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Abstract

Background: The advance in targeted therapy has greatly increased the effectiveness of clinical cancer therapy and
reduced the cytotoxicity of treatments to normal cells. However, patients still suffer from cancer relapse due to the
occurrence of drug resistance. It is of great need to explore potential combinatorial drug therapy since individual
drug alone may not be sufficient to inhibit continuous activation of cancer-addicted genes or pathways. The
DREAM challenge has confirmed the potentiality of computational methods for predicting synergistic drug
combinations, while the prediction accuracy can be further improved.

Methods: Based on previous reports, we hypothesized the similarity in biological functions or genes perturbed by
two drugs can determine their synergistic effects. To test the feasibility of the hypothesis, we proposed three
scoring systems: co-gene score, co-GS score, and co-gene/GS score, measuring the similarities in genes with
significant expressional changes, enriched gene sets, and significantly changed genes within an enriched gene sets
between a pair of drugs, respectively. Performances of these scoring systems were evaluated by the probabilistic
c-index (PC-index) devised by the DREAM consortium. We also applied the proposed method to the Connectivity
Map dataset to explore more potential synergistic drug combinations.

Results: Using a gold standard derived by the DREAM consortium, we confirmed the prediction power of the
three scoring systems (all P-values < 0.05). The co-gene/GS score achieved the best prediction of drug synergy
(PC-index = 0.663, P-value < 0.0001), outperforming all methods proposed during DREAM challenge. Furthermore,
a binary classification test showed that co-gene/GS scoring was highly accurate and specific. Since our method is
constructed on a gene set-based analysis, in addition to synergy prediction, it provides insights into the functional
relevance of drug combinations and the underlying mechanisms by which drugs achieve synergy.

Conclusions: Here we proposed a novel and simple method to predict and investigate drug synergy, and validated its
efficacy to accurately predict synergistic drug combinations and to comprehensively explore their underlying
mechanisms. The method is widely applicable to expression profiles of other drug treatments and is expected to
accelerate the realization of precision cancer treatment.
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Background

Development of effective treatments for cancers is an
essential issue in clinical therapeutics. Thanks to the
accumulated knowledge of cancer pathology, cancer
treatments have been gradually shifting from the one-
size-fits-all cytotoxic approach to the precision medi-
cine that targets specific pathological features on a
personalized basis [1]. Based on the reductionist “one
gene-one disease” premise [2], antitumor drugs are
designed to inhibit the growth of cancer cells by targeting
essential genes or pathways with high specificity and effi-
cacy, reducing damages to the normal cells. However, even
with such advance in cancer therapeutics, some patients
still suffer from refractory responses due to the develop-
ment of drug resistance. Because of the complexity and
heterogeneity of cancers, single drug alone may not be ef-
fective enough to completely and continuously suppress
the activity of critical oncogenes or pathways. A common
feature of drug resistance is a continuous activation of
drug targets or their downstream signaling pathways [3].
On the other hand, combinatorial drug therapy may ef-
fectively circumvent the acquisition of drug resistance and
optimize the efficacy of anticancer drugs.

Response to combinatorial drug therapy is optimized
when a drug combination achieves greater (synergistic)
effects than independent effects [1]. The synergy of
drugs can be assayed by testing the inhibition of tumor
cell growth by individual drugs and their combinations
in vitro, followed by a mathematical formulation by
Loewe additivity or Bliss independence [1, 2]. However,
given the large number of drugs that are approved by
FDA or under clinical trials, it seems to be impractical
to experimentally test the synergy of all possible drug
combinations, motivating the development of efficient
computational methods for systematic screening and
prediction of synergistic combinations.

Previous studies have proposed a handful of computa-
tional approaches to analyze high-throughput molecular
datasets for predicting the synergy of drug combinations
[4—-6]. One of the computational approaches is devised
based on the gene expression profiles achieved from
treatments of individual drugs ([7-9]; reviewed in [2]).
With the accumulation of gene expression profiles of
drug treatments [10-12], the performance of such ap-
proach to model the underlying mechanisms of drug
treatment can be improved. In a recent community
computational challenge, namely the DREAM challenge
(http://dreamchallenges.org/and https://www.synapse.org/
#!Synapse:syn2785778/wiki/70252), 31 computational
methods were developed to predict the synergistic effects
of a total of 91 drug pairs by using gene expression profiles
and evaluated against an experimental gold standard [13].
The promising results achieved by these methods high-
light that in silico synergy prediction is possible and may
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greatly reduce the costs to screen for synergistic drug
combinations. However, the accuracy of predictions still
remains to be optimized [13].

The proposed study is motivated by the need for an
improved prediction algorithm to systematically screen for
synergistic drug combinations based on whole-genome
expression profiles. According to the observations of pre-
vious in vitro studies, two synergistic drugs may target
common signaling pathways to reinforce their individual
effects [14, 15]. We hypothesized that drugs with synergis-
tic effects perturb similar biological functions, or similar
genes in a biological function in cells. To test the hypoth-
esis, we designed three prediction scores based on the
similarities in gene and/or functional level changes in-
duced by two individual drug treatments. Here the func-
tional changes were modeled by a gene set enrichment
analysis, which summarizes expressional profiles to the
functional level and uncovers systematic, even when sub-
tle, changes in biological functions [16]. Specifically, we
identified commonly enriched gene sets, measured by
gene-set enrichment scores, between two drug treatments.
Degree of overlapping of these gene sets and of the
disturbed gene components in these gene sets between
two drugs were used to construct three scoring systems.
Performance of the scores was tested against the gold
standard of 91 drug pairs provided by the DREAM chal-
lenge. In order to identify potential synergistic combina-
tions over a broader range of drugs, we applied our
method to the Connectivity Map (CMap) dataset [10],
which includes the expression profiles associated with
more than a thousand compounds, and identified both
previously confirmed and novel synergistic drug pairs for
breast cancer. Furthermore, since the gene sets represent
biological functions, our prediction models also provide
biological insights into the underlying mechanisms
regulated by synergistic drugs.

Methods

Datasets from the DREAM challenge

We downloaded the expression profiles of Diffuse Large
B-Cell Lymphoma OCI-LY3 cell line treated independ-
ently with 14 drugs at 2 different concentrations or DMSO
(the control) at 6, 12, or 24 h after treatment from the
Gene Expression Omnibus (accession ID GSE51068). The
platform used to profile the gene expression was Affyme-
trix Human Genome U219 Array. We used the expression
profiles obtained at 24 h because the IC,y values were
measured only at 24 and 48 h in the original study [13].

A gold standard ranking of the 91 drug combinations
was provided by the DREAM consortium to evaluate the
performance of prediction methods. The drug combina-
tions were ranked according to the value of excess over
Bliss (EOB), the difference between the expected frac-
tional inhibition and the induced fractional inhibition by
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drug combination [13]. A pair of drugs with EOB ~0
have additive effect while positive (or negative) EOB
values represent synergistic (or antagonistic) effects.

CMap dataset

A total of 2,588 expression profiles of a breast cancer
cell line, MCF7, treated by 1,118 small-molecule pertur-
bagens were downloaded from the CMap database [10].

Gene sets

Gene sets were downloaded from the BioMart website of
Ensembl (http://www.ensembl.org/index.html) and the
Molecular Signature database (MSigDB v3.1, http://
www.broadinstitute.org/gsea/msigdb/index.jsp) [16]. To-
tally 5,357 gene sets of Gene Ontology biological
process, molecular function, and cellular component,
chemical and genetic perturbations, and oncogenic
signatures were collected. To eliminate gene sets with
highly overlapped gene components, we clustered
these gene sets by kappa statistics and selected one
gene set from each cluster as a representative gene set.
A total of 2,181 representative gene sets were selected
for subsequent analysis.

Gene set enrichment analysis

We started the analysis by performing gene set enrich-
ment analysis for each drug in order to investigate the
functions regulated by the drug. The enrichment score
was calculated as

1
Si= 3D Zij

where N’ is the number of genes in gene set /, and Zij is
the delta z-score of gene j in sample i. The delta-z score
was achieved by z-transforming the expression value of
gene j in all samples (X;;) followed by a subtraction of
the z-transformed DMSO-treated normal control, as the
equation below

Xij— uj
9 9

Xpmso,j—H;

Zij =

where y; stands for the mean of the gene j and o; is the
standard deviation of the gene j among all samples. In
order to evaluate the statistical significance of an enrich-
ment score, we permuted the dataset for 1,000 times
and calculated a P-value from the empirical distribution.
Benjamini-Hochberg adjustment was performed to avoid
multiple testing problems [17]. Adjusted P-value < 0.05
was set as a threshold to define significantly enriched
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gene sets. Non-informative gene sets, defined as those
falling within the L s range

1
VN

[18], where N is the number of genes in the gene set,
were eliminated from subsequent analysis.

Loos = £1.96

Prediction scores

Our hypothesis is that the synergy of two drugs (say, d;
and d5) can be achieved by modulating common genes,
similar biological functions, or common gene compo-
nents within these biological functions. Accordingly, we
devised three scoring methods. Suppose there are n
commonly enriched gene sets between the two drugs.
The first score (co-gene score) measures the co-disturbed
genes between two drug treatments. The co-gene score
for a pair of drugs d; and d is

8, ds

co-gene scoreq, d, ==~

where G and g, ,, are the total number of genes and the
number of commonly regulated genes with significant ex-
pressional changes (with P-value for delta z-scores < 0.05)
between d; and d,. The second score (co-GS score) is
constructed based on the similarity in enriched gene
sets between the two drugs. Mathematical definition of
the co-GS score is given by

Nd, d,
L

co—GS scoreg, 4, =

with L representing the total number of gene sets, and
ng4, 4, denoting the number of gene sets with significant
enrichment in both drugs. The third score, namely the
co-gene/GS score, is an average percentage of commonly
disturbed genes within the co-enriched gene sets:

!
Na, 4

1
co-gene/GS scorey, 4, = =L
N, d,
where Niil.cb denotes the number of genes with signifi-

cantly changes (with P-value for delta z-scores < 0.05) in
both drug treatments within a co-enriched gene set / for
d 1 and dg.

Performance evaluation

To evaluate the performance of the proposed prediction
scores, we employed the probabilistic c-index (PC-index)
developed by the DREAM consortium [13], which was
modified from the concordance index (c-index). The c-
index computes the proportion of concordance between
predicted and experimentally validated ranks by defining
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a score t,, for quantifying the concordance for two pairs
of drugs ¢ and r (g, r€[1,91]). The score is given by

0, if(uq>u,&vq <veorug <u &vy >v,
tyr = )
) Lif(ug >u & vy >veorug <u &vy <v,

and the c-index is the average of all £, , given g=r

q=1,...,90 t
r=q+1,..91

91
(%)
where u stands for the experimentally validated ranks
and v is the predicted ranks. Considering the noise in-
troduced during the experiment processes and high-
throughout profiling, the DREAM consortium modified

the scoring function by introducing an error function
(erf) and computed the PC-index as follows

q.r

c—index =

1.1 EOB,~EOB, oo <
- — €71, v 1%
, 2 2 \/sem};ong + S«‘Jl’i’l};o}gy2 ’ 1 '
q"r7

11 EOB,~EOB, ‘

———er Jif vg > v

2 2 \/S€WIEOB,,2+S€WIEOB,2 f 1 "
and

q:_l,...,190 91t;_’,
PC-index = ——41

91
(%)

where EOB, is the excess over Bliss of a drug pair g,
provided in the gold standard profile, and semgop, is the
standard error of the mean of EOB,. When there is a
concordance between predicted and experimentally vali-
dated ranks, the score t';, falls between 0.5 and 1;
otherwise, ', will be within [0,0.5]. The DREAM con-
sortium tested the range of the PC-index in the gold-
standard dataset and found that the maximum PC-index
(PCpax) was 0.90 and the minimum PC-index (PC,;,)
was 0.10; the normalized PC-index is defined as

PC-index — PC,,;,

PC-index =
" non P Cmux -P Cmin

For the scoring method with the highest PC-index, we
computed the area under ROC curve (AUC) and per-
formed the precision analyses as described by Bansal et
al. [13]. To calculate AUC, first, drug pairs with synergy
and antagonism were defined from the gold standard
profile. These drug pairs were identified by the DREAM
consortium using the signal to noise ratio (SNR) com-
puted as

Page 316 of 380

mean EOB

SNR= —
sem of EOB

where sem is the standard error of the mean of the EOB.
If the SNR of a drug pair is greater than 2 and its EOB is
positive, it is defined as a synergistic drug pair. Oppos-
itely, if the SNR of a drug pair is greater than 2 and its
EOB is negative, it is defined as an antagonistic drug
pair. Other drug pairs were defined as additive. In the
original paper [13], sixteen drug pairs in the gold stand-
ard were defined as synergistic, 36 drug pairs as antag-
onistic, and 39 drug pairs as additive. We then ranked
all drug pairs according to the co-gene/GS score in a
decreasing manner. The true positive rate (7TPR;) and
false positive rate (FPR;) for synergy prediction were
calculated as

TP,
TPR = —
TP; + EN;

rpR = — P
' FP,+ TN;

where TP;, FN, FP;, and TN; denote the numbers of
true positives, false negatives, false positives, and true
negatives, respectively, given the top i drug pairs were
called as synergistic. The TPR; and FPR; for antagonism
predictions were calculated similarly, while the drug
pairs were ranked based on the prediction scores in an
increasing order. The results were visualized using ROC
curves and corresponding AUC values were computed.
Furthermore, we calculated the precision for synergy
and antagonism prediction as

TP
16

Precision(synergy) =

TP},

Precision(antagonism) = 36

where TP'3 is the number of true positives when the
top 36 predicted drug pairs in the increasing order were
called as antagonistic.

Results

Model overview

In the present study we aim to test the hypothesis that
similarities in expressional/functional changes induced
by two drug treatments can predict the synergy of drugs.
Figure 1 shows the overall design of this study. Based on
the hypothesis, we devised three prediction scores. We
tested performance of these scores by an experimentally
assessed gold standard provided by the DREAM consor-
tium, which was composed of a synergy ranking of 91
pairwise combinations among 14 well-known drugs. The
rank of synergistic effects of the 91 combinations pre-
dicted by each score was compared to the gold standard
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Fig. 1 Overall design of this study. The study was aimed to test the hypothesis that synergy of two drugs can be determined by regulating a
common pool of functions and/or genes. Addressing the hypothesis, three prediction methods were devised. We used the DREAM gold standard
dataset to validate the methods. After confirming the hypothesis, we then employed the best-performing method to investigate synergistic
effects over a wider collection of drugs using the Connectivity Map (CMap) dataset
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and the concordance of the ranks was measured by the
PC-index (detailed in the Methods). In order to extend
the scale of our prediction, we applied the best perform-
ing scoring method to the CMap dataset that comprises
expressional profiles of more than 1,000 compounds.
Figure 2 is the flowchart of the proposed scoring
methods. The three scoring methods were constructed
based on the similarities of co-enriched genes/gene sets

(representing biological functions and pathways) and/or
gene components within the gene sets. Specifically, the
co-GS and co-gene methods measure the degree of over-
lap between enriched gene sets and disturbed genes, re-
spectively, between two drugs. On the other hand, the
co-gene/GS score focuses on the similarity (intersection)
of genes disturbed by drug treatments within the co-
enriched gene sets. We ranked all drug combinations

Gene expression profile after drug treatment

5,357 gene sets

1

Co-GS score

Co-gene score
calculation calculation

3 3

Gene set
enrichment analysis

Gene set filtering :
p-value < 0.05, L0.05
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enriched gene sets for
each drug combination
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* Biological process
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—

Fig. 2 Flowchart of the three scoring methods. We devised three scores to rank the drug combinations in terms of synergy according to the

gene expression profiles obtained from individual treatments. Two of the scores (co-gene and co-GS) were computed by the degree of overlap
in disturbed genes or enriched gene sets between two drugs. Here activities and significance of changes in gene sets were modeled by a gene
set enrichment analysis. For the co-gene/GS score of a drug pair, we computed an average percentage of overlapped genes across all commonly
enriched gene sets. Drug pairs were ranked based on each of the prediction scores
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based on each prediction score; combinations with higher
prediction scores are interpreted to have stronger syner-
gistic effects, while low scores predict antagonistic effects.
Mathematical definitions of the scores are provided in the
Methods section. Since the gene sets represent biological
functions, we were able to investigate the underlying
mechanisms that account for the efficacy of drugs and the
synergy of pairs of drugs.

Performance evaluation of the proposed scores by
DREAM gold standard

We assessed the performance of the proposed scores
against the DREAM gold standard. Notably, all of the
three scores achieved significant PC-index (empirical P-
values < 0.01; Table 1), confirming our hypothesis that
synergistic drugs perturb similar genes and biological
functions, as well as similar genes related to a biological
function. The intersection between genes disturbed by
each drug (co-gene score) achieved a PC-index of 0.648
(P-value < 0.0001), outperforming all the 31 community-
generated approaches in DREAM challenge (range,
0.613 to 0.420; mean, 0.510). At the gene set level, de-
gree of overlapping in gene sets enriched in two drug
treatments (co-GS) was predictive of synergistic effect
(PC-index = 0.589 and P-value = 0.0036). Furthermore,
integrating the gene set and gene levels, the co-gene/GS
score achieved even higher performance (PC-index =
0.663 and P-value < 0.0001). Taken together, we inferred
that reinforced regulation of similar biological functions
is a crucial mechanism for drug synergy. The observa-
tion is consistent with previous findings that synergistic
drugs affect the expression of genes involved in common
pathways [15, 19, 20].

Further investigation into the co-gene/GS score

The co-gene/GS score was the best-performing method
among our three scores and outperformed all prediction
models proposed during the DREAM challenge. We fur-
ther investigated its prediction power. The score was sig-
nificantly positively correlated with the excess over Bliss
(EOB) values, an experimentally derived indicator of syn-
ergy (p=0.57 and P-value =5.01 x 10~%; Fig. 3a). Table 2
tabulates the top 15 predicted synergistic drug pairs. These

Table 1 Performance of prediction scores in the DREAM dataset

Scoring methods PC-index P-value
Co-gene score %sz 0648 <0.0001
Co-GS score lads 0.589 0.0036

Co-gene/GS score Moy 0663 <0.0001

| N
Ndy d

Notations: g4, 4, number of commonly regulated genes between drugs d;
and d»; G, total number of genes; ng, 4,, number of gene sets with significant
enrichment in both drugs; L, total number of gene sets; Nf,| 4, NUMber of
genes with significantly changes in both drug treatments within a co-enriched
gene set /
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top pairs showed significantly higher EOB than the others
(t-test one-tailed P-value=1.36x10"% Fig. 3b). Among
them, the top synergistic drug pairs were camptothecin &
mitomycin C (score = 0.084), camptothecin & doxorubicin
(0.036), and H-7 & mitomycin C (0.032). Taken together,
the proposed co-gene/GS score was strongly correlated
with the EOB values and accurately predictive of synergis-
tic effects of drug pairs.

We further analyzed the performance of the co-gene/
GS score by AUC and precision analyses. The ROC
curves for synergy and antagonism prediction are shown
in Fig. 4a and b, respectively. The AUC for synergy pre-
diction was 0.87, which outperformed all the methods
proposed during the DREAM challenge (range, 0.813 to
0.207; mean, 0.515) and was even higher than the inte-
grated method proposed in [13]. However, the AUC for
antagonism prediction (AUC = 0.36) was worse than ran-
dom guess; AUC of the 31 previous methods ranged
from 0.677 to 0.337 with an average of 0.517. The preci-
sion for synergy and antagonism predictions was 62.5
and 47.2 %, respectively, higher than random guess (17.6
and 40.0 %) [13]. Notably, the high precision of our
method in predicting drug synergy again outperformed
all the methods proposed in the DREAM challenge.

Since the score was designed based on a gene set ana-
lysis scheme, the method also reports the commonly
enriched biological functions for each drug combination.
Take the top predicted pair as an example, camptothecin
and mitomycin C were commonly enriched in gene
sets of HOOI_ST7_TARGETS_UP, AMUNDSON_
DNA_DAMAGE_RESPONSE_TP53, NIKOLSKY_BREAST
CANCER _19Q13.1_AMPLICON, KUMAMOTO_RESPON
SE_TO_NUTLIN_3A_UPB, and ZHU_SKIL_TARGETS_UP.
Detailed lists of co-enriched gene sets for all drug com-
binations are provided in Additional file 1: Table S1.

Application to the CMap dataset

After validating our method by the DREAM gold stand-
ard, we applied it to predict the synergy over a broader
range of drugs analyzed in the CMap dataset. We used
the expression profiles of MCF7 cell line treated with
1,118 compounds. A total of 2,588 instances (different
compound-concentration combinations) were analyzed.
Combinations of each drug pair at different concentra-
tions were represented by the most synergistic one. The
results of 1,038,710 drug combinations are shown in
Additional file 2: Table S2. Top 10 synergistic pairs are
listed in Table 3. These drug combinations are warranted
candidates for further in vitro investigations.

Discussion

In the proposed study we designed three prediction
models to fully test the hypothesis that synergy of drugs
can be achieved by targeting common biological pathways
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or genes. The hypothesis was confirmed by using the
DREAM in vitro dataset. Specifically, the co-gene/GS
scoring system, measuring commonly gene-level distur-
bances within co-enriched gene sets between two drugs
achieved high prediction accuracy, AUC, and precision for
drug synergy and outperformed all proposed methods in
the DREAM challenge.

Another advantage of our method is the ability to
identify the underlying functions/mechanisms that lead
to the efficacy of drug treatments and the synergy of
drug combinations. For example, for the top synergistic
drug pair reported in the DREAM gold standard, doxo-
rubicin & H-7, we identified 14 commonly enriched gene
sets (Table 4). One of the gene sets, “NEWMAN_
ERCC6_TARGETS_DN”, consists of genes involved in
DNA repair- and transcription-related pathways [21]. Both

doxorubicin and H-7 are known to affect transcription in
cells. Doxorubicin is widely used as a first-choice antican-
cer drug in a variety of tumors, including breast, lung,
ovary, thyroid, and leukemia. It intercalates with DNA
base pairs, binds to topoisomerase II, and causes DNA
damages that may activate apoptotic pathways when the
attempt to repair DNA breaks fails [22, 23]. In addition,
doxorubicin has also been reported to directly affect DNA
transcription via inducing histone eviction in promoter re-
gions [24]. H-7 is well-characterized for its ability to de-
regulate DNA transcription. It acts as a protein kinase C
(PKC) inhibitor [25]. PKC family has been reported to
affect the activity of some transcription factors and regu-
late gene transcription [26, 27]. As an inhibitor of PKC,
treatment of H-7 affects the downstream pathways of
PKC and thereby alters the transcription processes of cell.

Table 2 Top 15 synergistic drug pairs predicted by the co-gene/GS score in the DREAM dataset

Predicted rank Gold-standard rank

Drug pair Co-gene/GS score
Camptothecin & Mitomycin C 0.084
Camptothecin & Doxorubicin 0.036
H-7 & Mitomycin C 0.032
Methotrexate & Mitomycin C 0.030
Doxorubicin & Mitomycin C 0.027
Cycloheximide & H-7 0.027
Camptothecin & Etoposide 0.025
H-7 & Trichostatin A 0.019
H-7 & Rapamycin 0.017
Camptothecin & H-7 0.015
Etoposide & Mitomycin C 0.015
H-7 & Vincristine 0.012
H-7 & Monastrol 0.012
Cycloheximide & Methotrexate 0.011
Doxorubicin & H-7 0011

1 5
16
2
28
4
9
15
19
27
10 10
11 3
12 43
13 14
14 64
15 1

O 0 N O U1 AW N
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Taken together, both these two drugs can change tran-
scription activity, which is consistent with our findings
that the treatments of these two drugs co-regulate the
gene set, “‘NEWMAN_ERCC6_TARGETS_DN”, composed
of transcription-related genes.

Applying the prediction model to a huge collection of
drug-treatment profiles deposited in CMap, we success-
fully identified potential synergistic drug combinations
(Table 3). Taking the ninth pair, genistein & etoposide,
as an example, the two drugs showed a similar enrichment
in the gene set “peptide transporter activity” (Table 5), in-
dicating their co-regulation of transporters such as MRPI
(ABCC1), an drug-efflux pump causing cancer cell to at-
tain resistance to some antitumor drugs [28]. Genistein, a
natural isoflavonoid compound appearing in citrus fruits
and soybean, has been reported to have antitumor effect
on several types of cancers, including breast cancer [29]. It
is also capable of inhibiting the multidrug resistance
resulting from the well-known drug efflux proteins, such
as MRPI1, P-glycoprotein, and other ABC (ATP-binding
cassette) proteins [30-33]. Etoposide, on the other hand,
is a topoisomerase II inhibitor and has been reported to

Table 3 Top 10 predicted drug combinations in the CMap

induce apoptosis in MCF7 cell line [34]. Being a substrate
of MRP1, P-glycoprotein and other multidrug resistance-
associated proteins, etoposide is ineffective to suppress
tumor growth when these proteins are largely produced
[35, 36]. Previous in vitro studies showed that genetic de-
letion of the MRP proteins greatly restores the sensitivity
of tumor cells to etoposide due to the minor contributions
of other drug-efflux proteins, such as P-glycoprotein, to
the drug resistance of etoposide [36, 37]. Taken together,

Table 4 Commonly enriched gene sets of doxorubicin and
H-7 in the DREAM dataset

Gene set
NEWMAN_ERCC6_TARGETS_DN

MSigDB category

Chemical and genetic
perturbations

LEE_NEURAL_CREST_STEM_CELL_DN Chemical and genetic

perturbations

ODONNELL_METASTASIS_UP Chemical and genetic

perturbations

CERVERA_SDHB_TARGETS_2 Chemical and genetic

perturbations

OSADA_ASCL1_TARGETS_UP Chemical and genetic

perturbations

YAUCH_HEDGEHOG_SIGNALING_PARACRINE_UP  Chemical and genetic

perturbations

HINATA_NFKB_TARGETS_KERATINOCYTE_DN Chemical and genetic

perturbations

TAVAZOIE_METASTASIS Chemical and genetic

perturbations

VALK_AML_CLUSTER_7 Chemical and genetic

perturbations

MIKKELSEN_NPC_ICP_WITH_H3K27ME3 Chemical and genetic

perturbations

dataset

Drug combination Co-gene/GS score Rank
Prestwick-682 & MG-262 0.667 1
Cefazolin & Nocodazole 0.667 2
Anisomycin & Prednisolone 0.625 3
Lisinopril & Suramin sodium 0.600 4
lopanoic acid & Butacaine 0.563 5
Alpha-ergocryptine & Clofazimine 0529 6
Alpha-ergocryptine & Diloxanide 0.524 7
LM-1685 & Mepyramine 0512 8
Genistein & Etoposide 0.504 9
Acetohexamide & Benzthiazide 0.500 10

HOELZEL_NF1_TARGETS_UP

PTEN_DN.V2_UP
KRAS.DF.V1_DN

Response to wounding

Chemical and genetic
perturbations

Oncogenic signatures
Oncogenic signatures

Gene ontology terms
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Table 5 Commonly enriched gene sets of genistein and
etoposide in the CMap dataset

Gene set
DE_YY1_TARGETS_DN
Peptide transporter activity
TAP1 binding

MSigDB category

Chemical and genetic perturbations
Gene ontology terms

Gene ontology terms

when these two drugs are combined, the inhibitory effect
on multidrug resistance of genistein may sensitize cellular
responses to etoposide, thus intensifying the antitumor
effects through apoptosis.

There are some limitations in our methods. First, the
gene set enrichment score was calculated by summing
all the expression values, thus the topological relation-
ships between genes were not considered. This may lead
to an underestimation of those upstream genes that are
able to cause significant disturbance pathway-wise even
when they are slightly changed. Future studies may ex-
tend this work by using other gene set scoring methods
that weight content genes based on topological informa-
tion [38, 39] and significance of changes [16, 40]. Be-
sides, this scoring scheme ignores the directional (i.e.,
upward and downward) changes in genes of a gene set.
This may cause biases in estimating the influence of
expressional changes on biological functions. Thirdly, in
the calculation of prediction scores we considered a sim-
ple intersection, but ignored the directional agreement
of changes in two gene sets or two genes. Further im-
provement to our method that tackles this concern may
provide better biological insights. Fourthly, our proposed
similarity-based scoring methods were highly predictive
of drug synergy, but did not performed well in predict-
ing drug antagonism. This was consistent to the findings
from the DREAM challenge: hypotheses needed to pre-
dict synergy and antagonism may be quite different [13].
Furthermore, drug pairs could attain synergistic/antagon-
istic effects by varied mechanisms. Our proposed method,
even though proved to have high prediction power, may
only address one specific type of mechanisms. To fully ex-
plore all possibilities and further improve the robustness
of the prediction method, future studies may integrate di-
verse data types of the treated cells, such as methylation
and gene mutation data, and combine different prediction
models, as well as other hypothesis.

Conclusions

In this paper, we comprehensively tested and confirmed
the hypothesis that synergy of drugs can be achieved by
regulating common biological functions and genes. A
synergy-predicting score was proposed and validated by
an experimentally assessed gold standard. The prediction
performance of this simple score was better than previous
methods. We applied our devised method to a larger
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collection to screen for potential drug combinations. We
also demonstrated that the method not only achieves
accurate prediction but also investigates the underlying
mechanisms of drug synergy.
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