations [12, 13], metabolic bistability
[10], and the coupling of signaling between metabolism
and transcriptional regulation [3].
The primary challenge in kinetic modeling of metabolism

is dealing with the frequent cases where data to construct
detailed kinetic models is lacking [14]. This challenge is
commonly addressed in part by selecting kinetic rate laws
with particular approximations that reduce the number of
parameters to be specified [15, 16]. If the assumptions
made are valid across the conditions of interest, a consist-
ent and predictive system should be obtainable by fitting
parameters to available data [17]. Established examples of
kinetic assumptions applied to enzyme reactions [5] in-
clude the quasi-steady state assumption utilized in
Michaelis-Menten-type rate laws [4, 6, 18] and the lin-log
approximation [2, 19] rooted in thermodynamic intuition.
The degree to which these types of approximated systems
represent the true system is a primary concern when
choosing a modeling approach.
Here, we construct a set of kinetic models of red blood

cell (RBC) metabolism using various approximate rate
laws, such that their parameters are equivalent to those
of the fully-described enzyme mechanistic model. We
choose the red blood cell due to the large amount of
available data, enabling us to use physiological enzyme
kinetic parameters, reaction fluxes, metabolite concen-
trations, and reaction equilibrium constants. Thus, we
can examine the practical importance of rate law ap-
proximations against the backdrop of a realistic system.
We utilize these models to study the effect of simpli-

fying assumptions to the rate laws on system dynamics
through simulating the network response to small tran-
sient perturbations. We additionally discuss theoretical
differences in the kinetic behavior of these rate laws.
Finally, we iteratively replace approximate rate laws
with mechanistic enzyme kinetics to examine whether
we can anticipate general dynamic effects of certain
types of approximations. We purposefully chose a sim-
ple perturbation approach with mathematical response
properties as output metrics, as opposed to physio-
logical prediction accuracy, in order to simplify the
task of understanding any observed correlations or lack
of correlations.

Results
Assumptions underlying rate law approximations
In preparation for investigating rate law effects through
model simulation, we first discuss the assumptions
underlying the different approximate rate laws. Perhaps
the most well-known kinetic assumption is the QSS as-
sumption, normally associated with Michaelis-Menten
kinetics but originated by Briggs and Haldane [20]. This
assumption states that all intermediate enzyme forms do
not change concentrations over time (Fig. 1a middle).
Michaelis-Menten kinetics normally require Michaelis-
Menten constants (Kms) and catalytic constants (kcats) to
parameterize the system, as well as metabolomics data,
Keqs of biochemical reactions, and enzyme concentra-
tions. The conditions for validity of the assumptions
underlying this rate law have been examined in great
detail [21–27].
If sufficient kinetic data is lacking, but reproducing en-

zyme saturation behavior is desired, an additional assump-
tion can be made to approximate the Km values. Previously
it has been shown experimentally that enzyme Km values
tend to be similar to the in vivo concentrations of corre-
sponding metabolites [28]. To determine whether this
trend can be exploited to fill in unknown parameters, we
examined the dynamic effect of using a Km = x assumption
to parameterize rate laws. If we additionally lack of know-
ledge about the enzyme reaction mechanism as well, the
form of the QSS rate law equation into which parameters
will be inserted is unclear. To deal with this, we can add a
further assumption that the reaction follows a rapid equi-
librium random order mechanism [29], following the previ-
ously suggested “convenience kinetics” formalism. We term
this rate law with assumed rather than measured enzyme
parameters as a Michaelis-Menten rate law with approxi-
mated properties (Fig. 1a bottom right).
Another way to address cases where enzyme-specific

data is lacking is to combine the QSS assumption with a
different assumption that substrates are saturated relative
to their binding constants, while products and inhibitors
are of negligible concentration (i.e., Km < < x for substrates
and activators while Km > > x for products and inhibitors).
This assumption effectively removes enzyme-specific pa-
rameters from the rate law and leads to a thermodynamics-
driven rate law similar to what has been termed Q-linear
kinetics (Fig. 1a bottom left) [30]. However, we note that
Q-linear kinetics treats the mass action ratio Q as a
thermodynamic variable while we treat the involved metab-
olites as separate variables. This Q-linear kinetics-like rate
law is fully specified using only metabolomics, fluxomics,
and Keq data.
Finally, another method to remove the need for

enzyme-specific parameters is to simply ignore the role
of the enzyme and assume that the reaction behaves by
simple mass action principles, and the resulting rate law
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is conventionally termed mass action kinetics [5, 31].
This form effectively assumes that the reaction behaves
as a pure chemical reaction with a single transition state
(Fig. 1b). As with Q-linear kinetics, mass action kinetics
requires relatively few parameters to describe the system,
namely metabolomics, fluxomics, and Keq data.
The benefit of requiring fewer parameters is the

major motivation for applying these simplified rate
laws; however, before using them, we carefully exam-
ine whether they are able to accurately capture the
dynamics of a model constructed of detailed enzyme
modules. We might expect two general cases where
rate law approximations should be successful. First, in
cases where the underlying assumptions are valid, the
rate law approximations should show accurate behav-
ior provided that the assumptions are not violated
substantially throughout the simulation. Second, if the
rate laws are not the most important factor determin-
ing the dynamic behavior of the network, we would
expect the use of an approximation to have little
negative effect. For example, some of the rate laws
may behave similarly near to equilibrium. In the
course of this investigation, we will seek to identify
both the degree to which approximate rate laws can
reproduce the behavior of the true model, as well as
the causes of this agreement or lack thereof.

Differences in mathematical behavior between rate laws
To place the subsequent results of simulating the vari-
ous kinetic models in theoretical context, we briefly dis-
cuss differences between the analytical structures of the
various rate laws. We focus on two key points: 1) the
ability of the rate law to exhibit the ‘saturation’ behavior
that is characteristic of enzyme kinetics, and 2) the prop-
erties of the first derivative of the rate law, which defines
the local dynamic behavior of the system.
Each rate law exhibits different behavior as metabolite

concentrations approach infinity. For example, the
Michaelis-Menten kinetics with measured properties
exhibit the well-known saturation behavior due to the
hyperbolic form, such that v = vmax as x approaches infinity.
A mass action enzyme module exhibits the same behavior
due to the constant total enzyme, placing a constraining re-
lationship between the fluxes of individual reaction steps.
The manner in which saturation is achieved between a full
mass action enzyme module and the Michaelis-Menten
kinetics is thus mathematically different.
In contrast to Michaelis-Menten kinetics with mea-

sured properties and enzyme module of mass action rate
laws, the non-module mass action and Q-linear rate laws
do not exhibit saturation behavior. Mass action kinetics
will approach positive or negative infinity as substrate or
product concentrations, respectively, approach infinity.

Fig. 1 Comparison of rate laws and their resulting first derivatives. a Formulation of Michaelis-Menten kinetics with measured properties, Q-linear
kinetics and Michaelis-Menten kinetics with approximated properties from the enzyme module with different layers of assumptions [42]. b Formulation
of mass action kinetics based on the law of mass action for a pure chemical reaction. c First derivatives (reaction sensitivities) calculated from the four
approximate rate laws. Ks and Kp are the Michaelis-Menten constants for the substrate and product. Γ is denoted as the mass-action ratio, which is the
ratio of product concentrations over reactant concentrations in a steady state raised to the exponent of their stoichiometric coefficients. Keq is the
equilibrium constant of the reaction. kcat

+ is the enzyme turnover rate constant. k+, as defined in MASS models, is the pseudo-elementary
rate constant in the forward direction
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Meanwhile, Q-linear kinetics exhibit asymmetrical satur-
ation properties. The flux v will correctly have a maximum
of vmax if the substrate concentration is maximized, but
will incorrectly have a minimum of negative infinity if the
product concentration is maximized. This asymmetry is
known and proponents of the rate law suggest that the
rate law only be used in a range near equilibrium [19],
which is not possible to guarantee in real perturbations.
For this reason, it is expected that the Q-linear kinetics
and mass action kinetics will exhibit large deviations from
the true mass action module system when perturbation of
the saturation state of the enzyme is an important feature
of the dynamic response.
Examining the first derivatives of the reactions is a

straightforward analytical approach to anticipating dy-
namic differences between the rate laws (Fig. 1c). From the
analytical form of the rate law first derivatives, it is clear
that the local dynamics between each type of rate law will
be potentially substantially different, with numerical values
dominated by different parameters in each case. The

expressions for gradients obtained from the Michaelis-
Menten kinetics with measured properties are complicated
and multiple parameters play a role in affecting the numer-
ical gradient values. The Michaelis-Menten kinetics with
approximated properties and Q-linear kinetics rate laws
have almost the same composition of their first derivatives,
determined by enzyme turnover rate constant, the equilib-
rium constant and substrate and product concentrations.
On the other hand, the local dynamic gradient in mass ac-
tion kinetics is determined by the pseudo-elementary rate
constants and equilibrium constant.

Construction and general properties of mass action
modules for ten enzymes
We first constructed enzyme ‘modules,’ consisting of full
mass action descriptions of enzymatic reaction mecha-
nisms, for ten key enzymes in RBC central metabolism
utilizing measured data for these enzymes (Fig. 2,
Table 1). An enzyme module consists of mass action rate
laws for all known reaction steps such as substrate

Fig. 2 Schematic of the enzyme modules incorporated into the RBC metabolic network [33]. The ten modules constructed were primarily located
in glycolysis and the pentose phosphate pathway. Other pathways were included as Q-linear kinetics approximations
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binding, catalytic conversion, and product release, as
well as any activator or inhibitor binding (Fig. 1a top).
An enzyme module describes the detailed mechanism of
enzyme catalysis and characterizes the dynamics of the
enzymatic reaction subject only to certain basic assump-
tions such as deterministic behavior and a well-mixed so-
lution [32]. The enzyme module requires a large number
of parameters, including metabolomics data, equilibrium
constants (Keqs), enzyme concentrations, and rate con-
stants of individual enzymatic reaction steps, to fully de-
scribe the dynamics of the system. We used these ten
enzyme modules as a ‘gold standard’ for later comparison
with approximate rate laws.

Construction of approximate rate laws
In this study, we examined four approximate rate laws
to compare to the fully-described enzyme modules.
Those four rate laws are: 1) Michaelis-Menten kinetics
based on the quasi-steady state (QSS) assumption for
the true enzyme module with measured enzyme param-
eters, 2) an assumed rapid-equilibrium random-order
Michaelis-Menten rate law ignoring regulation and
with Km values being approximated as equal to the
concentrations of corresponding metabolites, to simu-
late the effect of unknown data, mechanisms, and regu-
lation, 3) a rate law previously, termed Q-linear kinetics
[30], containing only thermodynamic effects that results
from a further metabolite saturation assumption, and 4)
a rate law based on the mechanism of chemical mass
action that effectively ignores the role of the enzyme in
the reaction [5].

Construction of an approximate rate law scaffold model
We first constructed a cell-scale model of RBC metabol-
ism using approximate Q-linear rate laws to serve as a
scaffold model for analysis. Our approach was to insert
the ten constructed enzyme modules into this scaffold,
and compare this model behavior to that of models gener-
ated with different approximate rate laws substituted into
those same ten reactions. The model was constructed
using steady-state metabolite levels from plasma and
intracellular erythrocyte metabolomics data from a fasting
state [33]. The model contains 169 metabolites and 143
reactions, covering glycolysis, the pentose phosphate
pathway, amino acid metabolism, and other pathways
(Additional file 1). Detailed information of the kinetic
model can be found in Additional file 1: Figure S1.

Designing a simulation-based kinetic analysis workflow
A straightforward way to estimate the similarity of
behavior between different rate laws is to simulate the
response of each model to perturbation. A perturbation
in this case denotes the change of certain metabolite
concentrations at time t = 0, after which the system is
allowed to simulate through a long enough time such
that the original steady state is once again reached. For
example, we perturbed the concentrations of ATP, ADP
and Pi at the same time to simulate the hydrolysis of
ATP in the system.
Two key decisions in such an analysis are the choice

of perturbation and the choice of output variable to
observe. In this study, we perturbed both metabolites
directly involved in as well as distant from the con-
structed enzyme modules. The list of perturbations can
be found in Fig. 3. To define output variables of interest,
we created two metrics, the maximum perturbation
(MP) and the relaxation time (RT). The MP is largest
percent change in concentration compared to the steady
state concentration that occurred during the simulation.
Then, to calculate the RT of a metabolite, we identify
the last time point at which the deviation from the
steady state concentration is at least 5 % of the MP.
One final decision in the simulation workflow is the

size of the perturbation to use. As mentioned previ-
ously, the rate laws chosen differ in both saturation
properties, which are non-linear features of the rate
laws, and local dynamic properties, which are linear
features of the rate law. It appeared to be a trivial result
that saturating and non-saturating rate laws will exhibit
very different behavior for large deviations where non-
linear effects play a significant role. However, under-
standing the origin and nuances of such deviations is
complex, and we sought to achieve a simpler goal as a
baseline investigation. To avoid such obvious effects
dominating our findings, we intentionally chose small
perturbations to minimize saturation effects and instead

Table 1 General description of the constructed enzyme
modules

Enzyme name Module size
(metabolites
× reactions)

Regulators
(mechanism
of action)

Phosphogluconate dehydrogenase
(GND)

13 × 9 NADPH (PI)

Lactate dehydrogenase (LDH) 10 × 6 N/A

Glucose-6-phosphate dehydrogenase
(G6PDH)

12 × 7 ATP (CI), NADPH
(PI)

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

27 × 27 3PG (AI), G3P (AI)

Hexokinase (HEX1) 10 × 6 23DPG (CI)

Pyruvate kinase (PK) 30 × 34 FDP (AA), ATP
(PI, AI)

Phosphofructokinase (PFK) 40 × 44 ADP (PI), ATP (AI),
AMP (AA)

Phosphoglycerate kinase (PGK) 13 × 9 ATP (PI), 3PG (PI),
23DPG (CI)

Adenylate kinase (ADK) 8 × 5 N/A

Glucose-6-phosphate isomerase (PGI) 5 × 3 N/A

PI product inhibitor, AI allosteric inhibitor, AA allosteric activator, CI
competitive inhibitor
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focus on determining the importance of the linear/local
differences between rate laws.

Numerical comparison of rate laws
The final workflow was to perform nine different small
perturbations on the system with different rate laws and
characterized the response of metabolites in terms of RT
and MP (Fig. 3a–b). Calculating the Spearman correl-
ation for MP and RT of module metabolites between
rate laws, we found that the Michaelis-Menten kinetics
with measured properties behaved substantially better
on both metrics compared to other rate laws. Median
percent errors for MP and RT of module metabolites
confirmed this trend (Fig. 3c–d). Additionally, we found
that the Michaelis-Menten rate law with approximated

properties performed no better than the Q-linear kin-
etics and mass action kinetics. This indicates that the
Km = x assumption (x being the concentration of the
corresponding ligand) is not sufficiently correct to capture
the dynamics of the original enzyme module. Notably we
did not include known regulation of these enzymes in this
approximate rate law, and further investigation of the be-
havior of models with the addition of these regulatory
events with an analogous Kd = x assumption may be
warranted. We note that these conclusions regarding the
suitability of approximate rate laws are not due to the
choice of model underlying the analyses.
We repeated these analyses on a previously published

model of the red blood cell, smaller scale but composed
entirely of mechanistic enzyme mechanisms [34]. We

Fig. 3 Simulation comparison of four simplified rate laws against a reference module containing detailed enzyme mechanism kinetics (enzyme
modules). The responses of metabolites under different perturbations were compared between four simplified rate laws and the enzyme module.
a Correlation of metabolite relaxation time. b Correlation of metabolite maximum perturbation. c Median percent errors of metabolite relaxation
time. d Median percent errors of metabolite maximum perturbation. Nine different perturbations labeled from 1 to 9 were performed. 1, ATP, ADP and Pi
perturbation; 2, NAD and NADH perturbation; 3, 23DPG perturbation; 4, 3PG perturbation; 5, PYR perturbation; 6, FDP perturbation; 7, PRPP perturbation;
8, MAN6P perturbation; 9, R5P perturbation. Spearman’s rho: Spearman’s rank correlation coefficient. The simulations were performed on the whole-cell
kinetic model of erythrocyte constructed by Bordbar et al [33]
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iteratively substituted in different approximate rate laws
and verified the identified trends, where Michaelis-Menten
with measured properties performs substantially better than
the other approximations but all approximations retain
positive correlation to the true model (Additional file 1:
Figure S2). We also verified the results using larger pertur-
bations, suggesting that non-linearity of the perturbation
response does not strongly affect the trends (Additional file
1: Figures S3-4). However, as an exception to the general
trends, we did identify rare perturbations where Michaelis-
Menten rate laws with measured enzyme properties per-
formed noticeably worse than more approximated rate laws
(Additional file 1: Figures S3-4). We attribute these cases to
slow internal dynamics within the enzyme module, causing
the quasi-steady state assumption to become invalid. How-
ever, these effects were difficult to isolate and we did not
investigate these cases further due to their infrequency.
One key control in the study is to determine whether un-

certainty in parameters significantly impacts the conclu-
sions of analyses. To address this, we conducted Markov
chain Monte Carlo (MCMC) convex sampling of steady-
state fluxes given physiological ranges on metabolite up-
takes and secretions [33]. Similarly, we conducted MCMC
sampling of metabolite concentrations subject to a con-
straint on the feasibility of the concentrations with respect
to the 2nd law of thermodynamics [35]. We then combined
sampled fluxes and concentrations and calculated rate con-
stants for mass action rate laws for each reaction. The
resulting rate constants are shown in Additional file 1:
Figure S5A. It is seen that the variation in rate constants
due to flux and concentration uncertainty is small

compared to the variation between rate constants of differ-
ent reactions in the majority of cases. We also performed
several simulations on models with these sampled rate
constants, and found little variation in the RT or MP of
metabolites across sampled models (Additional file 1:
Figures S6-9). Thus, it appears that experimental uncer-
tainty in fluxes and concentrations, and the resulting un-
certainty on estimated rate constants for simplified rate
laws, is not a major concern in making claims about the
dynamics of the network.
Since the simplified rate laws introduces noticeable

discrepancies in dynamic behavior, we wanted to deter-
mine whether these discrepancies would continue to
increase as simplified rate laws are applied to more reac-
tions until the correlation completely disappears, or
whether the approximate model behavior would stabilize
at some positive correlation to the true model. Based on
the previous observation that Michaelis-Menten kinetics
with measured properties closely resembled the true
model, we set up a simple test case with as many reac-
tions specified with Michaelis-Menten kinetics as pos-
sible (38 out of 168 reactions [33]) and then iteratively
replaced them with mass action kinetics. We compared
the RT and MP of the substrates and products of these
reactions when a random set of reactions had their rate
laws changed from Michaelis-Menten to mass action
kinetics. We found that the correlation of RT and MP of
metabolites between Michaelis-Menten and mass action
kinetics stabilized as more reactions had their rate laws
substituted (Fig. 4). Since the discrepancy ceases to grow
after a certain point, it appears likely that models with

Fig. 4 Iterative replacement of Michaelis-Menten kinetics with measured properties by mass action kinetics. An increasing number of Michaelis-Menten
kinetics rate laws with measured parameters were replaced by mass action kinetics, and the RT and MP of affected metabolites were calculated. The
correlation of metabolite RT and MP between Michaelis-Menten kinetics and mass action kinetics fluctuated initially but gradually stabilized as
more reactions were replaced with mass action kinetics. The black line is the average correlation of all nine perturbations performed. a Correlation of
metabolite RTs between Michaelis-Menten and mass action model. b Correlation of metabolite MPs between Michaelis-Menten and mass action
model. Spearman’s rho: Spearman’s rank correlation coefficient. The simulations were performed on the whole-cell kinetic model of erythrocyte
constructed by Bordbar et al [33]
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constructed entirely of simplified rate laws still be use-
ful approximations of the real system, at least for small
perturbations.

Effects of flux and concentration steady-state on network
dynamics
We then investigated the source of the positive correl-
ation between fully approximate models and the true
model. As both models share the same initial steady
state, in terms of reaction fluxes, metabolite concentra-
tions, and reaction equilibrium constants, we sought to
determine whether these values were essential to the
dynamic consistency we observed across rate laws. The
flux and concentration state of the cell play a role in
determining the dynamic structure of the network. For
example, large metabolite pools will be changed slowly
by small fluxes, and vice versa, giving some expectation
of fast and slow dynamics within the network. We
wanted to investigate the degree to which network dy-
namics are determined by the initial flux and concentra-
tion state, as opposed to the choice of rate law. To this
end, we sampled reaction fluxes and metabolite concen-
tration within physiological ranges, and then in wider
ranges. In contrast to changing rate laws, we found that
widening the sampling range on fluxes and concentra-
tions greatly impacted the dynamic response of metabol-
ite throughout the network. For example, metabolite MP
and RT subject to ATP hydrolysis perturbation showed
weaker correlations within models sampled with wider
concentration and flux ranges compared to those from
models sampled with physiological concentration and
flux ranges (Fig. 5a–b). We also found that the distribu-
tion of metabolite RT and MP under ATP hydrolysis
perturbation spanned a much larger range for models
sampled with wider concentration and flux ranges
(Fig. 5c–d). Thus, it appears that the origin of the dy-
namic consistency across rate laws does indeed lie within
the order of magnitude differences across reaction fluxes
and metabolite concentrations throughout the network.

Dependence of the effect of rate laws approximations on
reaction properties
We have showed that, while models constructed with ap-
proximate rate laws still hold valuable dynamic informa-
tion due to the constraining effects of physiological flux
and concentration differences, there is still a substantial
increase in model accuracy from inclusion of additional
kinetic information such as in a Michaelis-Menten rate
law with measured properties. However, the question is
still open of whether certain reactions are more neces-
sary to model accurately than others. To probe this
question, we began with a fully-defined mechanistic
model [34], substituted each reaction in turn with a
mass action approximation, and determined the effect

on network dynamics. Clear trends emerged. First, re-
actions farther from equilibrium showed a larger effect
from rate law approximation (Fig. 6a). This is intuitive
as irreversible reactions tend to be regulated allosteri-
cally, but the trend existed even for non-regulated en-
zymes. Second, certain reactions with metabolites that
have high concentration tend to show a smaller effect
by substitution of rate law approximation as well. For
example, the enzymes DPGASE and DPGM are thermo-
dynamically in an irreversible state but the high con-
centration of 23DPG creates a large slow moving pool
that causes the dynamics of the network to be insensi-
tive to the choice of rate law for these enzymes (Fig. 6).
However, there remain some unexplained cases, where
reactions have one or both of these properties but rate
law approximations result in effects outside of the gen-
eral trend previously observed. For example, the en-
zymes PGLASE and GSSGR are clear outliers. This
suggests that additional properties exist, such as net-
work context given particular perturbations of interest,
that may provide additional cases where rate law ap-
proximations work well.

Evaluating the consistency of effects of single enzyme
mechanism substitutions throughout the network
One natural question to arise is whether it is possible to
anticipate the changes to dynamic properties that occur
when introducing enzyme mechanisms with particular
features, such as allosteric regulation or a location up-
stream of a metabolite of interest, in place of an approxi-
mate rate law. For example, there exist some rules of
thumb when dealing with small feedback networks, such
as the role of negative feedback in increasing system re-
sponse time, that might be applicable in these networks.
However, we did not find such rules of thumbs to be
reliable in the cases we examined.
In the case of the importance of network localization,

for the nearby enzymes PK and PGK, there was no gen-
eral trend observed in metabolite MPs and RTs under
ATP hydrolysis perturbation following single module
addition of PK or PGK (Additional file 1: Figure S10,
Table S1). For example, the addition of the PGK module
slightly decreased the MP of lactate compared to no
module while the addition of the PK module caused an
increase in the MP of lactate, while from a structural
standpoint we might expect the lactate node to have
similar responses to the introduction of either enzyme
mechanism. Along the same lines, the RT of 23DPG
increased when adding the PGK module but decreased
when adding the PK module. In addition to looking at
the effect of different enzyme substitutions for a particu-
lar perturbation, we also looked across different pertur-
bations for the same enzyme substitution. Specifically,
we characterized the response of metabolite PYR under
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different perturbations upon the addition of the PK mod-
ule and did not observe any general trend in the change of
response (Additional file 1: Figure S11, Table S2).
As a case study for the effect of adding allosteric regu-

lation, we chose the HEX1 enzyme module, which con-
tains 23DPG as a feedback inhibitor. We performed
multiple perturbations on HEX1 module with and with-
out regulation and characterized the change in the dy-
namic response of the substrates and products of the
enzyme. We found that G6P showed an increase in RT
following addition of the feedback inhibitor, indicating
that G6P relaxes more slowly following the addition of the

inhibitor. The increase was also observed in metabolites
downstream of the module. Meanwhile, G6P and F6P spe-
cifically showed an increase in MP with the addition of
feedback inhibition (Additional file 1: Figure S12A-B).
These observations appear contrary to the effect of feed-
back inhibition in simple feedback loops, where RT and
MP decrease due to the effect of the inhibition [36]. This
contradiction might be due to other interactions within
the model, where metabolic reactions are usually nonlin-
ear due to metabolites shared across multiple reactions.
We performed the same analysis on the GAPDH module
with 3PG as a feedback inhibitor. However, in this case we

Fig. 5 Kinetic properties of models sampled with models sampled with physiological concentrations and fluxes compared to models sampled in
wider ranges of concentrations and fluxes. First, 63 models were built with metabolite concentrations and fluxes sampled from physiologically
relevant range. Then, 23 models were constructed with a wider range of metabolite concentrations (10−8 to 105 mM) and fluxes. ATP hydrolysis
was chosen as a reference perturbation as the perturbation on all models and RT and MP of the metabolites was calculated. a Distribution of
pair-wise Pearson correlation coefficients of metabolite RTs for models sampled with wider concentration and flux ranges and models sampled
with physiologically relevant ranges. b Distribution of pair-wise Pearson correlation coefficients of metabolite MPs for models sampled with wider
concentration and flux ranges and models sampled with physiologically relevant ranges. c Distribution of metabolite RTs for models sampled with
wider concentration and flux ranges. d Distribution of metabolite MPs for models sampled with wider concentration and flux ranges. The sampling
and simulations were performed on the whole-cell kinetic model of erythrocyte constructed by Bordbar et al [33]
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found a decrease in RT on FDP and G3P when the feed-
back inhibition was added, as well as a decrease in MP on
3PG and PEP (Additional file 1: Figure S12C-D). The two
case studies above showed that the feedback inhibition
can cause quite different responses in different modules
and the effect of regulatory mechanisms should be care-
fully considered on a case by case basis.
We also analyzed the effect of feedforward activation as

an additional example of regulation. The example we stud-
ied the PK module with FDP as a feedforward activator.
We found a decrease in RT for PYR in the PK module as
well as a few metabolites upstream of the PK module,
such as G6P, F6P, FDP, G3P and 3PG (Additional file 1:
Figure S13). Those metabolites also had a decrease in the
MP (except 3PG and PYR). Again, this is contrary to the
commonly observed effect of a simple feedforward loop,
where RTand MP subsequently increase following addition
of a feedforward activator [36]. Similar to the feedback in-
hibition, such contradiction may be attributable to more
complex interactions within the metabolic network.
Overall, we showed that module addition can qualita-

tively affect the dynamics of related metabolites, but the
quantitative effect can vary from case to case, possibly due
to associated reaction and network connectivity properties.
Therefore, it is difficult to predict any kind of consistent
change moving from an accurate mechanistic description
of enzyme catalyzed reactions to more approximate rate
laws in specific cases.

Physiological and enzyme activity perturbations
Finally, while results so far were generated using perturba-
tions of largely academic purpose, such as spontaneous in-
ternal metabolite changes, we sought to verify our results

on perturbations of greater physiological meaning. First,
we performed several simulations on decreased enzyme
activity, in the form of a lower enzyme concentration or
lowered catalytic rate constant, for the enzymes G6PDH,
PGK, and PK, and verified the rate law trends identified
thus far (see Methods). For example, the relative metabol-
ite concentrations across different levels of G6PDH activ-
ity were the same between enzyme module and Michaelis-
Menten rate law with measured properties, while other
rate laws showed noticeable differences (Additional file
1: Figure S14). We made similar observations on relative
metabolite level change across PK or PGK activity change,
except that in PGK all rate laws behaved closely to the en-
zyme module (Additional file 1: Figures S15-16). Then, we
mimicked a previous study on an oxygen deprivation per-
turbation [37], and found that Michaelis-Menten rate law
with measured properties was able to match exactly the
dynamics of enzyme module, outperforming other ap-
proximated rate laws. However, none of the models quan-
titatively matched the experimental data well, suggesting
confounding parameterization or model scope issues
(Additional file 1: Figure S17).

Discussion
In this work, we constructed a kinetic model of RBC
metabolism with a mechanistic description of ten en-
zymatic reactions and compared the dynamic properties
of the mechanistic model with those of several com-
monly proposed simplifying assumptions. We found that
the Michaelis-Menten kinetics with measured properties
yields a consistently good approximation of the full sys-
tem, while the Q-linear kinetics and mass action kinetics
can show substantial discrepancies. Furthermore, we

Fig. 6 Reaction properties affecting the impact of reaction rate law approximations. a Enzyme substitution impact (rank) against reaction thermodynamic
irreversibility (Log10). Reaction thermodynamic irreversibility is calculated as (reaction equilibrium constant - mass action ratio)/reaction equilibrium
constant. Lower rank score meant less change in dynamic response when the module is replaced by mass action kinetics. Reactions highlighted
in red indicate presence of regulation. Circled reactions are outliers of the general trends. PGLASE is irreversible but shows low impact upon reaction
rate law approximation. GSSGR has a large substrate concentration, yet still shows significant impact upon reaction rate law approximation. b Enzyme
substitution impact (rank) against largest metabolite concentration in the reaction. Red and circled reactions are the same as in panel (a). The simulations
were performed on the model constructed based on Mulquiney et al [34]
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formulated another Michaelis-Menten-type rate law in
an attempt to simplify the Michaelis-Menten kinetics
given limited data available, based on a Km = xss assump-
tion with a rapid-equilibrium random order binding re-
action scheme. However, this approach failed to show
improved agreement in dynamics with the enzyme mod-
ules over other approximations. We attribute the posi-
tive correlation of even the most approximate rate laws
with the true model as due to the important effect that
reaction flux and metabolite concentration differences
play in the network dynamics.
Obtaining enzyme kinetic parameters continues to be

a core issue hindering the development of practical
large-scale kinetic models of metabolism. Databases such
as BRENDA [38] continue to aggregate studies on the
kinetic properties of enzymes for various organisms.
However, not only are the collections of the most com-
mon kinetic parameters (Kms and kcats) often incomplete
and measured under non-physiological conditions, but
there is a separate issue with the additional parameters
that are required to parameterize a mass action mechan-
istic description of a reaction (which we term an enzyme
module). Full specification of kinetic parameters is ex-
perimentally intensive but theoretically possible, and
some enzymes such as PFK have been characterized in
great detail in particular organisms, including pH and
temperature dependence of parameters. However, the
difficulty in determining these parameters and uncer-
tain immediate value of the data, evidenced by lack of
practical applications of resulting kinetic models, is likely
the main reason these data are not routinely being gener-
ated. In this study, we show both the value of fully-defined
enzyme mechanism as well as rate law approximations,
and thus it appears that the appropriate rate law to use
should continue to be determined by the goals of the
modeler.
On the note of the design of this study, we note that

kinetic models can be analyzed from numerous angles.
Much work thus far has focus on the dynamic control of
metabolic states. This goal is of great importance, but
due to the non-linear and complex nature of such con-
trol, we targeted our investigation on a simpler task of
understanding transient responses to small perturbations
in the metabolic network. Experimentally measuring
such transients, i.e., dynamics of metabolite concentra-
tions, is challenging and fundamentally limited by
sampling frequency and metabolism quenching time.
However, we chose to focus on these perturbations as
they are the most simple to understand mathematically.
Further studies looking at the effect of rate law approxi-
mations on more intricate dynamic properties, such as
the non-linear control of steady-state changes following
enzyme inactivation, are extremely desirable if they can
be conducted in a rigorous way.

In our comparison of rate laws, we showed that the
Michaelis-Menten kinetics with measured properties
gives a good approximate of the full system when com-
paring the relaxation time and maximum perturbation
of the metabolites. Thus, discrepancies due to ignoring
dynamics of individual enzyme forms do not appear to
be a significant issue. This success in approximation is
likely due to the combination of the small concentra-
tions of most enzyme forms relative to metabolite con-
centrations, a requirement for the validity of the QSS
assumption [21], as well as the relatively large rate con-
stants for reactions involved in enzyme regulation (ef-
fector binding) and structural transitions. For enzymes
with larger concentrations and slow regulatory enzyme
motions, there would likely be substantial discrepancies
from using a QSS assumption. We also found that add-
itional approximations from assuming saturation or
neglecting enzyme behavior entirely cause substantial
dynamic and structural issues. While these methods are
attractive due to obviating the need for enzyme-specific
parameters, the potential drawbacks may preclude their
use. As an alternative, assumptions about enzyme pa-
rameters can be made in place of assumptions about rate
laws. For example, one study has shown that metabolite
concentrations tend to hover around the Kms for corre-
sponding enzymes [28], which could be a useful assump-
tion for modeling in lieu of sufficient data. However, in
practice, we found this assumption to be insufficient to
recapitulate enzyme kinetic behavior, as deviations of the
real data from this assumption were sufficiently large to
induce substantial differences in behavior.
We showed that adding a module can bring qualitative

effects to the dynamics of related metabolites. However,
the quantitative effects have to be examined in a context
specific manner, possibly due to the associated reaction
property or network connectivity. We also showed that
the addition of regulations, such as feedback inhibition
and feedforward activation, can cause dynamic behavioral
changes different from those of simple genetic circuits.
Taken together, we would advise a detailed mechanistic de-
scription for enzyme catalyzed reaction is likely a necessity
for predicting system dynamics with reasonable accuracy.
There are two additional possible issues associated

with modeling enzyme kinetics using an enzymatic mass
action approach. The first is the estimation of kinetic
parameters within the module. The current available ex-
perimental data on the enzyme include Kms, vmax and
Kds. However, those data are not sufficient to solve for
the rate constants of specific enzymatic steps in the
module. Thus, a good fitting approach is necessary to
obtain a set of rate constants that accurately recapitulate
the existing experimental data. The second problem is
associated with the simulation of the system containing
multiple modules. A possible stiffness issue can occur
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when integrating the ODE equations during dynamic
simulations. This might be due to the large difference in
orders of magnitude between metabolite concentrations
and enzyme intermediate concentrations. In this case, we
would advise normalizing the enzyme concentrations to
the same level as metabolite concentrations and adjust the
corresponding rate constants. However, one needs to be
careful with the magnitude of change in enzyme concen-
trations as we found that different changes can cause dif-
ferent dynamic responses. Looking forward, addressing
these issues will be essential to make progress toward
bottom-up construction of kinetic models of metabolism.

Conclusions
The work here explored the validity of using approximate
rate laws with varying levels of assumptions in the context
of a cell-scale RBC kinetic model. We found that the
Michaelis-Menten rate law based on quasi-steady state as-
sumption was able to recapitulate the dynamic behaviors
of the mechanistic model consistently as long as measured
parameters were used. Rate laws that are derived from
further approximations on Michaelis-Menten kinetics or
ignore the role of the enzyme showed substantial discrep-
ancies in dynamic behaviors compared to the mechanistic
model. However, we found that the errors associated in
these approximate models appeared to stabilize as more
reactions were replaced by approximate rate laws, suggest-
ing that even fully approximate models can contain useful
information. This appears to be due to the dominant ef-
fect that the order of magnitude differences in reaction
fluxes and metabolite concentrations have on the dynamic
structure of the network. Still, we also found that re-
placing approximate models with the detailed mechanistic
enzyme module can bring unpredictable quantitative
effects to the system, suggesting a clear benefit of con-
structing mechanistically detailed enzyme modules
when possible. The work here should aid the choice of
rate laws and parameterization approaches in future
kinetic modeling efforts.

Methods
All work was done in Mathematica. We used the MASS
Toolbox kinetic modeling package (https://github.com/
opencobra/MASS-Toolbox) for model construction and
simulation. The RBC metabolic network with enzyme
modules incorporated is available in Mathematica file
format.

Construction of enzyme modules
The mass action rate law was used for reactions in en-
zyme modules, and the formulation can be found in
Jamshidi et. al. [5].
The steps for constructing enzyme modules are as

follows:

1. Define elementary reactions and obtain their
equilibrium constants from literature

2. Formulate the steady state mass balances for enzyme
forms and solve them symbolically in terms of
parameters of the reactions

3. Substitute the symbolic enzyme forms into the
equation of total enzyme concentration and
approximate the rate constants of the reactions
given a particular flux state

4. Calculate concentrations of individual enzyme forms
given the estimated rate constants

For enzyme module with regulation, an additional en-
zymatic step was added in which the effector molecule (ac-
tivator or inhibitor) is bound to a particular enzyme form.
The data used for module construction can be found

in Additional file 1: Table S3.

Simulation of the network with the incorporated enzyme
modules
The constructed modules were added into the RBC
metabolic network [33] for further analysis. For incorp-
oration of a specific module (e.g., PFK module), all the
reactions in the module were added into the metabolic
network and the original metabolic reaction (PFK reac-
tion) was removed.
Before dynamic simulations, the steady state metabol-

ite concentrations were set as the initial conditions of
the system. For a particular perturbation, a change on
certain metabolite concentrations were applied at time 0
and the subsequent simulation was conducted through
numerical integration of the ODE equations. The system
was allowed to simulate to over 100,000 h to regain the
steady state concentrations.

Calculation of maximum perturbation and relaxation time
Given a concentration profile from simulation, the max-
imum perturbation is the largest percent change in con-
centration compared to the steady state concentration
for a particular metabolite. The relaxation time is de-
fined as the last time point at which the deviation from
the steady state concentration is 5 % of the maximum
perturbation. Specifically, when calculating the relax-
ation time, we traced backwards by starting from the
concentration at a ‘long enough’ time (e.g., 100,000 h)
and calculated the difference between the concentration
at a particular time and the steady state concentration
until the relaxation time was identified.

Constructing a model full of enzyme modules
We used the scope (Mulquiney et al [34] Scheme 1) and
kinetic data (Mulquiney et al [34] Appendix) to con-
struct a model full of enzyme modules. Specifically, the
model contains 22 modules, mainly falling in glycolysis
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and pentose phosphate pathway. The enzyme modules
were constructed based on the method previously de-
scribed. We also added in the enzyme module for
hemoglobin, which can be loaded from MASS Toolbox
kinetic modeling package (https://github.com/opencobra/
MASS-Toolbox). There are extra 13 reactions in the
model that we did not build enzyme modules for. They
are export/import reactions, generic metabolic reaction
without specific reference to an enzyme and reactions
with zero flux. Specifically, they are AMP export reaction,
AMP import reaction, CO2 export reaction, glucose
import reaction, proton export reaction, water export
reaction, lactate export reaction, O2 export reaction,
pyruvate export reaction, ATP hydrolysis reaction,
glutathione redox reaction, NADH redox reaction, ad-
enylate kinase reaction.

Enzyme activity simulation
The metabolic state of the system was simulated with dif-
ferent levels of enzyme activities, for the three enzymes
PK, PGK and G6PDH. To simulate changing activity in
the enzyme module, the total enzyme concentration was
multiplied by a certain fraction. To simulate changing en-
zyme activity in simplified rate laws, the rate law equation
was multiplied by a certain fraction. After changing en-
zyme activities, the new steady state was obtained by
simulating the system for a long enough time. The metab-
olite concentrations and associated metabolic states (e.g.,
inhibited hemoglobin level) were compared across rate
laws and verified against physiological studies. All simula-
tions were performed on the model constructed based on
Mulquiney et al [34].

Iterative substitution of approximate rate laws in place of
enzyme modules
We started with the model constructed based on Mulqui-
ney et al [34] (containing 22 enzyme modules) and itera-
tively replaced the modules with four different simplified
rate laws. We iteratively increased the number of modules
replaced by rate laws, at intervals of 1, 2, 3, 6, 9, 12, 15, 18
and 22. Together with the original model consisting en-
tirely of enzyme modules, we built a total of 37 models
with different rate laws. We then performed 18 different
perturbations on those models. The perturbations fell into
three main categories: local metabolite perturbations
where change of metabolite concentration is less than
10 %, non-linear metabolite perturbations where change
of metabolite concentration is greater than 10 %, pertur-
bations through rate constant where the rate constant of a
particular reaction was altered. The specific perturbation
names can be found in Additional file 1: Figure S3. Models
with replaced rate laws were compared against model
containing all enzyme modules through correlation and
percent error in metabolite RT and MP.

Single module replacement
To test the effect of replacing single module on the net-
work dynamics, we started with the model constructed
based on Mulquiney et al [34] (containing 22 enzyme
modules) and built 22 different models by replacing each
of the enzyme modules with mass action kinetics in a
single model. We then compared those 22 models
against the original model consisting entirely of enzyme
modules through correlation of metabolite RT across 18
different perturbations. We ranked each model based on
its metabolite RT correlation with the original model in
a perturbation. We then summed up the rank scores for
each model across 18 different perturbations to obtain
their final rank score. Lower rank score meant less
change in dynamic response when the module is re-
placed with mass action kinetics. We compared the final
rank against two factors that could determine the impact
of simplified rate law replacing the enzyme module. One
factor is reaction thermodynamic irreversibility, which is
calculated as (reaction equilibrium constant - mass ac-
tion ratio)/reaction equilibrium constant. The other is
the largest metabolite concentration in the reaction.

Parameter sampling
We used the model constructed by Bordbar et al [33] for
parameter sampling. The range of metabolite concentra-
tions were based on the physiologically measured concen-
trations from 24 healthy individuals [33]. For unmeasured
metabolites whose concentrations were taken from litera-
ture, their range was set based on the average standard
error of measured metabolite concentrations. The sam-
pled metabolite concentrations were constrained by the
second law of thermodynamics, where equilibrium con-
stants of the reaction were derived from eQuilibrator
[39, 40]. We then used gpSampler in cobratoolbox to
obtain 1000 sets of metabolite concentrations that fell
in the physiologically relevant range and satisfied the
thermodynamic constraint [35, 41]. The sampled fluxes
of the model were obtained directly from Bordbar et al
[33]. The rate constants of the reactions were then cal-
culated from equilibrium constants, sampled metabolite
concentrations and sampled fluxes. As a result, a total
of 300 models were constructed from the sampled pa-
rameters, concentrations and fluxes.
To compare the dynamic behavior of models with dif-

ferent sets of parameters, concentrations and fluxes, we
performed three different perturbations on the 300 sam-
pled models. The three perturbations were: changing
ATP, ADP, Pi concentrations, changing NAD/NADH
concentrations and changing FDP concentration. It was
worth noting that only 63 models were able to achieve
stable steady states after the perturbations. The RT and MP
of the metabolites in those models were calculated from
the perturbation profiles. We then selected metabolites
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with MP over 5 % and compared the dynamic response
across models.

Physiological simulation
We used the model constructed based on Mulquiney et al
[34] (containing 22 enzyme modules) for physiological
simulation. The physiological condition we chose was the
hypoxia state of erythrocytes, and we simulated such a
state by changing the external concentration of oxygen to
30 % of its original level. Due to the known role of Band
III (BIII) protein in erythrocytes under hypoxia condition,
we added binding reactions of BIII to hemoglobin, PFK,
GAPDH and ALD [37]. We replaced the rest of the mod-
ules with different approximate rate laws, simulated the
models under hypoxia condition for long enough time
until steady state was reached, and compared the time
profiles of metabolites across rate laws.

Additional file

Additional file 1: Additional simulations performed for rate law
comparison and data used for enzyme module construction.
(DOCX 5388 kb)
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