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Abstract

Background: Computational modeling is an important tool for the study of complex biochemical processes
associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of
large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can
be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling
approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models
can more accurately capture details of these processes, and may lead to insights into how geometry affects the
products that form. Furthermore, geometric rule-based modeling can be used to complement other computational
methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects.

Results: We propose a novel implementation of rule-based modeling that encodes details of molecular geometry
into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We
then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of
antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body
Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a
rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation.
We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this
procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the
optimal rule-based model.

Conclusions: We find that the optimized rule-based models provide information about the average steric hindrance
between binding regions and the probability that antibodies will bind to these regions. These optimized models
quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.
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Background

Computational models are widely used to study biomolec-
ular interactions due to their complexity. Models which
are constrained by physicochemical principles are useful
because they are based on causality rather than sim-
ply correlation, and their parameters, such as molecule
copy numbers and binding rates, can be measured inde-
pendently [1, 2]. Models that enable the incorporation
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of site-specific details and that can overcome the prob-
lem of combinatorial complexity are also highly use-
ful for biomolecular simulations [2—4]. One technique
that meets all of the above requirements is rule-based
modeling. Rule-based modeling is a technique for study-
ing the site dynamics of biomolecular networks [2, 5],
which involves representing biomolecular interactions as
local rules. With this method, a set of rules is defined
where each rule represents a bidirectional reaction. Each
direction of the reaction is assigned a rate law. During
simulation, a reaction network is created from which a
set of coupled ordinary differential equations (ODEs) is
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derived. These equations characterize the rates of change
of observables (such as chemical species). There are sev-
eral different formalisms that may be used in creating
rule-based models [2, 5]. One disadvantage of the tradi-
tional rule-based model is that it does not capture details
of molecular geometry. The traditional rule-based model
is based on a set of binding rules that only include the
number of binding sites on a molecule and do not incor-
porate geometric information [6, 7]. This limitation of the
rule-based modeling approach results in models that are
unable to capture the effects of molecular geometry. In
this work, our goal is to develop a new, general rule-based
model for molecular binding events that implicitly repre-
sents molecular geometry by using simple measurements
between sections of the molecules to encode steric effects
into the rules.

As a model system for our methodology, we look at the
process of antigen-antibody aggregation; in particular, we
study the binding of IgE-FceRI antibody-receptor com-
plexes to the antigen Pen a 1, a common shrimp allergen.
An antigen is a substance that is capable of inducing the
production of antibodies and binds to them via regions
on its surface called epitopes. Studying antigen-antibody
aggregation and the structure of the aggregates that form
during this process is important for understanding how
the allergic response is initiated. The allergic response in
humans is set into motion by a tyrosine kinase cascade
that results from the crosslinking of IgE-FceRI receptor
complexes via the binding of the IgE antibodies to an
antigen [8]. Antigens may have multiple possible confor-
mations with differing geometric characteristics, which
can affect the size and structure of the antigen-antibody
aggregates that form. The fold of an allergen is known to
play a role in the IgE reactivity of its epitopes [9]. The
development of a practical method for aggregate structure
prediction based on the geometry of a particular antigen
conformation could be useful not only for understand-
ing aggregation, but also for possible manipulation of the
antigen geometry to obtain a desired aggregate structure.
Various properties of allergens and protein complexes,
such as structural stability, flexibility, and dimerization,
have been studied using molecular dynamics-based meth-
ods [10, 11]; however, such methods would not be useful
to study antibody aggregation due to the long timescales
involved (on the order of seconds) and the large size and
quantity of the aggregates that may form.

In order to obtain aggregate size distribution data on
which to base our rule-based models, we employ a pre-
viously developed three-dimensional rigid-body Monte
Carlo method [12]. This method can explicitly represent
molecular geometry and molecular motions. A graph-
based structure defines the molecular interactions; lig-
ands and receptors are represented by vertices, and
bonds between ligands and receptors are represented by
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edges. This structure allows for the easy maintenance of
aggregation information throughout the simulation, and
for the analysis of aggregate structure [12]. Instead of all-
atom molecular structures, 3D isosurface representations
of the molecules are used, which reduces the simulation
to a rigid-body problem and reduces the computational
cost [12]. This method can be combined with rule-based
modeling in order to quantify the steric effects between
allergen binding regions that affect binding site acces-
sibility and to represent the differences in these steric
effects caused by variations in molecular curvature. Steric
effects in the 3D Monte Carlo model depend not only on
molecular geometry but also on the resolution of the 3D
molecular model. The resolution of the isosurface mod-
els can be reduced through polygon reduction, which
has been shown to decrease the number of polygon-to-
polygon comparisons that occur during the Monte Carlo
simulation [13, 14]; consequently, the computational time
of the simulation also reduces. The simulation time has
been previously shown to decrease from approximately 20
hours per run for the original isosurface model to 10 hours
per run for a model with a polygon reduction of 50 %, and
two hours per run for a model with 90 % reduction. How-
ever, a reduction in resolution decreases the volume of the
molecular models and affects the resulting aggregate size
distribution [13, 14].

Our previous work [14] introduced our initial efforts
toward using a rule-based method for modeling molec-
ular geometry through capturing the steric effects acting
on the various binding regions of the molecule. In this
paper, we propose a more general rule-based method to
model the geometric effects of molecular binding events.
Here, we extend our initial investigation presented in [15]
to include the impact of model resolution to the formation
of molecular aggregates for all three energy-minimized
Pen a 1 conformations studied. This novel rule-based
method involves the automation of rule set construc-
tion based on a few parameters that encode the steric
effects between neighboring binding regions of the anti-
gen. In particular, we apply our method to the modeling
of antigen-antibody aggregation and investigate different
antigen conformations. We expect that modifying the cur-
vature of the linear Pen a 1 antigen may result in distinct
steric effects. We first demonstrate our method using
three Pen a 1 molecules with large variations in curva-
ture. Then, we use this method to model the aggregation
of IgE-FceRI receptor complexes with the shrimp allergen
Pen a 1 for three different energy-minimized conforma-
tions of the Pen a 1 molecule that have small variations
in curvature: native, S-shaped, and U-shaped. We com-
pare the results of this method with the results of the
aforementioned Monte Carlo simulations, and we analyze
the differences in antigen-antibody aggregate formation
for each the conformations. We also perform a resolution
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study in which we run Monte Carlo simulations for seven
resolutions of the 3D model and subsequently use our
novel rule-based method to analyze the variation of steric
effects and quantify the change in relevant parameters.

Related work

Our work builds off of computational methods for model-
ing molecular geometry in biochemical processes, as well
as experimental methods to study IgE antibody binding
behavior.

Rule-based modeling

Biological signaling systems are often comprised of
macromolecules that can exist in a large number of func-
tionally distinct states. This number scales exponentially
with the amount of modification possibilities [7]. One
problem that arises when modeling these systems is the
specification problem, i.e. how to specify such a large
system.

One solution is implicit specification, which involves
the coarse-graining of sets of reactions and parameters
into “rules”; the only explicitly specified features in a reac-
tion rule are those which affect the reaction. Rules define
the conditions for molecular transformations and inter-
actions, and are associated with rate laws [2]. Some rules
define multiple reactions, which means that all of these
reactions are associated with the same rate law. The rules
can usually be specified independently. Rule-based speci-
fication methods include Kappa-calculus [16], BioNetGen
[5], ANC [17], and ML-Rules [18]. The Simmune project
and the SSC allow the specification of molecules within
spatial regions of arbitrary geometries [19].

BioNetGen [5] is a popular rule-based modeling soft-
ware which uses graph rewriting. The biomolecules
are represented by graphs, vertices represent molecular
components, and edges represent bonds between these
components. Biomolecular complexes are represented by
connected sets of graphs. Rules are applied to these graphs
and sets of graphs, and the graphs are changed according
to the results of the biomolecular interactions specified by
these rules [2, 5].

The rule-based methods can be population-based,
particle-based, or hybrid. Population-based methods
include ODE/PDE numerical integration and the stochas-
tic Gillespie algorithm. In these methods, the application
of a rule changes the size of one of the populations, each
of which consists of all molecules that share the same
state and same species. The system state space can be very
large, so methods to reduce it have been introduced [7].

Particle-based rule evaluation involves tracking indi-
vidual particles (molecules and molecular complexes)
through the simulation [2]. This is a network-free method;
at any time point, only the existing particles, their
states, and the possible reactions for the existing particles
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are necessary. Spatial particle-based methods include an
explicit specification of space, and include SRSim [20] and
MCell [21].

Our method differs from traditional approaches to rule-
based modeling in that the rules used in our method are
constrained by steric effects induced by molecular geom-
etry and 3D model resolution. We introduced a different
rule-based method for modeling resolution in [14]; this
method used a single set of rules for each molecule con-
formation with only the rate constants associated with
the rules varying with resolution. Additionally, there were
four different rate constants that required optimization.
On the other hand, the rule-based modeling method pre-
sented in this work only requires two parameters that
need to be optimized, making it more efficient than our
previously developed methodological approach.

Geometric molecular modeling

The spatial simulation software SRSim [20] is a rule-
based modeling method that allows for the specification
of molecule geometry. SRSim integrates rule-based mod-
eling, molecular dynamics, and a stochastic, diffusing-
particle simulator. Molecular geometry is provided by the
user via data files. Our proposed method is different in
that it is a purely rule-based ODE model that does not
require any additional data files to run, as the molecular
geometry is encoded into the rules themselves. In addi-
tion, our method only requires the BioNetGen software to
run.

The stochastic, particle-based Meredys software [22]
uses Brownian dynamics to simulate reaction-diffusion
systems at the mesoscopic level. It requires the specifi-
cation of details such as molecule positions, molecular
geometry, reaction site positions, and reaction types. Our
rule-based method is population-based and only requires
the distances between pairs of binding regions on a single
antigen molecule to create the model.

Computational methods for modeling two-molecule
ligand-receptor docking simulate systems on a smaller
scale than those studied using our method. Our method
uses more realistic geometric molecular models than do
existing methods for self-assembly of molecular struc-
tures, such as those employing simple bead models [23].

Experimental methods

Spatiotemporal analysis using nanoparticles have been
developed to understand the process of IgE antibody
aggregation. Methods to analyze clustered IgE data
include the use of Ripleys and Hopkins statistics [24] as
well as hierarchical clustering techniques which attempt
to quantify the numbers of sizes of clusters [25]. Spatial
data of gold nanoparticle labeled IgE have been imaged
on the cell surface using transmission electron microscopy
[26]. Tracking quantum dot labeled IgE has provided
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temporal information including diffusion rates [27]. While
these experimental methods can measure attributes about
receptor dynamics, neither provide aggregate binding pat-
tern information, making the process of distinguishing
linked from simply proximal receptors challenging.

Methods

In this section, we present a rule-based model of the
shrimp allergen Pen a 1 that encodes the steric hindrances
between the IgE binding regions of the allergen within the
set of rules. We first briefly discuss the binding sites and
binding regions of the Pen a 1 molecule. Next, we out-
line the assumptions that were made in the development
of this rule-based model. We then describe our methods
for determining the steric hindrances between the bind-
ing regions, constructing a set of rules based on these
steric effects, optimizing the rate constants, and imple-
menting the rule-based simulation. We explain how the
probabilities of formation of various aggregate sizes were
calculated. Lastly, we describe the Monte Carlo rigid-body
model and how we compared the results of our rule-based
model to that of the Monte Carlo simulation.

Pen a 1 structure and valency

The Pen a 1 allergen possesses a double-stranded coiled
structure. All-atom structures of shrimp tropomyosin
were obtained from the Protein Data Bank (PDB:1CG1)
and the Structural Database of Allergenic Proteins (SDAP
Model #284) [28, 29]. The Pen a 1 model used contains
568 amino acids and 4,577 atoms. Experimental stud-
ies have predicted that Pen a 1 has 16-18 binding sites,
which can be grouped into five general binding regions
per strand [28, 30, 31]. The amino acid sequences of the
binding sites are listed in [28]. The all-atom structure of
the IgE-FceRI receptor complex was obtained from [32].
It contains 1,709 amino acids and 13,477 atoms.

We generate 3 energetically feasible configurations of
the Pen a 1 antigen (Fig. 1). We split the longest region
into two binding regions (E and F) in our rule-based model
such that Pen a 1 has six binding regions per strand,
with 12 total regions in our model (Fig. 1, Native). This
is because the longest region is significantly larger than
the other regions and contains 8 epitopes. Due to the
symmetric structure of Pen a 1, we allow distinct IgE
molecules to bind to the same region on opposite strands
simultaneously.

Rule-based model assumptions

In order to simplify our rule-based model and to ensure
that the number of rules in the rule set does not become
too large for implementation, we make several practi-
cal assumptions when constructing our rule sets. Firstly,
we assume that an IgE can only bind to a single bind-
ing region on the Pen a 1 molecule, and that an IgE
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cannot be bound to multiple regions simultaneously. For
simplicity, and since the Monte Carlo data does not
incorporate crosslinking, our rules forbid crosslinking
Pen a 1 molecules through IgE binding. As discussed pre-
viously, we simplify our model further by assuming that
there are only 12 total binding regions on the Pen a 1
molecule (six per strand), and that each IgE can only bind
to one of these 12 regions. Finally, we assume that each
of the two strands in the Pen a 1 molecule binds indepen-
dently of the other strand. An IgE bound to a region on
one strand does not, in any way, affect the probability of
an IgE receptor binding to a region on the opposite strand.
Figure 2 shows Pen a 1 divided into strands.

Determining steric effects and rules for various Pen a 1
conformations and model resolutions

The cutoff distance d, is an important parameter in this
study that is used to help us automate rule set construc-
tion. In this paper, we use the term cutoff distance to
specify the maximum distance separating two binding
regions on a strand of Pen a 1 at which the two regions
have steric effects on each other (Fig. 2a), meaning that if
one of these regions is bound to a receptor, then the prob-
ability that the other region can be bound to a receptor
is reduced. The cutoff distance determines the rule set of
the rule-based model. For each conformation and model
resolution, the cutoff distance is varied and tested to find
its optimal value, which is the value that results in a rule-
based model that most accurately represents the aggre-
gate size probability data obtained from the Monte Carlo
simulation.

The Pen a 1 molecule is flexible and has various pos-
sible conformations due to local energy minima. In our
model, IgE-FceRI receptor complexes are bound to a two-
dimensional cell membrane, and the Pen a 1 molecule
is constrained to move on a 2D surface. Each Pen a 1
conformation possesses different curvature properties.
In this study, we focus on native [13, 14], S-shaped,
and U-shaped conformations (Fig. 1). The conforma-
tions for our study were designed using standalone
Foldit [33] and were energy-minimized using MOIL
software [34].

The molecular curvature around a binding region, along
with the IgE receptors bound to neighboring binding
regions, may cause steric hindrance around the binding
region, i.e., IgE receptors may be prevented from binding
to the region due to the region being blocked by recep-
tors bound to neighboring regions. A neighboring region
is any region that is close enough to the region under con-
sideration to potentially block it if bound to a receptor.
There are three general categories of steric effects that we
consider in our model, which are illustrated in Fig. 2b.
Firstly, if all neighboring regions are unbound, there is no
steric hindrance imposed on a binding region. Secondly, if
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Native U-shaped

S-shaped

Fig. 1 Three conformations of the all-atom molecular structure of the shrimp tropomyosin Pen a 1 (tan). The IgE binding regions are circled. The IgE
binding regions (various colors) are located in five regions per strand, although for our rule-based model, we have split the longer rightmost region
into two separate regions so that there are six binding regions per strand. We use the native configuration (left), an accentuated curve version called
S-Shaped (middle), and a U-Shaped configuration (right). In this paper, we label the regions on the native configuration (from left to right) as regions

A, B, C D, EandF

the molecular curvature around a binding region is posi-
tive (Fig. 2b, top), receptors bound to neighboring regions
are unlikely to affect the accessibility to this region since
positive curvature around two regions pulls them farther
apart (the linear distance between the regions increases).
Lastly, if the molecular curvature around a binding region
is negative (Fig. 2b, bottom), receptors bound to neigh-
boring regions may reduce the accessibility to this region
since negative curvature around two regions brings them
closer together (the linear distance between the regions
decreases).

The distances between each pair of binding regions
on each strand of the Pen a 1 molecule were measured
for each Pen a 1 conformation studied. For region pairs
located in an area of negative curvature, the linear dis-
tance between the regions was measured. Otherwise, the
distance of a free-form path along the molecule between
the two regions was used. This difference in distance mea-
surement accounts for the variation in steric effects that
results from different types of curvature. If the distance
between a pair of regions is less than the specified cutoff
distance, then those two regions are considered to exert
steric effects on each other, and the steric hindrance is
encoded into the binding rules for those regions.

For this study, the first rule construction method we
tested used a simple set of rules in which every rule has
the same rate constant kr;, and no binding is allowed
onto a region that has any steric effects exerted on it
by any other region. The second method builds on the
first method by allowing binding onto these regions with
a reduced, but non-zero, probability set by a separate

forward rate constant kg, assigned to rules that specify a
steric hindrance between regions.

Given that r is the distance between two binding regions
and d, is the cutoff distance, if one of these two bind-
ing regions is occupied and the other region is free, the
binding rate constant k7 for a receptor binding to the free
region is assigned according to the following:

Ifr > d., then kr = kf; = 1.0 molecule 's7,
Ifr <d., then kr =kry < kf1.

The rate constant ks was determined by performing an
optimization and fitting the resulting aggregate size data
to that of the 3D Monte Carlo model.

Rate constant optimization

Because the cutoff distance is unknown, this parameter
was varied from 3.0 nm to 20.0 nm in 0.1 nm increments,
with the rule set being reconstructed for each cutoff dis-
tance. An optimization of ks, was performed for every
cutoff distance.

The forward rate constant ks, for each Pen a 1 con-
formation and model resolution was optimized using
an adaptive algorithm based on the Metropolis-Hastings
algorithm. This algorithm finds a minimum of the residual
sum-of-squares (o) between the RBM data and the Monte
Carlo data. If the o value for a new rate constant k7, is 0,
the current o value is o,, and the current rate constant is
kfz, then the rate constant is determined according to the
following:

curvature (bottom)

a b Y
S P
B o .
WY e M Nl PO . 3 e T

I /"%:w.y-.w‘

Fig. 2 Rule-based modeling with steric effects. a Circles represent a possible region of steric hindrance around the yellow/orange binding region
where the radius of the circle represents the cutoff distance d.. b Types of curvature on the Pen a 1 molecule, visualized split into two strands.
Accessibility to the regions may be affected when neighboring regions are occupied depending on either positive curvature (top), or negative
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If oy > o, then oc = oy & kry = kpo, W/ prob. e~ Ao/T

If 0y > o, then oc = ¢ & kyy = kgp W/ prob. 1 — e~ Ao/T

If o4 <o theno, =0y, & kf2 = kun w/ prob. 1.

If oy, is higher than o, then o, (and ks, ) are accepted
with a probability dependent on the difference between
oy and o,, Ao, and the simulated annealing tempera-
ture 7. If the new value is accepted, then the rate con-
stant is incremented according to the specified step size,
and the new rate constant is tested. Adaptive rate con-
stant step sizes of 1x10~% molecule™'s~! and 1x107°
molecule~'s~1 were used (if o is decreasing, the smaller
step size is used to find and test a new rate constant;
otherwise, the larger step size is used). However, if the
new value is rejected, then the algorithm will choose a
new rate constant at random from over the entire allowed
range. The algorithm was allowed to search over the range
0.00 to 0.40 molecule™'s~!. We empirically determined
from previous scans of ks, that o for any value of kr;
greater than 0.40 molecule™!s~! would be too high to be
acceptable.

Rule-based model implementation

The rule-based model is specified using the BioNetGen
language [5] and implemented with the RuleBender pro-
gram [35]. RuleBender generates the ODEs associated
with the binding rules and tracks the aggregates that
are formed as the IgE receptors bind to the Pen a 1
molecules in an ODE simulation. Each strand of the
two-stranded molecules is simulated separately. Each run
takes no more than 10 seconds to reach the steady
state.

Another version of the rule set with forward binding
rate constants proportional to the number of binding sites
in the region was also tested, but did not yield aggregate
size data that fit better to the Monte Carlo data than the
rule sets used.
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Aggregate size probability calculation

Our model assumes that Pen a 1 is comprised of two
strands, which we refer to here as strand I and strand II.
Therefore, the probability of formation of an aggregate of
a certain size is calculated by combining the independent
probabilities of formation of each strand. The probability
P(n) to form an aggregate of size n is given by:

P(n<6) = Y Pi(m)Pu(n—m), (1)
m=0
6
P(n>6) = Y Pi(mPy(n—m), 2)
m=n—6

where Py (n) is the independent probability of forming
an aggregate of size n in strand I(I]).

Variation of rule set with curvature

In order to more clearly illustrate how the set of binding
rules for a given molecule is affected by molecular cur-
vature using our method of rule construction, we present
an example of a U-shaped Pen a 1 molecule with vary-
ing curvature. We look at three molecules: the U-shaped
molecule seen in Fig. 1, the same molecule with its two
ends rotated inward by 45 degrees, and the same molecule
with its two ends rotated inward by 60 degrees (see Fig. 3).
It should be noted that the latter two molecules are not
energy-minimized conformations and are only presented
here for the purpose of demonstrating our geometric rule
construction method. The rule sets for strand I are shown
for the 45-degree-rotated molecular structure (Table 1),
the 60-degree-rotated molecular structure (Table 2), and
the U-shaped Pen a 1 molecule (Table 3).

For each of these three molecules, the distances between
each pair of binding regions were measured, and the rule
sets for each molecule were constructed according to
these distances. For the purpose of comparing how molec-
ular curvature affects the rule set, the cutoff distance

Fig. 3 Visualizations of the a U-shaped, b 45-degree-rotated, and € 60-degree-rotated molecular structures. (It should be noted that the latter two
molecules are not energy-minimized conformations and are only presented here for the purpose of demonstrating our rule construction method)
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Table 1 Rule set for Strand | (T)) of the 45-degree-rotated
molecular structure. Letters in parentheses are binding sites.
Omitted letters are free or occupied. The IgE subscript shows
which site it is bound to

Binding site  Reaction rule Binding rate
A T/(ABC) + IgE — T/(IgE4,B,Q) ke
Ti(AlgEs,C) + IgE — T(IgE4,I9E5.C) )
Ti(ABJIgEC) + IgE — Ti(IgE4,BIgEC) )
T/(AIgEg,IgEC) + IgE — T)(IgE4,IgEs.IgEC) ke
B Ti(ABC) + IgE — T)(AlgEs,Q) ke
T/(19EA,B,C) + IgE — Ti(IgE4,IgE5,C) ke
Ti(AB,IgEc) + IgE — T)(AgEgIgEc) kry
T/(19E,BIgEC) +I9E — Ti(IgEa IgEs,IgEC) kr2
C T/(ABCD) + IgE — T;(AB,IgEc,D) ke
T/(1gEa,B,CD) + IgE — T(IgE4,B,IgEc,D) kr2
T/(AIgE,CD) + IgE — T)(AIgEgIgEc,D) ke>
T/(ABCIgEp) + IgE — Ti(ABIgEc,IgEp) key
Ti(IgEa IgEs,C.D) + IgE — Ti(IgEa lgEg IgEc,D) ks
T/(1gEa,BCIgEp) + IgE — Ti(IgEA BIgEC,IgEp) ke
Ti(AlgEs,ClgEp) + IgE — Ti(A/lgEs,IgEc,IgEp) ke
Ti(I9E4,I9Es,CIgEp) + IgE — Ti(IgE4,I9EsIgEC,IgED) k2
D T/(CDE) + IgE — T;(CIgEp,E) ke
T/(1gEc,.DE) + IgE — Ti(IgEc IgEp,E) )
T/(CDIgEe) + IgE — T/(ClgEp.IgEe) )
T(I9Ec.DIgEe) + 19E — Ti(IgEc IgEp.IgEe) kr>
E T/(D,EF) + IgE — T/(DJgEL,F) ke
T/(19Ep,EF) + IgE — T/(IgEp,IgE: F) kry
T/D,EIgEf) + IgE — T(DJIgEE,IgEF) kry
Ti(I9Ep EIgEF) + 19E — Ti(Ig9Ep .19k IgEF) L)
F T/EF) +IgE — T/(EIgEF) ke
T/(I9EE F) +1gE — Ti(IgEk IgEr) )

was fixed at 8.1 nm, and the forward rate constant kr;
was fixed at 0.005 molecule™'s~!. The rule-based model
for each molecule was simulated and the antibody aggre-
gate size probabilities were calculated (see Fig. 4). We
observe that as the degree of curvature of the molecule
increases, the aggregate size distribution shifts towards
smaller aggregate sizes, which corresponds to the increase
in steric effects between binding regions encoded in the
rule sets.

Monte Carlo geometric simulation

We compared the aggregate size distributions from our
rule-based model to those of a previously developed
Monte Carlo model [12] that uses 3-D rigid body models
of the antigens and receptors. Initially, the molecules are
randomly positioned within the bounding volume with
no bonds present. Then, during the simulation, at every
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Table 2 Rule set for Strand | (T)) of the 60-degree-rotated

molecular structure. Letters in parentheses are binding sites.
Omitted letters are free or occupied. The IgE subscript shows
which site it is bound to

Binding site  Reaction rule Binding rate
A THABCD) + IgE — T/(IgEA,B.CD) ke
T/(AlgEg,C,D) + IgE — T/(IgE4,IgEs,C.D) ke
THABIgEC,D) + IgE — Ti(IgE4.B,IgEc,D) ke
THAB,CIgEp) + IgE — T/(IgEA,B,ClgEp) key
Ti(AlgEg.IgEc.D) + IgE — T(IgEa IgEs,IgEc,D) )
T(AJgEE,CIgED) + IgE — Ti(IgEA,lgE5,CIgED) kes
Ti(ABIgEc,IgEp) +19E — Ti(lgE4,BIgEc.IgED) ke2
Ti(AlgEs,IgEc IgEp) + IgE — Ti(lgEA,IgEs,IgEC,IgED) ke
B T)(AB,C) + IgE — T)(AlgEp,C) key
Ti(lgEa,B.C) +IgE — Ti(IgEA,lgEs.C) )
T/(AB,IgEc) + IgE — T/(AIgEg,IgEc) ke2
T/(IgEaB/IgEc) + IgE — T/(IgE4,IgEs,IgEc) ke
C T)(ABCD) +IgE — T;(AB,IgEc,D) key
T/(IgEA,B.CD) + IgE — T/(IgE4,BgEC,D) ke
T(AJgEs,C,D) + IgE — Ti(A/lgEg.IgEc,D) ke
THABCIgED) + IgE — TH(ABIgEC,IgED) ke
T/(IgEa,IgE,C,D) + IgE — T(IgEx,IgEg,IgEC,D) ke
T/(IgEa,B,ClgEp) + IgE — Ti(IgEa,B,IgEc,IgEp) ke
Ti(AlgEg,CIgEp) + 19E — T)(AlgEs,IgEC IgED) ke
Ti(IgEalgEs ClgEp) + IgE — Ti(IgEa IgEsIgEC IgED) ke
D T/(ABCDE) + IgE — T)(ABCIgEn,E) ke
Ti(IgEA,B.CDE) + IgE — Ti(19E4,B,CIgEp,E) key
Ti(AlgEg,CD,E) + IgE — Ti(AgEs,CIgEp,E) ke
T/(AB,gEc,D,E) + IgE — Ti(AB,IgEc,IgEp,E) ke
T/(ABCD|gEf) +I1gE — T)(AB,CIgEp,IgEF) ks
T/(IgEa,IgEp,C,D,E) + IgE — T/(IgE4,IgEs,C lgEp,E) ke
Ti(IlgEa BIgEc.DE) +1gE — Ti(IgEa BIgEc,IgEDE) ke2
T/(IgEs,B.CD,IgEg) + IgE — T(IgE4,B,CIgEp,IgEr) ke
T)(AgEg,IgEc,DE) + IgE — T(AlgEg IgEc,IgEp,E) ke>
Ti(AlgEg,CD,IgEg) + IgE — Ti(AIgEs,ClgEp,IgEs) ke>
Ti(ABIgEc,D,IgEf) + IgE — T/(AB,IgEc,IgEp,IgEF) ke
Ti(IgEa IgEsI9Ec,DE) +19E — Ti(IgEA IgEsI9ECIGED.E) ke
Ti(IgEa lgEs,CDIgEE) + IgE — Ti(IgE4 I9Es,CIgED.IgEE) Ko
T/(IgEaBIgEc,D,IgEr) + IgE — T/(IgE4,BIgEC IgEp,IgEr) ke
Ti(AIgEs,IgEc D/IgEe) + IgE — Ti(AlgEs,IgEC IgED.IgEE) ke
T/(I9E4,I9Eg.I9EC DIgEe) + IgE — kr2
Ti(IgEalgEs/I9Ec,I9ED,IgEF)
E T/DEF) + IgE — T/(D,IgE¢,F) ke
T/I9Ep,EF) + IgE — T/(IgEp,IgEe,F) key
T(D,EIgEF) + IgE — T,(D/IgEs,IgEF) key
T(IgEp,EIgEF) + IgE — Ti(IgEp,IgEE,IgEr) ke>
F THEF) + IgE — T(EIgEp) ke
Ti(IgEF) + 198 — Ti(IgE£ I9EF) ke2
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Table 3 Rule set for Strand | (7)) of 0 % reduced (full isosurface)
model of Pen a 1 for all energy-minimized conformations (native,
S-shaped, U-shaped). Letters in parentheses are binding sites.
Omitted letters are free or occupied. The IgE subscript shows
which site it is bound to

Binding site Reaction rule Binding rate
A Ti(AB) + IgE — T;(IgE4,B) ke
Ti(AIgEg) +19E — Ti(IgEA IgEs) kr2
B Ti(AB,C) +IgE — T)(AlgEs,C) ker
Ti(I9E,B.C) +IgE — Ti(IgEAlgEs,C) ke
Ti(ABIgEc) + IgE — T/(AIgEg,IgEc) ke
T/(IgEa,B,IgEc) + IgE — Ti(IgE4,IgEs,IgEC) ke
C T/(B,.CD) + IgE — T(BIgE,D) key
T/(IgEg,CD) + IgE — T,(IgEg,IgEc,D) k2
Ti(BClgEp) +1gE — T)(BgEc/IgEp) ke
Ti(IgEs,CIgEp) + I9E — Ti(IgEsI9EcIgED)  kn
D T(CDE) + IgE — T/(ClgEp,E) ker
Ti(IgEc,DE) + IgE — Ti(IgEc.IgED,E) ke
TICD/IgEe) + 19k — Ti(CIgEp,IgEe) ke
T/(IgEc,D/IgEg) + IgE — Ti(IgEc IgEp,IgEE) ke
E T/(D,EF) +IgE — T)(D,Igk¢,F) ke
TiI9Ep,EF) + IgE — Ti(I9Ep,IgEL.F) ke
THDEIgEF) +I9E — T)(D/IgE¢ IgEF) kr2
T(I9Ep,EIgEF) + IgE — Ti(IgEp,IgEe,IgEF) kr2
F T/(EF) + IgE — Ti(EIgEF) ke
T/(9EF) + IgE — Ti(IgEg,IgEF) ke

time step, the positions of the molecules change accord-
ing to a combination of random sampling and biological
constraints such as molecular speeds, binding rates, and
unbinding rates. Also, at every time step, any two binding
sites (on two separate molecules) within binding distance
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of each other will bind with a probability determined by
the binding rate. The stability of the number of edges in
the graph-based structure can be used to determine when
to stop the simulation. Since the simulation models activ-
ity taking place on the surface of a cell membrane, the
molecules can translate on the XY plane and rotate about
the Z axis. Aggregate size distributions are collected from
packed structures after the simulation reaches a steady
state.

It should be noted that experimental data pertaining to
the aggregation of IgE-FceRI receptor complexes onto the
Pen a 1 molecule is not readily available as of the date this
work was written. Therefore, we cannot compare the com-
putational results of this work to experiment. In addition,
the 3D Monte Carlo simulation does not include energet-
ics, which limits our understanding of receptor binding
to Pen a 1 and is the reason why we cannot derive the
forward rate constants directly from the simulation.

The 3D molecular models of the Monte Carlo simu-
lation were created by generating isosurface models of
the all-atom molecular structures using UCSF Chimera
[36]. Since single Monte Carlo runs can require over
20 hours of computation [14], it would be preferable to
use lower resolution models to reduce computation time.
However, lower resolution models can also introduce sim-
ulation effects that are difficult to quantify. We created
3D models with different resolutions and used our novel
rule-based method to examine how steric effects vary with
resolution. In order to create 3D models with a lower res-
olution, we performed polygon reduction using Autodesk
Maya [37] to reduce the number of polygons by 25 %,
50 %, 65 %, 75 %, 90 %, and 95 % (see Fig. 5 for an
illustration). In our study, we also used the original iso-
surface models, which we refer to as having 0 % polygon
reduction.

0.7r
0.6

0.4r

Probability

0.2r
0.1r

00 1 1 1 1

0o 1 2 3 4 5
Aggregate size

Fig. 4 Comparison of rule-based model aggregate size distributions for three curvatures. Results for the U-shaped, 45-degree-rotated, and

60-degree-rotated molecular structures are shown
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All Atom

models

Isosurface

Fig. 5 Creation of 3D molecular models at various resolutions. Isosurface models and subsequent polygon reduction are used to generate these

Reduced

Calculating differences from Monte Carlo geometric
simulation and Rule-based model
In order to quantify the difference between the Monte
Carlo and rule-based modeling aggregate sizes for each
conformation and model resolution, the residual sum-of-
squares (o) normalized by the total number of possible
aggregate sizes (N = 13) was calculated for each con-
formation and model resolution. The equation used to
calculate the normalized o is:

i1 (Phuc — Pho)’

where N is the total number of possible aggregate sizes in
a histogram (each histogram has the same number of pos-
sible aggregate sizes), P} is the occurrence probability of

the i aggregate size of the Monte Carlo data, and Phpais
the occurrence probability of the i aggregate size of the
rule-based modeling data.

Since the data points used in this calculation are proba-
bilities, the maximum possible normalized o is 1, and the
minimum possible normalized o (corresponding to two
identical histograms) is zero.

Results and Discussion

Experimental setup

Monte Carlo simulation

The environment of the Monte Carlo simulations was
a 200 nm x 200 nm (40,000 nm?) discrete mem-
brane with non-periodic boundaries. For each run, one
Pen a 1 molecule and 24 IgE-FceRI receptor com-
plexes were simulated, such that the receptor density
was ~600 receptors/um?. Sixty runs were performed
for each Pen a 1 conformation. The values of binding
and unbinding rates for Pen a 1 are currently unknown,
thus we cannot determine kinetics from our simula-
tion, only possible packing structures. In our simulations
we use binding and unbinding rates that were deter-
mined for a synthetic IgE antigen [38] with values 1.0

molecule~'s~! and 0.01 s~! respectively. The diffusion
coefficient 0.09um?/s of IgE-FceRI found in [27] was
used for all molecules. A time step of 10 us was used,
and every experiment was run for 500,000 time steps,
which is long enough for the simulations to reach a steady
state.

The reduction in speed of aggregates as they increase
in size [27], which has not been fully quantified, is
included in the simulation by reducing the diffusion
coefficient of an aggregate such that it is inversely pro-
portional to the size of the aggregate. For example,
the diffusion coefficient of an aggregate containing five
receptors would be 1/5 of the original diffusion coeffi-
cient. The method of speed reduction implemented only
affects aggregation kinetics and does not have a signif-
icant effect on the packing structure of aggregates at
equilibrium.

The Monte Carlo simulation code was developed using
the Parasol Motion Planning Library (PMPL). The sim-
ulations were run on a supercomputer housed at the
University of New Mexico, utilizing single cores of
Intel Xeon E5645 processors with 4 GB of RAM per
processor.

Rule-based modeling

The rule-based model was specified in the BioNetGen
language, and ODE simulations were conducted on these
models using RuleBender [35]. In each experiment, 100
Pen a 1 antigen molecules and 1000 receptors were sim-
ulated. Because each of the two strands was simulated
individually, the total population included 100 strand
I molecules, 100 strand II molecules, and 1000 recep-
tors. Each experiment was run for 1000 time steps,
long enough for the simulation to reach a steady state,
using a time step of 0.01 s. Three Pen a 1 conforma-
tions were used (see Fig. 1), which are made distinct in
our simulations only by the distance between binding
regions.
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Rule sets

The optimized cutoff distance corresponds to an optimal
set of binding rules for each conformation of Pena 1 at 0 %
polygon reduction.

The optimal rule sets were found to be the same for
all three conformations, although the optimized rate con-
stant kr; varies based on conformation. These rule sets are
shown for strand I (Table 3) and strand II (Table 4) of the
Pen a 1 molecule.

The forward rate constant kg, and the cutoff distance
range were optimized for each of the three energy-
minimized conformations of Pen a 1 at 0 % polygon reduc-
tion. Table 5 displays the rate constants, cutoff distances,
and o values for the native, S-shaped, and U-shaped
Pen a 1 conformations.

The Monte Carlo aggregate size probability histogram
data is shown along with the optimized rule-based mod-
eling data for the native, S-shaped, and U-shaped Pen a 1
conformations at 0 % polygon reduction (Fig. 6). The error
bars for the Monte Carlo data were calculated by bin-
ning the 60 runs into 10 sets of six runs each and then
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Table 5 Rule-based model parameters for three pena 1
conformations

Parameter Native S-shaped U-shaped
Cutoff distance (nm) 7.0-87 6.8-8.3 6.8-8.6
key (molecule™'s™1) 1.00 1.00 1.00

key (molecule™'s™1) 0.006595 0.003558 0.007315
ke (s71) 0.01 0.01 0.01

o 0.000703 0.000135 0.000469

Comparing aggregate formation for each Pena 1
conformation

For the 3D Monte Carlo simulation, we observe that there
is a significant difference between the aggregate size dis-
tribution of the S-shaped conformation and that of the
native and U-shaped conformations. The optimal forward
binding rate constant Ky, shows variation between confor-
mations, particularly between the S-shaped conformation

calculating the standard error of the mean.

Table 4 Rule set for Strand Il (7)) of 0 % reduced (full isosurface)
model of Pen a 1 for all energy-minimized conformations (native,
S-shaped, U-shaped). Letters in parentheses are binding sites.
Omitted letters are free or occupied. The IgE subscript shows

which site it is bound to

Binding site Reaction rule Binding rate
A Ty(AB) + IgE — Tj(IgE,B) ke
Tu(AlgEg) + IgE — T(IgEa,IgEs) kr2
B TiABQ) +IgE — Ty(AlgEs,Q) ke
Ti(19Ea,B,C) + IgE — Ty(IgEa,IgEs,C) ke>
Ti(ABIgEC) + IgE — Tj(AlgEgIgEc) k2
Ti(IgE4BIgEC) +1gE — Ty(IgEa lgBslgEc) ke
C Ty(BCD) + IgE — Ty(BgEc,D) ke
Tu(IgEs,C.D) + IgE — Ty(IgEsIgEc,D) ke
Ty(BCIgEp) +IgE — Ty (BIgEc IgEp) ke
Ti(IgEs,ClgEp) + IgE — Ty(IgBsgEcIgEp) ke
D Ty(CD,E) +IgE — Ty(ClgEp,E) ket
Ti(IgEc.BE) +IgE — Ty(IgEc IgEp,E) kr2
Ty(CD,IgEg) + IgE — T(ClgEp,IgEr) ke
Ti(lgEc,D/lgkr) + IgE — Ty(IgEc IgEp Igkr) ke
E Ty(DEF) +IgE — Ty(D,IgEEF) ke
Ti(IgEp.EF) +1gE — Ty(IgEp,IgEe F) ke2
Ty(D,EIgEr) + IgE — T(D,IgEg,IgEF) ke
Ti(IgEp EIgEF) + IgE — Ty(IgEp,IgBeIgEF) ke
F Ty(EF) +19E — Ty(EIgEr) ke
Ty(IgE¢,F) + IgE — Ty(IgEg IgEF) ke

Probability

Probability

Probability

Fig. 6 Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions. Results for the native (top), S-shaped

(center), and U-shaped (bottom) Pen a 1
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and the other two. However, the optimal set of binding
rules was found to be identical for all three conformations,
and the optimal cutoff distance range is similar, but not
identical, for all three conformations. This indicates that
the distance at or below which two binding regions exert
significant steric effects on each other is not highly depen-
dent on conformation for the three energy-minimized
conformations studied.

The rate constant ks, represents the probability of an
IgE-receptor complex binding to a region on the Pen a 1
molecule that is under significant steric hindrance from
IgE-receptor complexes that are bound to neighboring
binding regions. For the S-shaped molecule, the opti-
mized Ky value is approximately half of the ks, value for
the other two molecular geometries, indicating that the
curvature of the S-shaped molecule may be reducing the
probability that a binding region can bind without being
blocked by receptors bound to nearby regions. This dif-
ference indicates that molecular geometry may play an
important role in antibody aggregation onto the Pen a 1
molecule and should be taken into consideration in future
aggregation research.

Results for resolution study

In addition to molecular geometry, the resolution of the
3D molecular models used in our Monte Carlo simula-
tion also affects the aggregation data generated by the
simulation. As the resolution is reduced, the volume of
the 3D models is also reduced, causing a shift in aggre-
gate size towards larger aggregates. In this study, we seek
to use our novel rule-based method to better understand
the effect of resolution on the steric effects between the
binding regions of the Pen a 1 molecule. We look at the
probability of binding for each of the binding regions
and how these probabilities vary with resolution and with
molecular geometry. We also look at the variation in
aggregate size distribution with resolution, and we exam-
ine the effect of model resolution reduction on the two
optimized parameters used in our rule-based model: the
cutoff distance and the rate constant kz,.

Probatbilities of binding for individual binding regions

The probability of binding for each individual binding
region of the Pen a 1 molecule varies with resolution
and with conformation. For each optimized rule-based
model, the probability of binding versus model resolu-
tion is shown for each of the six binding regions used
in our model for the native, S-shaped, and U-shaped
conformations (Fig. 7).

From the heat map we observe that region D exhibits
strong variation in binding probability with resolution for
both strand I and strand II for each of the three conforma-
tions. Region C exhibits strong variation for strand II of
the U-shaped type. We also observe that certain pairs of
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Fig. 7 Binding probability versus resolution rule-based modeling data
for the 3 Pen a 1 configurations. Data for strand | (top) and strand Il
(bottom) are shown. The letters A, B, C, D, E, and F represent the six
binding regions used and the letters n, s, and u represent the
configuration in the rule-based model. The X-axis is the percent
reduction and the Y-axis are the binding sites

binding regions display symmetry such that their binding
probabilities have exactly the same value. For example, for
the native type at 0 % reduced resolution, the region pairs
A and F, B and E, and C and D are symmetric for both
strands. This symmetry occurs due to the strong similar-
ities between the binding rules of two or more regions;
for example, the binding rules of regions in symmetric
groupings encode steric effects for the same number of
neighboring regions.

Aggregate size histograms

The Monte Carlo aggregate size probability histogram
data for each resolution of the Monte Carlo simulation is
shown along with the optimized rule-based modeling data
for the native (Fig. 8), S-shaped (Fig. 9), and U-shaped
(Fig. 10) Pen a 1 conformations. The error bars for the
Monte Carlo data were calculated by dividing the 60 runs
into 10 sets of six runs each and then calculating the
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Fig. 8 Aggregate size histograms for the native Pen a 1. A comparison of the Monte Carlo (blue) and optimized rule-based model (red) aggregate
size distributions are shown. The error bars for the Monte Carlo data were calculated by dividing the 60 runs into 10 sets of six runs each and then
calculating the standard error of the mean

standard error of the mean. We observe that for all three
conformations, the aggregate size distribution shows a
general trend of shifting towards larger aggregate sizes as
the resolution decreases.

Rate constants versus resolution

We predict that for models with the same cutoff dis-
tance range (and therefore, the same rule set), the opti-
mized rate constant k¢, should increase as the aggregate
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Fig. 9 Aggregate size histograms for the S-shaped Pen a 1. A comparison of the Monte Carlo (blue) and optimized rule-based model (red) aggregate
size distributions are shown. The error bars for the Monte Carlo data were calculated by dividing the 60 runs into 10 sets of six runs each and then

size distribution shifts toward larger aggregates. This is
because higher rate constants correspond with increased
binding, which results in larger aggregates. Looking at the
histograms in Figs. 8, 9, and 10, as well as the rate constant

data in Table 6, we do indeed observe this trend, which is
most clearly seen by comparing the 75 %, 90 %, and 95 %
reduced resolutions of the native Pen a 1. For these reso-
lutions, which all have the same optimized cutoff distance
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Fig. 10 Aggregate size histograms for the U-shaped Pen a 1. A comparison of the Monte Carlo (blue) and optimized rule-based model (red)
aggregate size distributions are shown. The error bars for the Monte Carlo data were calculated by dividing the 60 runs into 10 sets of six runs each
and then calculating the standard error of the mean

range, the aggregate size distribution shifts toward larger
aggregates as the reduction in resolution increases, and
there is a corresponding increase in the optimized kg
value with reduction in resolution. We observe a similar

feature for the 0 % and 25 % resolutions of the U-shaped
Pena 1.

It may be expected that this increase in kr, with a
reduction in resolution should also hold true for other
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Table 6 Cutoff distances (nm), binding constants (molecule™'s™"), unbinding rate constants (s~'), and & values for the rule-based
model for various resolutions of the native, S-shaped, and U-shaped Pen a 1

Model percent reduction

Cfg Value 0% 25% 50 % 65 % 75% 90 % 95 %
N Cutoff 70-87 5.6-6.2 55 55 40-54 40-54 40-54
ke 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ke 6.60e-03 7.58e-03 3.86e-03 4.90e-04 1.27e-03 1.17e-02 1.64e-02
kr 0.01 0.01 0.01 0.01 0.01 0.01 0.01
o 7.03e-04 3.62e-04 6.30e-05 1.62e-03 6.31e-04 1.29e-04 9.25e-04
S Cutoff 6.8-8.3 5.8-6.0 5.8-6.0 5.8-6.0 54-57 45-53 45-53
ke 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ke 3.56e-03 1.03e-02 8.67e-03 7.84e-03 4.12e-03 6.38e-03 5.58e-03
ky 0.01 0.01 0.01 0.01 0.01 0.01 0.01
o 1.35e-04 1.65e-03 1.48e-04 3.78e-04 9.40e-05 6.77e-04 4.00e-05
u Cutoff 6.8-8.6 6.8-8.6 53 53 53 4.1-52 3.9-40
ke 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ke 7.32e-03 1.07e-02 1.94e-03 1.18e-03 1.01e-02 1.04e-02 4.26e-03
Ky 0.01 0.01 0.01 0.01 0.01 0.01 0.01
o 4.69e-04 141e-03 5.97e-04 2.77e-04 5.23e-04 3.18e-04 2.59e-04

resolutions with the same rule set, such as the 50 % and
65 % reduced resolutions of the native Pen a 1. However,
looking at the histograms in Fig. 8, we see that the Monte
Carlo aggregate size distribution of the 65 % reduced reso-
lution is shifted toward smaller aggregate sizes than is the
50 % reduced resolution. Given this data, the fact that ks,
is larger for the 50 % reduced resolution than for the 65 %
reduced resolution makes sense. It should be noted that
this unexpected feature of the Monte Carlo data may be
due to the rather small number of runs (60) performed for
each Monte Carlo resolution. We observe a similar feature
for the 25 %, 50 %, and 65 % resolutions of the S-shaped
Pen a 1, for the 90 % and 95 % resolutions of the S-shaped
Pen a 1, and for the 50 % and 65 % resolutions of the
U-shaped Pen a 1.

Cutoff distance versus resolution
For each Pen a 1 conformation, we plotted the optimal cut-
off distance (the cutoff distance for the rule-based model
that best fit the Monte Carlo data) versus the Monte Carlo
resolution for the native, S-shaped, and U-shaped Pen a 1
conformations (Fig. 11). The goal of this model is to aid
in understanding how the optimal cutoff distance, and
hence, the steric hindrances between binding regions vary
with the resolution for different conformations of Pen a 1.
The error bars on some of the data points represent the
range of possible cutoff distances that correspond to the
same set of rules.

As the resolution of the Monte Carlo model decreases,
the volume of the molecular models decreases, and

consequently the steric hindrance between binding
regions decreases, resulting in a shift toward larger aggre-
gates when there is a reduction in model resolution. This
is observed in Fig. 11 for the cutoff distance range, used
in this method as a measure of average steric hindrance
between binding regions, which generally decreases as
the resolution decreases. We also observe that some of
the resolutions have the same optimized cutoff distance
range. For example, the 75 %, 90 %, and 95 % resolutions
of the native Pen a 1 all have a cutoff distance range of
4.0-5.4 nm.

Studying how the cutoff distance range changes with
resolution provides us with useful information about how
the average steric hindrance changes (or does not change)
with resolution. For example, from the native Pen a 1 data,
we can infer that the average steric hindrance is about the
same for the 50 % and 65 % resolutions. It should be noted
that some cutoff distance ranges are rather large, such as
the range of 4.0-5.4 nm, and the exact optimized cutoff
distance lies somewhere within that range. Therefore, for
the 75 %, 90 %, and 95 % resolutions, we cannot assume
that the average steric hindrance is exactly the same.

Comparing this data with the distances between binding
regions on the Pen a 1 molecule allows us to predict which
pairs of binding regions we expect to exhibit the greatest
amount of steric hindrance on each other for each reso-
lution of the Monte Carlo model. The cutoff distance for
the 50 % and 65 % reduced resolutions of the native type
is 5.5 nm. We can predict that any pair of binding regions
with this or a smaller distance between them will exhibit
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Fig. 11 Cutoff distance versus resolution data for the 3 Pen a 1 conformations. The error bars on some of the data points represent the range of

possible cutoff distances that includes the optimal cutoff distance

a significant amount of steric hindrance on each other. In
this case, these pairs of binding regions on strand I would
be A and B, B and C, C and D, and E and F. On strand II,
however, these pairs of binding regions would be A and
B, B and C, and E and F. This is due to differences in
curvature between the two strands. The distance between
binding regions C and D on strand I is 5.5 nm, which is
the cutoff distance. On strand II, the distance between
binding regions C and D is 5.6 nm, which is outside the
cutoff distance range, so we can predict that C and D do
not exhibit significant steric hindrance on each other on
strand IL

We observe that there are significant differences
between the plots of cutoff distance versus resolution for
each of the three conformations (native, S-shaped, and
U-shaped). This is not unexpected, as the differences in
curvature among the three molecules means that the dis-
tances between binding regions also vary. For example, the
resolutions at which the cutoff distance range changes are
not the same for the three conformations. In addition, the
cutoff distances themselves vary based on conformation.
These differences indicate that molecular geometry plays
an important role in antibody aggregation onto the Pena 1
molecule and should be taken into consideration in future
research.

Conclusions

We developed a novel implementation of rule-based mod-
eling that encodes molecular geometry into the rules
and associated rate constants. We studied the effects of
molecular geometry on the rule sets of three U-shaped

molecules of varying curvature. We also studied three
energy-minimized molecular conformations of the Pena 1
allergen using this method combined with a 3D rigid-
body Monte Carlo simulation at seven different resolu-
tions of the 3D models. We analyzed the similarities and
differences among the rule-based models for each geom-
etry and resolution to determine how the steric effects
between allergen binding regions vary with molecular
geometry and model resolution.

In our study of the U-shaped molecule, we found that
the degree of curvature of the antigen has a strong effect
on the rule set constructed using our proposed method,
with individual binding regions becoming dependent on
a greater number of neighboring binding regions as the
degree of curvature increases. In our study of the three
energy-minimized Pen a 1 conformations, we found that
our proposed method of rule set construction provides a
quantification of the steric effects that affect binding site
accessibility and allows us to observe which neighboring
binding regions most strongly affect a particular region.
Although the set of binding rules will not always be differ-
ent for different antigen conformations, the binding rate
constants associated with the rules provide another means
of quantifying the variation in aggregate size distribution
based on antigen conformation.

In our resolution study, we have shown that there is
a downward trend in the optimal cutoff distance with a
decrease in resolution for all three of the Pen a 1 con-
formations. From this finding, we can conclude that the
reduction in volume that results from polygon reduction
of the 3D molecular models results in increased binding
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site accessibility. We also observed that some resolutions
of the same conformation have identical optimal cutoff
distances. From this data, we can extract useful infor-
mation about similarities between different resolutions.
We could use this data to develop models for the pre-
diction of full-resolution aggregate size data given only
lower-resolution data combined with our novel rule-based
model.

We used a rod-shaped molecule in our study, but our
method for measuring distances between binding sites
could be modified for use with other molecular geome-
tries. Furthermore, our method could be extended to
model experimental data in the future; analysis of probe
positions in electron microscopy images allow for the
estimation of receptor clustering.

The integration of molecular geometry with rule-based
modeling to simulate molecular assembly processes pro-
duces detailed insights into binding site accessibility while
overcoming the problem of combinatorial complexity.
These geometric insights can provide quantitative infor-
mation on the steric accessibility of binding regions,
therefore providing details that were not traditionally pro-
duced from rule-based modeling. Another approach to
gain computational efficiency, reduced resolution models,
can be used to model assembly structures in reasonable
time-frames. However, the impacts of reduced resolution
can be difficult to quantify. We have shown, through the
integration of geometric rule-based modeling and three-
dimensional reduced resolution Monte Carlo simulations,
that this difference can both be quantified and poten-
tially used for evaluating the quality of reduced resolution
structures.
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