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Abstract

Background: Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of
which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are
often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic
targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to
differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements
could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications.

Methods: Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods,
which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in
this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based
architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as
features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its
adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and Hel.a S3. We train EP-DNN
using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN
predictions to quantify the validation rate for different levels of confidence in the predictions and also perform
comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS.

Results: We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop
methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task.
This analysis indicates that the important histone modifications were distinct for different cell types, with some
overlaps, e.g, H3K27ac was important in cell type H1 but less so in Hela S3, while H3K4me1 was relatively important in
all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to
train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN.

Conclusions: In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above
90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming
DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone
modifications are important, and within that, which features proximal or distal to the enhancer site, are important.
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Background
Distinct cell phenotypes are largely modulated by unique
gene expression patterns, stemming from the interaction
of the genome with its environment. Such crosstalk is
mediated by specialized cis-regulatory modules (CRMs),
including enhancers [1], silencers, promoters, and insula-
tors [2—4]. Among these, enhancers constitute the most
prominent class of gene expression regulators. Early
experiments indicated that sequences located far from the
gene promoters are often responsible for mediating gene
transcription [5]. Such genetic elements are called
enhancers, defined as short DNA sequences regulating
temporal and cell-type specific basal gene-transcription
levels, from transcription start sites (TSSs), at distances
ranging from hundreds of bases to, in rare cases, even
megabases [6—8]. Knowing their properties, regulatory ac-
tivity, and genomic targets is crucial to the functional un-
derstanding of cellular events, ranging from cellular
homeostasis to differentiation. Recent genome-wide inves-
tigation of epigenomic marks has indicated that enhancer
elements could be enriched for certain epigenomic marks,
such as complex, albeit predictive, combinatorial signa-
tures of histone modifications. Our efforts in this paper
are motivated by these recent advances in epigenomic
profiling methods, which have uncovered enhancer-
associated chromatin features in different cell types and
organisms [9—-12]. Specifically, in this paper, we use recent
state-of-the-art Deep Learning methods and develop a
deep neural network (DNN)-based architecture [13—15]
to predict the presence and types of enhancers in the hu-
man genome. We call our system “EP-DNN”, an acronym
for “Enhancer Prediction Deep Neural Network.
Historically, computational identification of enhancers
has proven to be challenging for several reasons [16].
First, the search space for enhancers is large—billions of
DNA base pairs—scattered across 98 % of the non-coding
genome. Second, while enhancers regulate genes in cis,
they do not display distinct locational or orientation-
centric signals relative to the genes that they regulate—po-
tentially located upstream, downstream, or even in introns
of the genes that they modulate, often regulating multiple
genes [17]. Enhancers function at a distance from their
target genes via chromatin loops that bring the enhancers
and target genes into proximity [18, 19], or via direct
eRNA transcription from the enhancer DNA sequences
[20]. Third, although a few computational attempts have
been made to elucidate sequence-based signatures of en-
hancers [21-23], they are very recent, and yet to be widely
adopted possibly because of the challenge of building
models sophisticated enough to perform the classification
task. We empirically validate this by considering some
intuitive approaches for discriminating different forms
of enhancers and non-enhancers (such as, using stat-
istical distributions of expressions of various histone
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modifications around the sites of the functional ele-
ments) and observe that these will be highly
inaccurate.

Several high-throughput experimental approaches exist
to identify enhancers [23, 24]. The first is mapping specific
transcription factor binding sites (TFBS) through ChIP-
seq [25]. This stems from the fact that short enhancer
DNA sequences serve as binding sites for TFs, and the
combined regulatory cues of all bound TFs determine ul-
timate enhancer activity [26, 27]. However, this approach
requires the knowledge of the TF subset that is not only
expressed but also occupies all active enhancer regions in
the spatiotemporal setting, such as in a specific cell type at
a point of time [28]. Therefore, predicting enhancer activ-
ity from sequence-based information, such as from the TF
motif content, remains challenging [27, 29]. In addition,
this approach is limited by the lack of available ChIP-
grade antibodies that specifically recognize these subsets.
The second approach is based on mapping transcriptional
co-activator binding sites (e.g., histone acetyltransferase
HAT, p300) [30, 31]. However, not all enhancers are
marked by a set of co-activators and also often lack avail-
able ChIP-grade antibodies. The third approach relies on
identifying open chromatin regions by DNase-I hypersen-
sitivity (DHS) mapping [32], which lacks specificity due to
the fact that the identified regions can correspond to other
CRMs. Finally, the fourth approach involves histone modi-
fication signatures produced by ChIP-seq that consistently
mark enhancer regions [33-37]. Due to their consistency
in marking enhancers, we use histone modification
features for our computational prediction of enhancer
signatures.

Through analysis of the prior computational approaches
to enhancer prediction, we conclude that the difficulty of
computationally predicting enhancer sites is because of
two primary factors. First, they did not use the full
spectrum of available features, i.e., all the histone modifica-
tions and their enrichment values in a wide region around
the hypothesized enhancer site, denoted by the enhancer
peak. Second, they did not use a highly expressive classifier,
one that can extract the distinguishing features from a
complex landscape. This complex epigenomic landscape is
captured by our empirically-derived distribution of normal-
ized read counts of the four most distinguishing histone
modifications for different types of functional sites from
embryonic stem cells (H1) [Fig. 1]. The most distinguish-
ing histone modifications are chosen by analyzing the
internal weights of trained DNN models. Our empirical
plots show that even for the top histone modifications, the
overlap between any positive type and unknown is signifi-
cant, which illustrates that simple rule-based classifiers
would not perform well [Fig. 2].

We address both of these problems, the first by start-
ing with an (almost) exhaustive set of features and then
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Fig. 1 a A notional schematic showing the enhancer and the TSS (the
promoter) relative to some of the True Positive Markers (TPMs)—DNase-
I hypersensitivity site (DHS), p300 binding site, and transcription factor
binding site (TFBS) (applicable to the H1 cell line). b Various forms of
these TPMs overlap with the enhancer and the promoter sites. An
overlap of the DHS with the TFBS can indicate an enhancer, while an
enhancer is typically distal to the TSS. TPMs refer to DHS, p300, CBP,
and TFBS

doing feature selection through an innovative mechan-
ism, to identify a top-k most relevant features. Empiric-
ally, the full set has 480 features (for each of H1 and
IMR90), 220 features for HepG2, and 180 features for
HeLa, and the reduced feature set for each cell line. For
the second shortcoming, we use recent state-of-the-art
Deep Learning methods and develop a DNN-based
architecture [13-15] to predict the presence and types
of enhancers in the human genome, “learning” from the
combinatorial histone modification codes. We get the
histone modification data from NIH Epigenome Road-
map for H1 and IMR90 and from the NHGRI ENCODE
database for HepG2 and HelLa S3. The enhancement
level is available from ChIP-seq experiments and for our
prediction, we bin them into 100 bp windows around
the peaks of the regulatory elements, the total extent
around the peak being 2 kbp.

Next, we adapt a previously proposed theoretical
mechanism [38] for interpreting the results of the DNN
to rank order the features according to how important
they are for performing the classification task. We find
that there are certain overlaps between which histone
modifications are important for which cells, and even at
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a finer granularity, which spatial feature is important
within each histone modification. For example, if one
considers the top-4 most important histone modifica-
tions for each cell type, there is none that is common
among the 4 cell types. However, between pairs of cell
lines there are some commonalities—H3K18ac is im-
portant for both H1 and IMR90, while H3K9%ac and
H3K79me2 are found to be important for both HepG2
and HeLa S3 [Fig. 3]. We use this weight analysis to ad-
dress the problem that training a DNN is computation-
ally expensive. We rank order the features by
importance and train DNNs using only the top k fea-
tures, for varying values of k. We compare the result of
the prediction by the reduced DNNs to that of the pre-
diction by the full DNN (the one which employs the full
set of features). We find that the accuracy is within 90 %
using the reduced k-value for each of the 4 cell types.

Summarizing, we make the following contributions in
this paper:

1. We bring to bear a powerful data-analytic technique
to enhancer prediction, namely, a Deep Neural
Network (DNN)-based technique. We train DNN
models that outperform prior computational
approaches in terms of prediction accuracy for
2 different cell types, H1, an embryonic cell type,
and IMR90, a mature cell type.

2. We then make our DNN models interpretable, and
by interpreting them, we find cell type-specific
differences among our 4 distinct cell types. These
differences highlight that different histone
modifications are important for the prediction
problem in these different cell types and even within
a histone modification, which spatial features are
important tend to differ.

3. We come up with a method to reduce the
computational cost of training our DNN by
reducing the input feature space in a data-driven
manner.

Biological use case of our solution, EP-DNN

We hypothesize some possible use cases for EP-DNN.
First, an experimentalist by knowing the features and the
histone modifications that are important to the task of
classification can choose to collect data only for the
most important ones among them. Second, our data
analytic technique reduces the noise inherent in the bio-
logical data by focusing on the important features. With
respect to the spatial features, EP-DNN provides an
insight into how far away from the peak locations, one
needs to consider the effect of a functional element. In a
prior approach, a 2 kbp region was used but this was ad
hoc. Armed with our analysis, any computational pro-
cedure, not just ours, can make an informed decision,
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e.g., only a narrow region (say 500 bp) may be enough
for a certain histone modification and a certain type of
enhancer, while a wider region may be needed for a differ-
ent type. Third, we have started the process of identifying
overlaps among the different cell types with respect to the
important histone modifications. Taking this process fur-
ther, we can cluster different cell types with respect to
their enhancer characteristics by using EP-DNN and then
perform extrapolations for data from newer methods, such
as, global run-on and sequencing (GRO-seq), chromosome
conformation capture (3C) technologies, and their genome-
wide derivatives that are used to analyze the activity levels
and the 3D structures of the genome, respectively.

Related work: Previous computational methods based on

histone modifications

Won et al. proposed the usage of Hidden Markov
Models (HMMs) to predict enhancers using three pri-
mary histone modifications [34]. Firpi et al. focused on
the importance of recognizing the histone modification
signals through data transformation and employed
Time-Delayed Neural Networks (TDNNs) using a set of
histone marks selected through simulated annealing
[35]. Fernandez et al. used Support Vector Machines
(SVMs) on a subset of histone modifications. The subset
had been determined through using Genetic Algorithms
[36]. RFECS (Random Forest based Enhancer identifica-
tion from Chromatin States) improved upon the limited

number of training samples in previous approaches
using Random Forests (RFs), in order to determine the
optimal subset of histone modification signatures in
order to predict enhancers [37]. DEEP uses features de-
rived from histone modification marks or attributes
coming from sequence characteristics and inputs them
in an ensemble prediction framework, which comprises
multiple SVMs and an Artificial Neural Network to vote
on the results from the SVMs [39]. They show impres-
sive results on three separate databases, ENCODE
(DEEP-ENCODE), FANTOMS5, and VISTA.

Methods

We present a high level overview of our approach in Fig. 4.
In the figure, we show, separately, the training phase and
the prediction phase. In the training phase, we create an
optimal DNN using a set of histone modifications and the
associated spatial features, and further, we do the weight
analysis to rank order the features by their importance in
discriminating the positive and the negative samples. In
the prediction phase, we use the same set of features to
predict if a regulatory region is an enhancer or not,
followed by validation of our results. We predict en-
hancers in four distinct human cell types—embryonic
stem cells (H1), IMR90, HepG2, and HeLa S3, which were
generated as a part of the NIH Epigenome Roadmap Pro-
ject [12] and the NHGRI ENCODE Project [9] [Table 1].
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( | Datasets
HELAS3 The development of EP-DNN is motivated by the avail-
ability of data from large scale projects, such as the EN-
H3K4me3 CODE project [9], which has annotated 400,000 putative
human enhancers, with the current estimate of enhancer
numbers being over a million [40]. Another extensive
database is the NIH Roadmap Epigenomics Project
[10, 12] that also provides publicly-available epigenomics
H4K5ac maps, complementary to ENCODE. In addition, the
H3K27me3 NCBI's Gene Expression Omnibus (GEO) repository [11]
also hosts much previous work and data on enhancer pre-
diction. We have used data from all 3 of these large-scale

H3K4me1 H3K4me2 data repositories for arriving at our training and validation

data for EP-DNN. In particular, we used NIH Roadmap

H3K79me2 Epigenomics for ChIP-Seq histone modification data for

HEPG2 H4K20me1 H1 and IMR90, which includes following 24 modifications

in BED format: H3K36me3, H3K27me3, H3K4mel,
Fig. 3 Venn diagram showing overlaps of top-4 histone modification H3K4me3, H3K9ac, H3K9me3, H3K27ac, H2AKSac,
among the four cell types H2AZ, H2BK120ac, H2BK12ac, H2BK15ac,
H2BK20ac, H3K18ac, H3K23ac, H3K4ac, H3K4me2,
H3K56ac, H3K79mel, H3K79me2, H4K20mel, H4K5ac,
H4K8ac, H4K91ac, and DNase I Hypersensitivity Sites
(DHS) and Transcription Factor Binding Sites (TFBS)
data. The ENCODE ChIP-Seq experiment includes fol-
lowing 11 modifications for HepG2: H2AZ, H3K27me3,
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Fig. 4 Overview of our solution approach in which we train DNNs using the histone modifications and their associated features. We perform
weight analysis and feature selection to identify the optimal DNN, which is then used for predicting if a regulatory region is an enhancer or not
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Table 1 Description of the 4 different cell lines in our study and the corresponding feature set

Cell type (human)

Number of histone modifications

Number of features Source of the data

H1 (embryonic stem cell line) 24
IMR9O0 (fetal lung fibroblast cell line) 24
HepG2 (mature liver cell line) 11

Hela (cervical cancer cell line) 9

24 x20=1480 NIH Epigenome Roadmap
24 x20=480 NIH Epigenome Roadmap
11x20=220 ENCODE
9x%20=180 ENCODE

H3K4mel, H3K4me3, H3K9me3, H4K20mel, H3K27ac,
H3K36me3 H3K4me2, H3K%ac, and H3k79me2 and fol-
lowing 9 for HeLa S3: H3K36me3, H3K4me3, H4K20mel,
H3K27ac, H3K4mel, H3K79me2, H3K27me3, H3K4me2,
and H3K9ac in BAM or BED format as well as DHS and
TEBS data. BAM files were converted to BED files using
BEDTools [41]. The p300 binding data for H1 and IMR90
was downloaded from GEO repository GSE37858, gener-
ated by Bing Ren’s laboratory. For the TSS locations for
HeLa S3 and HepG2, the FANTOM 5 consortium [42]
was used, which hosts cell-specific Cap Analysis of Gene
Expression (CAGE) data; CAGE measures TSS expression
levels by sequencing large amounts of transcript 5° ends,
termed CAGE tags. MACS2 was used to call CAGE peaks,
from which we selected the ones overlapping with true
TSS CAGE markers, available in the FANTOM database.
For p300 data for HeLa S3 and HepG2, we used ENCODE
ChIP-Seq data, available from GSE31477.

Transcriptional co-activators—p300 and related acetyl-
transferases—bind to transcription factor (TF) activation
domains and have been found to localize to many active
enhancers, but not all [33]. Further, p300 co-activators
are ubiquitous, present in all cell types, and control the
expression of numerous genes. Therefore, by using p300
enhancer signatures for training, we can also find other
types of enhancers (e.g., CBP- or TF-based), generalizing
well toward prediction of multiple classes of enhancers.
The number of peak calls of functional elements in
the dataset used for cell types, H1, IMR90, HeLa S3,
and HepG2, is presented in Table 2.

Preprocessing of histone modification inputs

Previous studies indicate H3K4mel, H3K4me2, H3K4me3,
and H3K27ac as the top histone modifications [37], indica-
tive as markers of active enhancers. Therefore, we selected
them for our EP-DNN model. However, distinct from prior

work, we wanted to see if there are other histone modifica-
tions that may also be important in the discrimination
among enhancers and non-enhancers. Thus, we selected
all the remaining 20 histone modifications that are avail-
able in the NIH Epigenome Roadmap for H1 and IMR90.

These other histone modifications are: H2AKS5ac,
H2BK120ac, H2BK12ac, H2BK15ac, H2BK20ac, H2BK5ac,
H3K14ac, H3K18ac, H3K23ac, H3K27me3, H3K36me3,
H3K4ac, H3K56ac, H3K79mel, H3K79me2, H3K9ac,
H3K9me3, H4K20mel, H4K5ac, H4K9lac for H1, and
H2AK5ac, H2BK120ac, H2BK12ac, H2BK15ac, H2BK20ac,
H3K14ac, H3K18ac, H3K23ac, H3K27me3, H3K36me3,
H3K4ac, H3K56ac, H3K79mel, H3K79me2, H3K9ac,
H3K9me3, H4K20mel, H4K5ac, H4K8ac, H4K91lac for
IMR90. For the HepG2 cell type, we only had access to a
smaller number of histone modifications, 11 in all. These
are: H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4mel,
H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9mes3,
and H4K20mel. Also, for the HeLa cell type, we only had
access to 9 histone modifications. These are: H3K27ac,
H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3,
H3K79me2, H3K9ac, and H4K20mel.

The ChIP-seq reads of these histone modifications
were binned into 100 bp intervals and normalized against
its corresponding inputs by using an RPKM (reads per
kilobase per million) measure. Multiple replicates of his-
tone modifications were used to minimize batch-related
differences, and the RPKM-levels of the replicates were
averaged to produce a single RPKM measurement per his-
tone modification. We will refer to this enrichment level
of a histone modification as its signature. The histone
modification signatures of each bin location are then used
as input to the DNN.

A notional schematic of the enhancer and the TSS
(promoter) relative to the various relevant sites—DHS,
TEBS, and p300 is given in Fig. 1. The bounding box is

Table 2 The number of peak calls of functional elements in the dataset used for training and prediction for the cell types: H1,
IMR90, Hela S3, and Hep G2, obtained through ChIP-seq and DNase-seq

H1 (100 bp) IMR90 (100 bp) Hela S3 (100 bp) Hep G2 (100 bp)
DHS 150,729 149,787 N/A N/A
TSS 9299 8000 21,165 50,070
p300 13,523 52,988 30,004 36,527
CBP 12,958 N/A N/A N/A
TF 71173 N/A N/A N/A
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the DHS and we are only considering sites that are over-
lapping with the DHS. The peak location is shown for
each element and the activity level curve is shown on
both sides of the peak region.

Deep Neural Network (DNN) model

DNNs have the traditional advantage that they provide
feature extraction capabilities and do not require manual
feature engineering or transformation of the data, which
in turn would have required domain knowledge. EP-
DNN was found to be less computationally expensive
than the larger ensemble methods that combine multiple
algorithms (e.g,, DEEP-ENCODE, which uses multiple
SVMs with an ANN decision mechanism [43]) or mul-
tiple models of the same kind (e.g., Random Forest in
RFECS, which uses multiple decision trees [37]). We
experimentally show this higher computational cost of
DEEP-ENCODE (DEEP-EN) and RFECS in our Results
Section, when performing detailed evaluation of our
method.

To train our DNN, we first select distal p300 co-
activator binding sites through ChIP-seq, then further
select though overlapping DHSs that are distal to TSS,
as regions representing enhancers [Fig. 1]. Of these,
5,899 p300 peak calls were selected for H1 and 6,000
peaks for the IMR90 cell line to represent enhancers for
the training set. However, p300 co-activators also bind
to distal TSSs, which are not enhancers. Therefore, we
also select TSS that overlap with DHS, as well as ran-
dom 100 bp bins that are distal to known DHS or TSS
to represent non-enhancers. We include 9,299 TSS
peaks from H1 and 8,000 peaks from IMR90 in our
training set to distinguish between p300 binding sites
that are enhancers and TSS that are not, and 31,994
random distal background sites were selected for H1
and 34,000 for IMR90 to represent non-enhancers for
training.

For testing the DNN, we used all known distal p300
and CBP co-activator and TFBS that overlap with DHS
as positive enhancer sites, and TSS as non-enhancer
sites.

A fully connected DNN with 480 inputs, 1 output, and
softplus activation functions for each neuron was used to
make enhancer predictions. Each input sample consists
of K number of 20-dimensional vectors of 100 bp bin
RPKM-levels, windowed from -1 to +1 kb at each bin
location. Each 20-dimensional vector corresponds to a
histone modification. This gives a total of 480 features in
all for the full DNN for H1 and IMR90, with 24 histone
modifications used for those. Training was done in mini
batches of 100 samples via stochastic gradient descent.
To prevent overfitting, dropout training [44] was applied,
with a dropout rate of 0.5. An optimal architecture of
3 hidden layers, comprising of 600 neurons in the
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first layer, 500 in the second, and 400 in the third, was
found through cross-validation on half the training data,
selected randomly. The full training set was used to train
the model before prediction. A convergence on the mean
squared error could be achieved with only 5 epochs of
training. This extensive training mechanism was found to
be suitable to optimize the DNN with its fairly large par-
ameter space.

Training and prediction

For training, we found that best results were obtained
when the ratio of the number of positive and negative
training examples was 1:10. The class distribution was
not modified during testing. Prediction accuracy is eval-
uated using 5-fold cross-validation. We compare results
for within-cell type prediction, i.e., we train on cell type
C1 and predict on the same cell type C1.

Evaluation Metrics: The standard precision and recall
metrics misrepresent actual prediction performance on
real data, since there are many more unknown func-
tional sites than just the p300, CBP, NANOG, SOX2,
OCT4 binding enhancers or TSS. Ideally, we would have
to evaluate performance on all these sites that are un-
accounted for. However, most are not experimentally
verified and are unknown. Thus, there is not enough
data to make an accurate evaluation of the precision and
recall of any computational model. This observation has
been made by prior computational approaches for en-
hancer prediction, such as RFECS. Consequently, they
have also not used the standard precision and recall
metrics in their evaluation. Furthermore, functional
enhancers are experimentally verified by single peak lo-
cations. However, in reality, enhancers exist in various
levels (heights) and sizes (widths) that more or less grad-
ually decrease around the peaks. These peaks are not
available during prediction on real data because we are
trying to predict for locations that have not yet been ex-
perimentally verified. Therefore, any computational
model must be able to predict for the peak as well as the
surrounding non-peak regions. Further, the evaluation
method must synthesize some criterion to determine
what is the ground truth (is it an enhancer or not) for any
genic region away from the peak location. Therefore, the
traditional evaluation using precision and recall metrics
cannot be used in this case.

However, once a positive enhancer prediction has been
made, it can be validated, and the metric that we use to
compare the performance of EP-DNN is the validation
rate. This metric has been used previously for evaluation
of enhancer prediction, in RFECS [37], and we modify it
slightly here. In our definition, we refer to True Positive
markers (TPM) as distal DHS sites, p300, CBP, and
TEBS that are greater than 1 kb away from TSS.
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e If a predicted enhancer lies within 2.5 kb of a TPM,
then EP-DNN’s prediction is “validated”. In this case,
we know that this site is either a known or an
unknown enhancer, safely assumed to be an
enhancer since it overlaps with a DHS site.

e Otherwise, EP-DNN’s prediction is “invalidated”.
This means that it is either a TSS or an Unknown,
but we know for a fact it is not an enhancer.

The modification from RFECS’ validation is that they
had a separate class called unknown and we do not. We
categorize it as a mistake if an unknown category is pre-
dicted by us as an enhancer. This is because while its
exact functional characteristic is unknown, what is known
for certainty is that it is not an enhancer. Hence, predict-
ing this as an enhancer is an error.

As DNN’s output is a number (whose range varies
depending on the activation function that is used), we need
to convert it to a class label by comparing it with a thresh-
old. By varying the threshold, we can control the tradeoff
between the number of enhancers being predicted and the
validation rate. In general, as the threshold is increased, the
number of enhancers being predicted goes down and the
validation rate goes up. To compare against previous algo-
rithms, in the first experiment, we used the same training
and testing datasets for H1 and IMR90 with RFECS and
DEEP-EN, the competitive approaches, as for EP-DNN.
However, for HeLa S3 and HepG2, we used a smaller data-
set in the interest of computational time (Table 1).

Reduced DNN

Since the cost of training an entire DNN with the total
set of inputs—480 features for each of H1 and IMR90,
220 for HepG2 and 180 for HeLa—can be significant, we
take a principled approach to reducing the number of
input features without significantly affecting the accur-
acy of our prediction. We refer to the DNN with the
complete set of 480 features as the “full DNN”. We ap-
proach this in a two-pronged way. We summarize these
two steps first and then give the details for each step.

Step 1: We analyze the weights of the edges in the full
DNN and come up with the importance score of each
input feature, which approximates how much the feature
influences the final output of the DNN model. We then
rank the features by their importance scores. We will
refer to this rank-ordered list as “OL” (for, “ordered
list”).

Step 2: From the OL, we take the top-k features and
create a DNN with k input features and keeping the rest
of the DNN architecture the same as the full DNN. We
reduce the value k in steps of 20 and observe the drop-
off in the validation rate. We find that the curve has a
knee at a value of k, which implies that the accuracy
degrades significantly if we use less than k features. We
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then use the top-k features for our experiments for the
classifier which we call “reduced DNN”.

Details of Step 1

The weights in a trained DNN contain information
regarding the histone modification feature inputs and
enhancers. In order to extract this information, we took
a previous feature selection method [38] that determines
feature importance from shallow Neural Network archi-
tecture connection weights, then expanded it for deep
architectures and applied it to our initial-480 feature
DNN. The equation used is given below, where i is a
neuron whose importance score we are calculating, and
N; is the set of neurons in the next layer (closer to output)
that i feeds into. The importance score of neuron i,
denoted S;, is computed as

Si=_|wil$;
JEN

In this formulation, the neuron j is in the next layer to
neuron i (i.e., closer to the output) and the weight of the
edge that connects neuron i to neuron j is w;. We start
with the output neuron (a single neuron in our case)
and set the importance of that neuron to 1. We then
propagate the importance back to the previous layer’s
neurons by using the weights of the edges connecting to
the output neuron. The reader may notice that this is
similar to the back propagation method, which is used
to train DNN in the first place. Finally, we reach the in-
put layer where each feature feeds into one neuron and
the importance of the input neuron gives the importance
of that feature.

Details of step 2

Through step 1, we get an importance score for each
input feature. We rank the features according to their
importance scores in an ordered list OL (lowest import-
ance features are at the end of the list). Then we start
reducing the total number of features used by DNN by
removing features at the end of OL. We train and evalu-
ate DNN using the reduced feature set and compare its
accuracy to that of the full DNN. In order to save time,
we do this in steps of 20 features. We find that the ac-
curacy is high and comparable to that of the full DNN
till we get down to a certain number of features depend-
ing on the cell type.

Note that we make a simplification here with respect
to training the reduced DNNs. We reuse the architec-
ture of the full DNN in our reduced DNNs for all the in-
ternal layers (600-500-400 neurons) and do not optimize
the architecture for each reduced set of features. The
exact approach would have taken far too long since
DNN training to come up with an optimized
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architecture is by far the most time consuming step. Em-
pirically, we find that this simplification does not signifi-
cantly affect the accuracy of the model.

Results and discussion
A. Can a simple deterministic rule-based classifier work?

We asked ourselves the question: can a simpler deter-
ministic, rule-based classifier tell apart the different
forms of enhancers and between the enhancers and the
non-enhancers? The classifier will use the same set of
features that our EP-DNN uses, namely, the normalized
expression values (RPKM) of the histone modifications.
The intuitive way to structure such a classifier would be
to consider the mean and the standard deviations of
these features. These could be considered at the peak
locations of these functional elements or also consider
the bins around these adjoining regions. We experimented
with both these approaches.

We show the mean and variance values for the 4 most
discriminative histone modifications on H1 in Fig. 2 (these
are for the peak locations of the respective functional
elements). The main insight is that there is significant
overlap in the expression values at the different functional
sites. Thus, a simple classifier based on these features will
be highly inaccurate in discriminating among the different
classes. Even for the top histone modifications, the overlap
between any positive type and unknown is significant, at
41.48 % or more. Taking the average of values of nearby
locations does not help much, with the minimum overlap
reducing only slightly to 39.69 %. While TSS has low over-
lap with other types for some histone modifications, TSS
sites make up less than 0.05 % of all negative samples and
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are therefore not significant in the performance of the
classifier.

These observations motivated us to look for more
expressive classifiers and we settled on DNNs.

B. Validation rate of EP-DNN for 4 different cell types

Figure 5 shows the variation of validation rates for the
three protocols—our protocol EP-DNN and the two
recent protocols, DEEP-EN and RFECS—for the two cell
types, H1 and IMR90. These are all same-cell predic-
tions, i.e., we train on the same cell type as the one that
we are trying to make predictions for. The DNN emits a
numeric output, whose range may vary depending on
what activation function is used, e.g., a sigmoid activa-
tion function results in the range [0, 1]. By varying the
threshold parameter for the output from the DNN, we
are able to get a varying number of enhancer predic-
tions. Table 3 summarizes the result, for a fixed number
of enhancer predictions, at approximately 100,000 enhan-
cer predictions. The first and most important observation
is that EP-DNN performs better for validation rates across
the entire range of number of enhancers being predicted.
(An exception is for IMR90-IMR90 validation, where EP-
DNN performs better for high number of enhancer pre-
dictions, which we explain later.) Also note that the slope
of the curve for EP-DNN is lower than for DEEP-EN and
RFECS, implying that even when the protocol makes a
large number of enhancer predictions, EP-DNN is more
accurate. The only exception to the better performance of
EP-DNN happens for IMR90 same-cell prediction, for
high threshold values (i.e., low number of predictions)
where DEEP-EN and RFECS outperform EP-DNN. This
likely happens because DEEP-EN and RFECS do a certain
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Table 3 Validation rates for the three protocols—our protocol
EP-DNN and the two recent algorithms that define the state-of-
the-art, DEEP-EN and RFECS, where we keep the number of
enhancer predictions approximately constant, at 100,000

H1 Prediction

# of Predictions Validation rate (%)

EP-DNN 104,994 90.76
DEEP 105,030 8643
RFECS 104,155 7876

IMR90 Prediction # of Predictions Validation Rate (%)

EP-DNN 103,196 93.79
DEEP 103,751 93.28
RFECS 103,624 93.23

amount of overfitting to training data (DEEP-EN more so
than RFECS) and such overfitting shows a (slightly) better
prediction at high threshold values. This use case with
high threshold values is arguably of use to experimental-
ists who are particular about high confidence predictions
of enhancers for IMR90.

Thus, this indicates that our EP-DNN model is more
powerful as a classifier for datasets where the positive and
negative examples may be more “inter-mixed”, and thus,
harder to classify. This underlines a fundamental motiv-
ation for our use of DNN—the increased power of the
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model, at the expense of a greater effort in tuning the
algorithm. Further, given that the H1 cell type is an
embryonic cell type that is formative in character, it stands
to reason that the differences between the signatures of
enhancers and non-enhancers may be harder to resolve in
it. We can contrast this to the adult cell type (lung fibro-
blasts) used in our study, IMR90, where these differences
while easier to resolve by a classifier, presents a learning
field that is devoid of the richness and subtleties of
enhancer signatures presented by the embryonic cell
type. The conclusion from the above scenario can be
summed up as follows: first, EP-DNN is a better learning
model; second, the H1 cell type (and possibly by extrapo-
lation any other embryonic cell type) presents a harder
learning task.

Figure 6a and b shows the evaluation of EP-DNN with
H1 and IMR90 for the full model and for a range of top-k
values. Figure 6¢ and d shows the evaluation of EP-DNN
with two other cell types, HeLa and HepG2. Here, we do
not have results from RFECS and DEEP for a comparative
comparison. In terms of relative performance of EP-DNN
in these cell lines compared to H1, we see that the per-
formance is better. This again speaks to the characteristics
of the embryonic cell H1 where there is less differentiation
among the different functional elements, making it harder
for a model to differentiate between them.
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Validation rate summary table

We benchmark the validation rates for our technique
along with two other state-of-the-art computational
techniques (RFECS and DEEP-EN) for predicting en-
hancers, in Table 3. We evaluate the prediction of en-
hancers within a given cell line, individually for human
embryonic stem cell line (H1) and a human lung cell line
(IMR90). We keep the number of predictions by each
technique to be close (approximately 100,000), for pur-
poses of comparison. We find that DNN performs better
in terms of validation rate. The advantage is more pro-
nounced for prediction for the H1 cell type, where it is
observed that enhancer prediction is a more difficult
task than for IMR90. The improvement with DNN can
be attributed to the use of the powerful DNN modeling
technique, including multiple hidden layers and a large
number of neurons at each layer, extensive feature selec-
tion, and optimization of the architecture and the pa-
rameters of the DNN.

Validation rate detailed investigation
Upon detailed investigation into the factors that contrib-
ute to the validation rates, we find that the DHS that are
distal from the TSS and the ones that are not p300, CBP,
or TFBS (called DHS-e, “e” for enhancers), are the most
numerous enhancers and provides the single largest con-
tribution toward the validation rate. For IMR90, TFBS
and CBP regions are not present in its dataset. The
p300s and CBPs are more numerous in the data than
the proportion in which they appear in our predictions.
This can be explained by two factors. First, EP-DNN cre-
ates a model that generalizes well and does not overfit to
the training data, which is all p300 for positive training
examples, and consequently has a lower performance in
predicting p300 sites. Second, the enrichment curves for
p300s and CBPs are narrower, and thus, the signature
may be weak toward the edge of the 2.5 kbp boundary
from the enhancer peak location. The greatest contribu-
tion to the validation rate comes, as before, from the
DHS regions that are not p300 binding sites but are en-
hancers. Note that we find that DNN is more prone to
error in classifying some TSS sites as enhancers, more so
than DEEP-EN and RFECS. However, the difference in
TSS mis-prediction is not too significant between DNN
and the others and TSSs are only a small fraction of the
negative samples. Thus, in aggregate, the validation rates
of EP-DNN are higher for the entire set of 4 cell lines.

C. Determining the most discriminative features

We trained an initial DNN using all 480 features from
the 24 histone modifications, then calculated the import-
ance score for each feature from the learned weights of
the DNN according to Equation 1. The features were
then sorted by their respective importance scores and
different subsets of features were used to train DNNs,
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starting with the top 10 features, top 20 features, and so
on, ending at the full set of features. The architecture is
fixed, with 400 neurons in the first layer, 300 in the sec-
ond, and 200 in the third. Each DNN was tested against
5 random subsamples of 20 K samples each, chosen
from among all the chromosomes. Figure 7 shows aver-
age subsample validation rate of each DNN, for HI,
IMR90, and HEPG2 cell line, as we vary the number of
features that the DNN takes as input.

We can see that validation rate increases sharply as im-
portant features are added. However, the rate increases
more gradually after the top-150 features are added, for
H1 and IMR90, and after the top-40 features are added
for HEPG2. We omitted the HeLa plot because it looks
similar to the HepG2 plot with the knee at the same point
as well. This is interesting considering that the total num-
ber of features in HepG2 and HelLa S3 are different (220
versus 180), though they are close compared to the feature
set for H1 and IMR90.. These results for the 4 cell lines
confirm the validity of our weight analysis method and
that it does indeed find the most important features for
DNN and allows us to use a reduced subset of features for
the final system. However, how big the reduced set should
be is cell-type dependent.

Figure 6 shows the comparison between the full 480-
feature DNN and the DNN with the selected top-k fea-
tures for each of the 4 cell lines. For a given cell line, we
plot the curves for different values of k. To generate this
figure, we vary the threshold that is used as a compari-
son point for DNN’s raw output. Thus, as the threshold
is raised, fewer number of enhancer predictions are
made. An approximate determination of the realistic
range for predicting prominent enhancer activity is when
the validation rate is above 0.5; beyond that the predic-
tions are too uncertain due to marginal enhancers or sites
exhibiting weak enhancer signatures being predicted.
Within this operational range, the validation performance
with the reduced 160 features is no more than 5 % worse
than with the full feature set. For much of the operational
region, the difference is 2 % or less. Thus, we see that the
reduction in the feature space, which reduces the cost of
biological experiments to collect the data and the size of
input data that a DNN has to be trained and tested with,
does not hurt the enhancer prediction performance
significantly. The interpretability of the DNN comes as
another benefit of our process of reducing the feature set
based on the importance scores of the features as calcu-
lated by our method.

We also see that if we reduce the number of features
considered to be below that of the knee of the curve in
Fig. 3 for any cell line, then the validation rate perform-
ance does fall significantly. For example, for HI1, if we
use only the top-10 features, out of the total of 480, then
the validation rate drops by almost 20 % compared to the
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Fig. 7 Feature importance score and validation rate when only a subset of features is used, for cell types H1, IMR90, and HepG2

full model (at number of enhancer predictions = 1 x 10°).
Similarly, for HepG2, when using only the top-5 features
out of the total of 220 features, the validation rate suffers
by 17.8 %. We can conclude that our sweep over the value
k for the top-k features gives us a principled way of choos-
ing how to subset the total feature set for training the
DNN. This top-k applies to more data from the same cell
line as well as in some cases across cell lines. For example,
the knee of the curve is seen at approximately 160 for
both H1 and IMR90. It remains a subject of future investi-
gation to find out when the generalization of the top-k
can be done across cell lines and for which specific cell
lines.

D. Importance of the individual histone modifications
for classification

Next, we find the importance of each histone modifi-
cation by summing up the importance scores of its 20
features. The results are shown in Fig. 8. From this re-
sult, we take the top four histone modifications for each
cell type and create a Venn diagram showing which his-
tone modifications overlap with which cell types in Fig. 9.
Due to the highly non-linear nature of the DNN, the ab-
solute values of the calculated importance scores do not
show the absolute magnitude of importance. However,
the values do indicate the importance of a single histone
modification with respect to the task of predicting

enhancer. By comparing the importance values, we can
rank the histone modifications.

The most important histone modifications according
to our analysis confirm previous reports of H3K4mel
[31, 39], H3K27ac [40, 41], and H3K4me2 [16], being
the most important ones, in various combinations, over-
all in global enhancer prediction. However, comparing
the histone modification importance within each cell type
reveals cell-type specific differences. While H3K4me2 and
H3K27ac are the most important histone modifications
for H1, for IMR90, H3K4mel and H3K27ac are the most
important. For HeLa S3, we see H3K4me3, also a known
good predictor of enhancers, is the most important while
H3K79me2 is the most important for HepG2. Al-
though the well-known histone modifications (H3K4mel,
H3K4me2, H3K27ac, and to some extent H3K4me3) place
in the top important ranks, we can also see histone
modifications are different for the cell types (with some
overlap) in finer granularity. This information can help
computational scientists when building models to make
predictions on specific cell types. Further, it can also help
life-science researchers optimize their experiments and
collect the features for the most important histone modifi-
cations, for the cell type that they are focusing on.

E. Importance of the histone modification features for
classification
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Figure 9 shows importance scores of features within
each histone modification. We selected four histone modi-
fications to show the four distinct feature-importance
patterns that we observe in the data. We omit the results
from the other cell types since they have the same patterns
as the H1 results presented here. This reveals that the
most important features within a histone modification are
not always centered at the enhancer site location, and
consequently, it is detrimental to use fixed window sizes
around the enhancer location, as all prior computational
approaches have done. Window sizes that are too small
can lead to important features being excluded, while large
window sizes will include noise in the data that can be
detrimental to prediction accuracy. Furthermore, certain
“unimportant” histone modifications do contain relatively
important features. This is why omitting histone modifica-
tions, altogether, even though they were reported to be
unimportant can hurt the classifier’s performance. Thus,
analysis at this finer granularity of features, rather than
the coarser granularity of histone modifications used in
prior approaches, is needed.

Sorting by the feature importance allows us to select
only the most important and necessary features for pre-
diction, instead of a fixed window size that has been
used with previous methods. This allows us to reduce
the number of input features necessary without a signifi-
cant loss in its actual performance.

F. Visualization of the feature space

To visualize the characteristics of feature space, we
compute t-SNE transformation [45] with PCA initialization.
First we compute PCA to create the 50 most important
features and then we map them to a 2-dimensional space
using the visualization method called t-SNE, a variation of
Stochastic Neighbor Embedding [46]. This method tries to
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maintain the same distance between two points in the 2-d
space as in the original (50 dimension in this case) space.
This has been found to be an effective way to visualize
high-dimensional data since it represents each data object
by a two-dimensional point in such a way that similar ob-
jects are represented by nearby points, and that dissimilar
objects are represented by distant points. The resulting
two-dimensional map of the data that reveals the under-
lying structure of the objects, such as the presence of clus-
ters. Figure 10 show the result of mapping feature spaces
for all 480 features (left) and selected top 160 features
(right) into 2-Dimensional t-SNE data, with red circles indi-
cating the negative samples and blue circles the positive
samples. Note that in the earlier experiment (Fig. 2) we
were considering at the granularity of histone modifica-
tions; here we are considering the finer granularity of fea-
tures, bins of histone modifications (recall that there are 20
of these for every histone modification).

From the t-SNE plots, we see that there is not a dis-
tinct separation between the positive and the negative
samples. This further emphasizes that it is not easy for a
simple rule-based classifier to separate the positive and
the negative examples and motivates our use of a rela-
tively sophisticated classifier like DNN. Our result, even
after selecting the most important 160 features, does not
show a clean separation between the positive and the
negative examples [Fig. 10].

G. Execution time of the different models

In Table 4, we show the time to train and to predict
using EP-DNN and EP-DNN-Reduced, for our current
prototype implementation in Python, which underneath
uses the toolkits Keras and Theano. These are done for
the H1 cell line and the full model uses 480 features,
while the reduced model uses 160 features. The training
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Table 4 Comparison of training and prediction runtime for
EP-DNN, DEEP, and RFECS. Number of training and testing set
size is fixed at 40,000 samples

Method Training time Prediction time
(seconds) (seconds)
EP-DNN-Full 819.07 70.32
EP-DNN-Reduced-160 60243 26.62
DEEP 1,473.88 14.52
RFECS 5.12 27.80

dataset has 40 K samples (positive: negative = 1:10) and
the prediction is also done for 40 K samples. We also
compare the runtime of our approach with DEEP and
RFECS, both of which are implemented in Matlab. This
comparison is not perfect because the implementations
of these approaches take a smaller number of histone
modifications than we do; DEEP-EN uses only 11 modi-
fications and RFECS only 3 modifications. Since actual
run times are highly dependent on several factors, such
as the level of parallelization, hardware, platform, or imple-
mentation language, each method’s runtime was measured
as the CPU clock time, under the same environment im-
plemented in MATLAB2014rb (for DEEP and RFECS) and
in Python (for EP-DNN-Full and EP-DNN-Reduced), with
no parallelization. We acknowledge that some algorithms
are more easily parallelizable than others and our method
of using serial execution alone does not bring that aspect
out. However, we followed this approach to take out the
variability of different parallelization methods in order to
compare the runtime results of the different protocols.

We see that a reduction from the full model to the re-
duced model of 1/3 of the features gives a slightly higher
than proportional improvement to the training and the
prediction times. RFECS has a much faster training time
because it makes use of the highly efficient vectorized
matrix computation of Matlab. In terms of the predic-
tion time, which should be sped up as far as possible,
EP-DNN-Reduced falls in between DEEP-EN (lower)
and RFECS, with DEEP using 220 features (more than
us) and RFECS using 60 features. However, DEEP per-
forms poorly in terms of its training time and the time
becomes infeasible for larger datasets.

Conclusion

Enhancers are short DNA sequences that modulate gene
expression patterns. Recent studies have shown that en-
hancer elements could be enriched for certain histone
modification combinatorial codes, leading to interest in
developing computational models to predict enhancer
locations. However, prior attempts had suffered from ei-
ther low accuracy of prediction or lack of interpretability
of the results about which histone modifications are bio-
logically significant. In this paper, we developed a DNN-
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based method, called EP-DNN, which addressed both of
these issues. We find validation rates of above 90 % for
the operational region of enhancer prediction for all four
cell lines that we studied. The hardest to predict cell line
is a human embryonic cell line called H1, possibly
because the different functional elements are not fully
differentiated in it yet, but EP-DNN outperforms DEEP-
EN and RFECS, the two most recent computational ap-
proaches. Then, we developed a method to analyze a
trained DNN and determine which histone modifica-
tions are important, and within that, which features
proximal or distal to the enhancer site, are important.
We uncovered that the important histone modifications
vary among cell types, with some commonalities among
them. We can then reduce the heavy computational cost
of training a DNN by selecting the top-k features to use.
We find that for H1, selecting a subset of 1/3 of the total
set of features gives approximately the same validation
rate as the full model, while reducing the computational
time for training by a little more than 3X. Our results
have implications for computational scientists who can
now do feature selection for their classification task and
for biologists who can now experimentally collect data
only for the relevant histone modifications. In ongoing
work, we are experimenting with parallelizing our com-
putational approach and investigating further cell types
to uncover possible groupings among cell types with
respect to their enhancer characteristics.
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