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Background: Ataxia telangiectasia mutated (ATM) is a detector of double-strand breaks (DSBs) and a crucial
component of the DNA damage response (DDR) along with p53 and NF-«xB transcription factors and Wip1
phosphatase. Despite the recent advances in studying the DDR, the mechanisms of cell fate determination after DNA

damage induction is still poorly understood.

Results: To investigate the importance of various DDR elements with particular emphasis on Wip1, we developed a
novel mathematical model of ATM/p53/NF-«xB pathways. Our results from in silico and in vitro experiments performed
on U2-0S cells with Wip1 silenced to 25 % (Wip1-RNAi) revealed a strong dependence of cellular response to DNA
damages on this phosphatase. Notably, Wip1-RNAi cells exhibited lower resistance to ionizing radiation (IR) resulting

in smaller clonogenicity and higher apoptotic fraction.

Conclusions: In this article, we demonstrated that Wip1 plays a role as a gatekeeper of apoptosis and influences the
pro-survival behaviour of cells — the level of Wip1 increases to block the apoptotic decision when DNA repair is
successful. Moreover, we were able to verify the dynamics of proteins and transcripts, apoptotic fractions and cells
viability obtained from stochastic simulations using in vitro approaches. Taken together, we demonstrated that the
model can be successfully used in prediction of cellular behaviour after exposure to IR. Thus, our studies may provide
further insights into key elements involved in the underlying mechanisms of the DDR.
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Background

DNA double-strand breaks (DSBs) appear in the non-
dividing cells as a result of stress agents activity, what
leads to induction of the DNA damage response (DDR)
and eventually DNA repair or cell apoptosis [1]. Signal
about DSBs is transmitted through ataxia telangiectasia
mutated (ATM) — serine/threonine kinase — to p53 cellu-
lar tumour antigen and nuclear factor NF-«B. These two
transcription factors are responsible for cell fate determi-
nation; however, it is still not fully understood how the cell
decides about its fate.
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Many studies confirmed that DNA lesions and incorrect
mechanisms of the DDR may lead to pathological changes
transmitted to daughter cells, uncontrolled proliferation
and tumour growth [2-7]. It has been reported that an
essential role in the DDR is played by protein phosphates,
among them Wipl — a p53-induced protein phosphatase
1D [8]. Wipl is a crucial component of cancerogene-
sis and is involved in the ATM/p53 pathways [9-11].
Furthermore, it has been suggested that Wipl regulates
cell-autonomous decline in proliferation of self-renewing
cells with advancing age [12].

Investigating the DDR in general and connections
between ATM, p53, NF-«B and Wip1 phosphatase in par-
ticular is essential for understanding the cellular response
to DNA damages. As a result, these studies should help
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to predict the behaviour of mammalian cells and deter-
mine molecules that may become potential drug targets
[13]. Although there have been many advances in the field
of studying the DDR, the exact mechanism of cell fate
determination is still largely unexplored.

To answer the question whether Wip1l plays an impor-
tant role in cell fate determination and how sensitive the
system is to various changes in the ATM/Wipl mod-
ules, we developed a novel mathematical model connect-
ing ATM, Wipl, p53 and NF-«B. A new hybrid model
combines stochastic and deterministic approaches and is
based on our previously constructed stochastic model of
p53/NF-k B pathways [14] and deterministic model of the
ATM/p53 pathways [15].

Cell fate is determined by the accumulated levels of
p53 and its transcriptional targets, among them Cdkl-
inhibitor p21, which initiates the cell cycle arrest [16],
and Bax, which triggers the apoptotic events [17]. Over-
experession of p21 and Bax has been found in many
types of cancers, suggesting their high clinical importance
[18-20].

In this article, we describe a specific kinetics of Wipl
after the induction of DSBs by IR. According to in sil-
ico and in vitro results, Wip1 plays a role as a gatekeeper
in the ATM/p53 system. The phosphatase accumulates in
cells upon DSBs induction, in order to “turn off” the DDR
system after the successful damage repair. However, if the
level of Wipl stays high, cells may become insensitive to
further damages. Hence, the accurate regulation of Wip1
is necessary to repair the system. It has been reported that
one of the main regulation factors important in the DDR
system involves miRNAs [21, 22]. Therefore, we propose
to include miRNA-16 in the model as it plays essential
role in restraining proliferation of tumour cells through
inhibition of Wip1 transcript [22, 23]. Based on the exper-
imental data, we propose a model containing different
regulators of Wipl transcript, among them miRNA-16
and a stimulator of Wip1 transcription — CREB.

Model development

To investigate the importance of various components of
the DDR system on cell fate determination, we devel-
oped a novel mathematical model of the ATM/p53/NF-«B
pathways.

Proposed model is based on our previous p53/NE-
kB crosstalk model [14] and preliminary ATM pathway
model presented in [15]. To cover the experimentally
observed Wip1 behaviour, we added regulators of its tran-
scription in form of miRNA-16 and CREB. Our model
is one of a few that includes the spatio-temporal regu-
lation of the studied ATM/p53 pathways (we distinguish
the nucleus, the cytoplasm and the extracellular matrix)
and according to our knowledge the only one that com-
bines that with stochasticity. This extension together with
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the introduction of p21 and Bax molecules responsible for
cell cycle blockade and initiation of apoptosis allow us to
simulate a single cell response to DNA damage from the
detection system to the mechanisms directly involved in
cell fate determination.

The interactions between molecules are presented in
Fig. 1. All of the processes occurring in the system were
described with ordinary differential equations (ODEs) dis-
closed in Additional file 1. Numerical implementation of
the model was based on the Haseltine-Rawlings postu-
late — a hybrid approach used to combine stochastic and
deterministic methods [24].

Stochasticity in our model is present as a random gene
switching (main source), DNA damage and repair events
(as an appearance/disappearance of a particular break-
age), and TNF receptors activation/deactivation events.

The model equations were built using basic biochem-
istry laws: law of mass action and Michaelis-Menten
kinetics. Detailed information about the numerical imple-
mentation procedure is available in Additional file 2.
Detailed information about the model variables and
parameters is available in Additional files 3 and 4.

Activation of the DNA damage response

In this section, we briefly describe the activation pro-
cesses of the studied DDR pathways included in the new
model. A detailed biological interactions are presented in
Additional file 5 and in the references within the arti-
cles [14] and [25].

We assume that detection of DSBs is triggered by ATM
kinase and Mrell-Rad50-Nbsl (MRN) complex in the
nucleus, as proposed in the previous deterministic model
[15]. ATM triggers the activation of p53, Chk2 and indi-
rectly a cytoplasmic form of Mdm2 — a natural inhibitor
of p53. Active p53 and Chk2 stimulate the DNA dam-
age signal increasing the activity of proteins involved in
ATM and p53 pathways, among them Wip1l phosphatase.
Wipl dephosphorylates main system kinases and tran-
scription factors leading to their inactivation or, as for
Mdm?2, activation.

We extended our existing p53 model [25] and
introduced an additional form of Mdm2 - a multi-
phosphorylated inactive nuclear Mdm2. We assumed that
two Mdm family members, Mdm2 and MdmX, can be
treated as one (Mdm?2), what simplify the model descrip-
tion [14, 26].

In the model, we included a complex ATM-dependent
regulation of Wipl: through mRNA inhibitor miR-16
(miRNA-16) and its activator KSRP, and Wipl synthesis
activator CREB. Furthermore, Wip1 transcription is up-
regulated by p53 and NF-«B. This link between Wip1 and
NF-«B leads to the transcriptional inhibition of NF-xB-
dependent genes, like these encoding A20, IkB, p53 and
Wipl itself. In contrast, ATM activates NF-« B pathway via
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Fig. 1 Detailed schematic of the ATM/p53/NF«k B pathway model. Active and inactive states of proteins and transcripts (mMRNA) are presented. The
model distinguishes three compartments: the extracellular matrix, the cytoplasm and the nucleus. There are four main modules of the model: p53
(black), NF-«B (gray), ATM (green) and Wip1 (blue). Dotted lines with arrow-heads stand for positive regulation between components, solid lines for
transitions between states of the components, crossed circles for degradation of the protein or transcript, and “P” for phosphorylated form of the

the cytoplasmic Ik B complex. Finally, the DNA damage
signal is transmitted to decision-making proteins: p21 and
Bax.

Gene switching stochasticity

Stochasticity in the model occurs mainly due to the
stochastic gene switching. Genes encoding Wipl and
Chk2 are activated with the probabilities proportional to
the amount of p53 transcription factor. Additionally, gene
encoding ATM depends on CREB activity. Gene for Wip1
is activated by three factors: p53, CREB and NF-«B. How-
ever, Wipl inhibits its own NF-«B-dependent activation
through its negative regulation. Notice that p53 inhibits
Chk2 transcription. Deactivation of genes included in the
model is assumed as background/spontaneous.

We assumed that each gene has two copies (alleles) with
three possible states: both alleles can be active, only one
or none of them. In stochastic approach, these states are
given by values 2, 1 and 0, respectively, while in determin-
istic model they are within the range <0,2> that is the
mean state for cells population.

Cell fate decision

The output of our model is the levels of molecules at
a certain time after irradiation and cell fate decision.
Following Kracikova et al. findings [27], we implemented
a novel p53-dependent threshold mechanism to deter-
mine behaviour of cells after introducing DNA damages.
For simplification, we considered only two of p53 prod-
ucts: Bax and p21. The lower first threshold determines
the cell cycle arrest and is based on the p21 protein level.
Due to the fact that p21 is p53-dependent protein and
strictly follows its level, the first threshold is also indirectly
dependent on active p53.

The higher second threshold is responsible for driving
cells to apoptosis and it combines the levels of Bax and
active p53. In the model, we used both proteins to reflect
the fact that p53 may have also a non-transcriptional
influence on the apoptotic decision [28-30].

Briefly, if during the simulation time the levels of active
p53 and Bax cross the given thresholds simultaneously,
the studied cell is considered as apoptotic. If the p21 level
is above the threshold, the cell is considered as one with
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arrested cycle. If this cell dies before the first division or
its cycle is arrested for more than 63.9 h (which prevents
large-enough single cell origin colony formation), it is con-
sidered as not viable. Detailed description of determining
the thresholds is available in Additional file 6.

Model fitting and parameters justification

The information about the half-lives of majority of the
transcripts and proteins was obtained from the litera-
ture or our experiments performed on U2-OS cell line
(immunoblots are presented in Additional file 7). The
parameters involved in the system activation by IR were
obtained by fitting the model to the number of DSBs
acquired from our experiments and data from the Kohn
and Bohr studies [1]. Transcription and translation rates
follow the Levin upper limits [31]. Detailed information
about the parameters are available in Additional file 4. The
parameters indicated as “fitted” were guessed by a trial-
and-error method in such way that they allow the model
response to be in agreement with the experimental data
presented in Figs. 2, 3, 4b and 4c (training set).

It is known that the parameters estimation is com-
plicated for systems with large number of parameters
and mostly for stochastic and hybrid models [32]. One
has to remember that complex models with many free
parameters suffer from so called “model sloppiness” It
has been demonstrated [33] that even when some indi-
vidual parameters are poorly constrained (sloppy), collec-
tive fitting could result with well-constrained predictions.
Moreover, in such case sensitivities spectrum could have
the eigenvalues distributed over many decades. In [33], it
is postulated that models with constitute rule of sloppy
parameters are not exception.

The second common problem of the complex biologi-
cal network models is a practical non-identifiability — the
existence of various parameters sets that have more or
less equivalent fitting capability [34]. If the practical non-
identifiability exists, the minimum of the performance
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index in the automatic fitting algorithms is surrounded
by a large flat region or multiple local minima of compa-
rable “depth” Therefore, from the identifiability point of
view, time consuming automatic algorithms do not bring
any advantage over the trial-and-error method. Even if
such an algorithm would be able to find the true min-
imum, remembering that usually user has to determine
the parameters box in which the search take place, the
“uniqueness” of such parameter set would be questionable
on the ground of biological meaning.

Taking into account this knowledge, we decided to use
the trial-and-error method to fit the model to the experi-
mental data. However, we do not claim the uniqueness of
our parameters set.

To test the sensitivity of the model to the fitted param-
eters, we performed sensitivity analysis according to the
procedure described in [35] and in Additional file 8. The
results show that for the time periods of measurement
of apoptotic fractions and viability the model outputs are
insensitive to the change of parameters values. This makes
our predictions reliable. The results of sensitivity analysis
are presented in Additional file 8.

Results

Wip1 exhibits a non-oscillatory behaviour after high doses
of IR

To investigate the role of Wipl in cell fate determination,
we performed stochastic simulations for 1000 cells and in
vitro experiments on U2-OS cells with wild-type expres-
sion of Wipl (Ctr-RNAi) and expression reduced to ca.
25 % of initial value (Wip1-RNAi). Due to the fact that
immunoblot experiments were performed on human can-
cer cell line, we were detecting Mdm2 human analogue —
Hdma2.

To investigate the kinetics of Wipl after exposure
to IR, we performed immunoblot assay and stochas-
tic simulations for Ctr-RNAi cells treated with 10 Gy
of IR. We compared the levels of Wipl in irradiated
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cells to the levels in untreated cells (Fig. 2). Here, our
main studies were focused on verification whether Wipl
exhibits an oscillatory response after strong irradiation
of cancer cells and if it follows the oscillations (levels)
of p53.

In the literature, it has been reported that the transcript
of Wip1 follows the levels of p53 and the highest level is
observed two hours after irradiation [36, 37]. In the model,
we fitted the parameters in a way that the response of
Wipl mRNA is comparable.

We performed immunoblot experiments to verify the
kinetics of Wip1 in 24-h time course after irradiation. The
data from our biological experiments and simulations are
consistent with the reported data about the kinetics of
Wip1 in U2-OS cell line [38].

For the control wild-type cells we found the presence
of Wipl protein only 15 h after the initiation of the
experiment. The levels of the phosphatase elevated and
reached the maximum at 18 h. These clear bands of Wip1l

might be an effect of the activation of the DDR in response
to DNA damages occurring spontaneously in cells. For
the irradiated cells, we observed that the level of Wipl
increased to reach the maximum at around 18 h. These
high levels persisted longer than in untreated cells. At
24 h, the levels of Wip1 started to decrease, what suggests
that when DSBs are finally repaired by the system Wip1 is
being reset in the subsequent cells.

Although some groups reported oscillatory behaviour
of Wipl activated upon DSBs induction [38-40], we
observed its non-oscillatory behaviour in U2-OS cells
after treatment with 10 Gy of IR during a long 24-h
time course. Similar results were obtained by [41] for
shorter duration of the experiments. We observed only
small rises and falls of Wipl during the general eleva-
tion after IR. Because other research groups reporting
oscillatory behaviour of this phosphatase used different
damaging agents and/or cell lines, we think that Wipl
response pattern may differ depending on the cell line and
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damaging agent, maybe even IR doses. This will be the
scope of our future research.

It is equivocal if Wip1 phosphatase exhibits oscillatory
or non-oscillatory behaviour in general. Here, we decided
to use term “rise and fall” of Wip1 levels instead of “oscil-
lations’, which we use rather to describe clear and robust
p53/Mdm?2 oscillations.

Reduction of Wip1 affects the DDR system

To further investigate the influence of IR on Wipl
behaviour, we performed biological experiments on
Wipl-RNAi cells treated with 4 Gy, what gave us an
answer to the question about the influence of Wipl on
various molecules from ATM/p53/NF-«B pathways. Our
simulations and biological experiments (Fig. 3a) clearly
demonstrate that the levels of Wipl decrease around
four-fold in Wip1-RNAI cells comparing to Ctr-RNAi.

For p53 (Fig. 3a and d), the highest change between
Wip1-RNAi and Ctr-RNAi cells was observed around 2 h
after irradiation.

The kinetics of p53 and Mdm2 in Wipl-RNAi did
not change drastically comparing to Ctr-RNAi: in both
cases these proteins demonstrated high peak of activity
after irradiation and then extinguishing oscillations with

smaller amplitudes (Fig. 3a, d and e). The response of
both proteins in their active forms was stronger in Wip1-
RNAi and both stayed longer at these high levels. In
contrast, we observed that Chk2 did not oscillate as p53
(Fig. 3a, b and c). The response of Chk2 was stronger in
Wip-RNAIi than in Ctr-RNAI cells. However, the biggest
change was detected after 8 h for irradiated cells, where
in Wip1-RNAi cells Chk2 levels were decreasing slower
comparing to Ctr-RNAi cells that stabilised at around
18 h. To summarise, we found that silencing Wip1l gene
with RNAi enhances the levels of proteins essential in the
DDR system.

Wip 1 maintains cell viability

To analyse cells viability after irradiation and silencing
Wipl, we performed biological experiments. Clonogenic
abilities (Fig. 4a) of the irradiated cells were measured
in vitro and in silico. The clonogenic cell survival assay
allows to determinate how many cells are able to pro-
liferate by meaning of at least 30 cells large colony for-
mation during 10 days period. We used received results
as training set for stochastic model for Ctr-RNAi and
Wipl-RNAI cells. In our study, the inability to prolifer-
ate is equivalent to exceeding at least the first threshold
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described by Kracikova et al. [27]. In the clonogenic cell
survival assay, the apoptotic cells and arrested cells are not
distinguishable.

Simulated cells were considered as not viable if they
died before the end first division or their p21 level was
elevated above a given threshold for ~64 h — these cells
were not able to form colonies large enough. After irradia-
tion, reduction of clonogenic potential was observed with
increased dose of IR in both Ctr-RNAi and Wip1l-RNAi.
In cells with silenced Wip1l, the clonogenic potential was
two-fold lower than in the control for doses of 2 and 4 Gy.
After the treatment with doses over 6 Gy, cells lost their
clonogenic potential entirely. We observed that doses
above 4 Gy successfully stopped cellular division. These
data confirmed that Wipl has a pro-survival effect and
regulates apoptosis in mammalian cells, what is consistent
with the previous reports [42].

NF-«B pathway activated before irradiation leads to
increased cell survival

One can notice on Fig. 1 that ATM not only activates
the p53 pathway but also the NF-« B module through the
phosphorylation of IKK. NF-«B itself is also responsible
for transcriptional activation of p53. These dependen-
cies increase the number of p53 molecules after irradi-
ation and thus increase the following apoptotic fraction
through p53 activation with simultaneous Mdm2 degra-
dation and increase of p53 synthesis. To investigate which
of these two interactions is dominant, we performed in
vitro and in silico experiments with IR-based activation,
only TNFa-based NF-« B activation and simultaneous IR-
and TNFa-based activation.

Here, we focused on a difference in apoptotic fraction
in wild-type cells treated with pro-survival agent TNFa.
Again, we performed stochastic simulations for 1000 cells
and biological experiments on U2-OS cell line. For both
cases, we irradiated cells 24 h after initiation of the exper-
iment with various doses of IR. For TNF«, we used only
one dose (10 ng/ml), because testing the effects of various
doses of this cytokine was not a subject of our study.

The apoptotic fraction for Ctr-RNAi cells was deter-
mined experimentally by flow cytometry assay and then
used as a training set for stochastic simulation of 1000
cells per dose (Fig. 4b). Following Kracikova et al. [27],
simultaneously elevated levels of p53 and Bax above the
given threshold was equivalent to simulated apoptosis
of the cells population. In our studies, cells labelled as
apoptotic 24 h after irradiation were excluded from the
apoptotic fraction at 48 h. Therefore, the total number of
cells that died after DSBs induction was a sum of apop-
totic cells that did not survive at various time points. We
observed that for cells counted 48 h after treatment with
IR, the highest apoptotic fraction was observed for 10 Gy,
while the lowest was detected for 6 Gy (Fig. 4b). Thus,
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we concluded that when the irradiation dose is too high
causing irreparable damages of DNA chains, Wip1 has no
bigger impact on cells viability.

To analyse the impact of NF-« B pathway activation pre-
ceding radiation exposure, we performed simulations for
Ctr-RNAI cells for three cases: 1) without exposure to IR
but with TNFa cytokine added in dose of 10 ng/ml for
1 h; 2) without TNFa stimulation, but irradiated with 4
Gy; 3) with TNFa cytokine stimulation (10 ng/ml for 1 h)
and irradiated with dose of 4 Gy two hours after finish-
ing administration of TNFa. We counted the apoptotic
fraction using flow cytometry technique 24 and 48 h after
treatment with IR. We observed (Fig. 4c) small apoptotic
fraction for untreated cells with TNF« added to the U2-
OS cell culture. For irradiated cells with TNFa counted
48 h after irradiation, we detected more apoptotic cells
but three-fold less than for cells treated with 4 Gy of
IR. Our results about the radio-protective effect of TNFa
added before the irradiation are consistent with the pre-
vious reports [43, 44]. TNF administration 6 h after IR
increased the number of apoptotic cells in the studied
population. Our model predicted 1.3 % of apoptotic cells
after 24 h and 4.5 % after 48 h. We investigated depen-
dency between TNF-IR shift and apoptotic fraction in
details in [14].

In summary, the results of in silico and in vitro experi-
ments confirmed that the number of apoptotic cells in the
population treated with cytokine before irradiation was
smaller than in the population exposed only to IR (Fig. 4c).
Moreover, we noticed that for TNFu-treated cells, they
need at least 24 h for the effect of the treatment to be
significantly visible.

Discussion

In this study we constructed a new stochastic model
of ATM/p53/NF-«kB pathways with Wipl phosphatase
in the main core and additional components responsi-
ble for its regulation. Our model is one of a few that
includes the spatio-temporal regulation of the studied
ATM/p53 pathways [45]. Most of the models of ATM/p53
pathways do not specify the localisation of molecules
[39, 46-50]. Contrary, our model includes three compart-
ments contributing to a time delay in the system.

Wip1 kinetics
In our model, an essential role in cell fate determination
after DSBs induction is played by Wipl protein phos-
phatase. Similarly, several previously developed models
considered the effects of this phosphatase on ATM mod-
ule alone [47, 50, 51] or on ATM and Mdm?2 [52] or Chk2
[48]. In contrast, there are still models that do not include
Wip1 as a component of the DDR system [46, 49, 53—-56].
Mostly, models that include Wipl show its oscillatory
behavious similarly as for p53s [39, 47, 48, 51, 57]. The
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only model that does not show oscillatory behaviour of
Wipl1 is presented in [50]. Biological experiments show
different patterns of Wip1 for different cell lines, such as
MCE-7 [41], HCT116 [58], RPE [59], BJ fibroblasts [41]
and U2-OS [38, 41]. For example, it has been reported
that in MCF7 cell line small oscillations of Wipl are
present up to 12 hours after irradiation [39, 51]. Our stud-
ies on U2-OS are consistent with studies performed on
the same line by other groups [38, 41]. Worth noting is
that in our study samples are collected for longer time
period: 24 and 48 hours. Other groups often limit the
duration of the experiment to 12 hours. We think that
it does not fully reflect the kinetics of Wipl. Moreover,
we noticed that treatment with different factors, like UV
[60], cisplatin [61], 4-hydroxytamoxifen [62] or IR (i.e. in
our studies), may have a crucial effect on the kinetics of
Wip1 protein. Futhermore, Wip1 regulation may be dose-
dependent [40], but we did not perform verification of
these observations.

Recent studies [63] indicate that Wipl activation
depends also on a phase of cell cycle. It is another possible
reason why sometimes oscillatory behaviour of Wipl is
observed, especially when we take into account the influ-
ence of cells synchronisation. These differences of Wipl
behaviour will be a scope of our future work. Using our
model we observed dependency which is known from lit-
erature — Wipl is a main deactivation agent for many
proteins involved in the DDR pathway. We confirmed that
Wipl1 is also important in maintaining cells viability. Its
accumulation is essential for resumption of cell cycle pro-
gression and for deactivation of pro-apoptotic proteins
after successful DNA repair [42].

Influence of complex Wip1 regulation on cell viability

Our previously developed preliminary model of ATM
[15] allowed us to predict the overall behaviour of cells
treated with IR. However, that model was not fitted to
in vitro data or the fitting was not complete. Moreover,
observed by us long Wipl half-lives and elevating lev-
els of mRNA and protein under DSBs induction, resulted
in inability of cells to enter apoptosis pathway even if
the damages were not repaired. On the other hand, we
observed that elimination of Wip1 from the model results
in much higher percentage of cells deaths. These cells
activated their DNA damage repair processes much later
comparing to the wild-type situation. This fact resulted
in high difficulties in fitting the model in its previous
versions. We found that the solution to this problem
may be to introduce miR-16 and a complex Wipl reg-
ulatory mechanisms. miRNAs are found to be impor-
tant for regulation of the p53 pathway, however there
are not many models that include them [64]. Thus, we
expanded the preliminary model to obtain results com-
parable to the biological experiments more accurately
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[23, 65, 66]. In case of deletion of miR-16 from Wipl
module, we observed increased cells viability (Additional
file 9), which is consistent with literature reports
[22, 66]. miR-16 is not the only miRNA down-regulating
Wipl [22, 67, 68]. Probably the cumulative activity of
more of these molecules cause stronger response of the
phophatase.

Model activation and final response

The DDR system is usually described by the activity of
p53 protein and related molecules. Our previous models
of p53 pathway [14, 25] and number of studies on dynam-
ics of this module [69-71], describe DNA damages in a
simplified way — as a direct input to the model causing
activation of p53. In some of the previously described
models [51, 55], repair process is also simplified. In [51],
p21 was included as a component responsible for cell
cycle arrest, allowing DNA repair. Also, in [72] p21-based
signalling pathway was added without including details
about damage repair. For the apoptosis pathway, Bax was
introduced in one of the p53 models [70].

In [73], the authors focused on the order of the
first events in the senescence pathway and in [74] on
the detailed non-homologous-end-joining (NHE]) repair.
However, we did not intend to built a model of repair and
senescence processes. Therefore, similarly as in [51], we
included simplified decision making pathways: p21 and
Bax. Our assumptions about cell fate are consistent with
the experiments from [75], where the higher dosages of
IR resulted in increased formation of DSBs and decreased
rate if DNA damage repair.

A simplified model described in [39] includes the main
feedback loops between Mdm?2, Chk2 and Wip1 proteins.
In [76], it is suggested that cell fate is not fully dependent
on the concentration of active p53 forms, but rather on the
dynamics of its oscillations. The results from our experi-
ments and simulations of the stochastic model agree with
that suggestion and are true for these cells with wild-type
levels of Wipl and reduced levels to 25 %. The model
simulations matched with the dynamics of the main com-
ponents, like p53, Mdm2 and ATM, obtained from our
biological experiments on U2-OS cells. Our model, sim-
ilarly as in [74], matches the cell-to-cell variability and is
able to explain the specific behaviour of the main compo-
nents of the system.

Some models were developed with simplified ATM/p53
pathways without including their complex regulation
[48-50, 56]. In [50], ATM is considered together with
a kinase responsible for detection of a single-stranded
DNA: ataxia telangiectasia and Rad3-related protein
(ATR). In one of the recent models [46], ATM is treated as
a parameter that does not change over time. Furthermore,
to our knowledge there is not many models including
interactions of p53 pathway with other transcription
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factor responsible for cell fate determination — NF-«B
(49, 77].

It has been shown that the pulses occurring in p53
system are dependent on intrinsic DSBs and small oscil-
lations in ATM detector module [39]. In [78], the authors
proposed a model with the pulses of p53 maintained by
the auto-regulatory positive feedback loop allowing the
threshold activation of p53. The activation of the ATM
module was shown to exhibit different pattern what possi-
bly depend on the amount of DNA damages per cell [79],
similarly as we observed for Wip1.

To date majority of the models on ATM and p53
pathways do not include stochasticity. We have already
observed in our previously developed models of p53/NE-
kB pathways [14] and ATR/p53 pathways [26] that
introducing stochastic effects is crucial for modelling and
predicting the behaviour of a single cell and population
of cells. The stochasticity for random damage induction
and DNA repair was included in the model presented in
[80]; however, this model could not reproduce the results
concerning the cell-to-cell variability in the pulses of p53
and cell fate. On the other hand, the results of the simula-
tions of stochastic model of NHE] repair [74] was able to
match the observed variability. Our stochastic model has
an advantage as the results of simulations on 1000 cells
were consistent with the experimental data regarding vari-
ability after exposure to IR [76] and the results from our
in vitro experiments on U2-OS cell line with the wild-type
and reduced levels of Wip1.

Role of NF-xB pathway in the DDR

Our model shows a cytoprotective effect of TNFa on
irradiated cells. Number of the apoptotic cells in pop-
ulation treated with this cytokine before irradiation is
smaller than in cells irradiated with the same IR dose
without TNF« treatment. Such influence of TNF, which
normally increases apoptotic fractions [81], is observed
only in case of treatment with TNF preceding irra-
diation [43, 44] and was described in our previous
work [14].

The results regarding cell fate determination after expo-
sure to IR obtained from the stochastic simulations for
different timing of added TNF« are in agreement with
the previous works. As noted in [77], we observed that
the functional consequences of NF-« B activation by addi-
tion of TNFw probably depend on the number, period and
amplitude of the p53 oscillations. The results of simu-
lations and our biological experiments demonstrate that
while NF-«B is being activated 3 hours before the induc-
tion of DSBs, the levels of proteins responsible for signal
detection and transduction decrease comparing to the
case where NF-«B pathway was not activated by TNF«
before irradiation. While analysing in silico results, we saw
increased period of p53, Mdm?2 and p21 oscillations and
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decreased amplitude of the pulses. Thus, the treatment
resulted in lowered apoptotic fraction.

It has been reported that the effect of the activation of
NF-«B pathway by the cytokine may be different depend-
ing on the timing of adding TNF« [81]. The higher apop-
totic fraction was observed for TNFo added few hours
after treatment with DNA damaging factor. We confirmed
it by simulating 1000 cells when TNFa was added six hours
after irradiation. When the DDR is already switched on
before TNFa treatment, the activation of the NF-« B path-
way enhances the effect of p53 and results is increased
apoptosis of population of cells.

Limitations of the model

Despite the accuracy of the model predictions, one should
remember that our model is based on U2-OS cell line
and therefore the results it provides may be inaccu-
rate for other cell lines, DNA damaging agents and/or
doses. Especially the number of DSBs after treatment
with IR, proteins and mRNAs half-lives, genes activa-
tion/inactivation rates and DSBs repair rate may differ
between cell lines. Moreover, some cell line-specific mod-
ifications, like 25-fold Mdm?2 gene amplification in SJSA-
1cells or PTEN blockade in MCEF-7 or H157 cells, should
be included when other cell line is considered. The above
mutations in the system can be compensate to some point
by changing the model parameters, i.e. degradation rates
or total number of active gene alleles. The model does
not consider the influence of a phases of cell cycle on
cells response to the damage. In our opinion, including the
changes in i.e. number of active molecules in various cell
cycle phases may be important for cell fate determination.

Conclusions

The presented stochastic model captures relevant biolog-
ical aspects of the mechanism of the DDR system based
on the ATM/p53/NF-kB network. Stochastic modelling
allows to observe differences in a single cell response after
treatment with various doses of stress agents and manip-
ulation of the components of the DDR system. These
disparities among single cells reacting to the same stimuli
under the same conditions are reflected by the apoptotic
fractions size and viabilities of the surviving cells.

Thus, the model presented in this study allows investi-
gating the process of determining the cell fate in response
to DSBs and provides enhanced explanatory and predic-
tive power. In comparison to our previous works, the cur-
rent model describes the studied pathways in more details.
As we presented in this article, some of the intermediate
molecules and interactions omitted in previously devel-
oped models provide important delays to the dynamics of
the studied system. Moreover, after conducting sensitivity
analysis, we noticed that our model is characterised by a
relatively large robustness, what allows to use the model
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for different cell lines and parameters obtained for them.
This greatly increases the cognitive and predictive value of
our model.

Collectively, we provide clear evidences that the model
can be successfully used in the studies on cellular
behaviour after introducing DSBs in the system. Thus, we
believe that our studies may provide important insights
into mechanisms of the complex DDR pathways activated
by DSBs induction.

Methods

Cell lines The human osteosarcoma U2-OS cells (ATCC
HTB96) were grown in DMEM supplemented with 10 %
foetal bovine serum and gentamicin at 37°C in 5 % COs.
For Wipl down-regulation cells were transduced with a
lentivirus containing shRNA sequence specific to PPM1D
gene (Wip-RNAIi) or a scrambled sequence shRNA (Ctr-
RNAI) (sequences from Santa Cruz Biotechnology); trans-
duced cells were selected with puromycin.

Cell treatments Treatments started 48 h after cells inoc-
ulation; all steps, with exception of irradiation, were
performed in a humidified incubator at 37°C and 5 %
CO,. Cells were incubated for 60 min in medium con-
taining 10 ng/ml of TNF« cytokine (Sigma), irradi-
ated with ionizing radiation or subjected to combined
treatment of both cytokine stimulation and irradiation.
After cytokine stimulation TNFa-containing medium was
replaced with fresh TNFa-free medium and cells collected
at different time points after stimulation; during experi-
ments with combined cytokine and irradiation treatment,
after cytokine stimulation TNFa-containing medium was
replaced with normal one for an additional 3 h before
further treatment with radiation. The ionizing radiation
(IR) was generated by a linear accelerator (Clinac 600;
Varian); cells were exposed to dose range between 2 and
10 Gy (at a dose rate of 1 Gy/min). Irradiated cells were
incubated for an additional time (differ during different
analyses: 60 min to 24 h for Western blot analyses or 24
and 48 h for cytometry-based analyses) and then collected
and analysed. Appropriate controls, either untreated or
TNFa-treated only, were processed in parallel. To deter-
mine the half-life of proteins and transcripts (mRNA),
cells were treated with cycloheximide (100 pg/ml) and
actinomycin D (5 pg/ml) respectively, and collected at
specific time points (15 min to 8 h from the start of
treatment).

Determining the values of the model parameters The
analysis of half-lives of transcripts and proteins was per-
formed using qPCR method and immunoblot, respec-
tively. Degradation rates for the model were counted using
the regression analysis with expotential approximation.
The formation of DSBs through IR was measured using
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y-H2AX detection. The detailed information about the
procedures of defining the values of the parameters are
available in Additional file 10.

Analysis of cell fate The analysis of apoptotic fraction
(Sub-G1 fraction) was performed with flow cytometry
assay. Clonogenic cell survival assay was performed to
verify the viability of cells. Details about experimental
procedures are available in Additional file 10.

Computational simulations Hybrid deterministic-
stochastic simulations were performed according to
Haseltine and Rawlings [24]. We used Runge-Kutta 4th
order algorithm for deterministic and direct Gillespie for
stochastic part of the simulations. The simulation time
was set to 951000 s, simulation step for 0.1 s, and saving
data for every 10 s. We performed 1000 stochastic simula-
tion for each of the experiment. Numerical simulations of
the presented model were performed using Solvary (tool
developed by Roman Jaksik and Krzysztof Puszynski,
Silesian University of Technology).

x? test Differences between results from biological
experiments and simulations were determined by p-values
obtained from x? test for two sets of samples. Null
hypothesis: experimental and simulation values are no
different. Significance level assumed as « = 0.05.

Additional files

Additional file 1: Model equations. Transcribed model equations. For the
stochastic variables we present reaction propensities, while for
deterministic proper ordinary differential equations (ODEs). (PDF 204 kb)

Additional file 2: Numerical implementation. Description and details of
numerical implementation. (PDF 132 kb)

Additional file 3: Definition of the variables. Values of the model variables
are presented separately for Ctr-RNAi and Wip1-RNAi cells. (PDF 35.2 kb)

Additional file 4: Model parameters. Values and description of model
parameters. (PDF 202 kb)

Additional file 5: Biological description. Description of the main biological
interactions between the components included in the model. (PDF 96.3 kb)

Additional file 6: Cell fate decision. Description of the procedure of
determining the proper thresholds for the decision about the cell fate in
the model. (PDF 103 kb)

Additional file 7: Determining the half-life time of proteins included in
the model. Immunoblots of total ATM, unphosphorylated p53, p53
phosphorylated on Ser15, Wip1, Hdm2, Hdm2 phosphorylated on Ser166,
Chk2. (PNG 738 kb)

Additional file 8: Sensitivity analysis. Description and results of the
sensitivity analysis of the fitted parameters. (PDF 1413 kb)

Additional file 9: Impact of miR-16. Impact of miR-16 deletion on
irradiated cells. (PNG 2089 kb)

Additional file 10: Methods. Detailed description about the experimental
methods described in the article. (PDF 132 kb)
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