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Abstract

Background: Technological advances in medicine have led to a rapid proliferation of high-throughput “omics” data.
Tools to mine this data and discover disrupted disease networks are needed as they hold the key to understanding
complicated interactions between genes, mutations and aberrations, and epi-genetic markers.

Results: We developed an R software package, XMRF, that can be used to fit Markov Networks to various types of
high-throughput genomics data. Encoding the models and estimation techniques of the recently proposed
exponential family Markov Random Fields (Yang et al., 2012), our software can be used to learn genetic networks from
RNA-sequencing data (counts via Poisson graphical models), mutation and copy number variation data (categorical
via Ising models), and methylation data (continuous via Gaussian graphical models).

Conclusions: XMRF is the only tool that allows network structure learning using the native distribution of the data
instead of the standard Gaussian. Moreover, the parallelization feature of the implemented algorithms computes the
large-scale biological networks efficiently. XMRF is available from CRAN and Github (https://github.com/zhandong/
XMRF).
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Background
Markov random fields (MRFs) are a popular tool for
estimating relationships between genes, finding regula-
tory pathways, and visually depicting genetic networks.
Estimating sparse, high-dimensional undirected graphi-
cal models, or Markov Networks, linking a set of p genes
measured on n samples has been well studied for the
Gaussian graphical model (GGM) [1] and also the binary
or categorical Ising model [2]. As many high-throughput
genomic data sets such as counts observed in Next Gener-
ation Sequencing data, are not approximately Gaussian or
binary, existing methods for graphical models are greatly
limited. To address this, a recent line of work has proposed
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a parametric family of graphical models based on uni-
variate exponential family distributions with a rich the-
oretical foundation [3, 4]. These models can be used to
estimate genetic networks from a variety of data types:
gene expression networks based on RNA Sequencing via
Poisson-family graphical models, mutation and aberra-
tion networks via Ising graphical models, and epi-genetic
networks via Gaussian graphical models. In this paper,
we introduce an R software package, XMRF, that encodes
models and estimation techniques for fitting exponential
family Markov Networks to high-throughput genomics
data as well as software to pre-process genetic data and
visualize the resulting genetic networks.

Methods
Recently, we proposed a novel class of MRF models [3]
constructed by assuming that all node-conditional distri-
butions are univariate exponential families. These then
yield a class of models appropriate for a variety of data
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types such as counts, categorical, continuous, and skewed
continuous variables found in high-throughput genomics
data. Further, we proposed a simple way of learning the
network structure of these exponential family MRFs by
maximizing the penalized node-conditional likelihoods;
these methods come with strong theoretical guarantees
for sparse graph estimation as discussed in [3]. As the
models are constructed via exponential families, the so-
called neighborhood selection problems for each node
reduce to that of an �1 penalized and possibly constrained
generalized linear model (GLM) [3].
Suppose X = (X1, . . . ,Xp) is a random vector, with

each variable Xi taking values in a set X . Suppose G =
(V ,E) is an undirected graph over p nodes correspond-
ing to the p variables; the corresponding graphical model
is a set of distributions that satisfy Markov independence
assumptions with respect to the graph. Then, condi-
tioned on all other variables, Xs is distributed according
to an exponential family distribution [4]: E(Xs|X\s) =
σ−1(θs+∑

t∈N(s) θstT(Xt)), where θst is the weight param-
eter denoting an edge between Xs and Xt , T(·) is the
sufficient statistics function, and N(s) is the neighbor-
hood, or set of edges extending out from,Xs. This gives the
following conditional density: P(Xs|X\s) = exp{θsT(Xs) +∑

t∈N(s) θstT(Xs)T(Xt) + h(Xs) − B(θ)}. Based on the
Hammersley-Clifford theorem, these conditional densi-
ties give the following joint density, orMRF, over the set of
nodes to form our Exponential Family Graphical Model:

P(X) = exp

⎧⎨
⎩

∑
s∈V

(θsT(Xs) + h(Xs)) +
∑

(s,t)∈E
θstT(Xs)T(Xt) − A(θ)

⎫⎬
⎭ . (1)

Here, A(θ) is a log-normalization term ensuring that
P(X) is a proper density. We then fit this model using
penalized conditional maximum likelihood estimation
which corresponds to a neighborhood selection problem
for the sth node of the following form:
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Here, C is the constraint region of the parameter space
as discussed further for specific examples in [4]. Notice
that this cooresponds to fitting a penalized GLM.
In the XMRF package, we implement the neighborhood

selection graph estimation technique by proximal or pro-
jected gradient descent using warm-starts over the range
of regularization parameters, λ. Note also that each node-
neighborhood problem is completely independent and
can hence be computed in parallel; this is achieved using
the default parallel support and the snowfall package
[5] in R. The max-rule is used to construct the network
from all neighborhood estimates. Selecting the sparsity of
the network corresponds to selecting λ. We implement

two data-driven approaches to do so: StARS which is com-
puted over a range of λ values [6], and a stability-based
approach for a single value of λwhich for every edge, com-
putes the proportion of times the edge is selected in the
model (termed the stability score) overmany bootstrap re-
samples [7]. Our package also implements Gibbs samplers
to simulate data for our exponential family MRF models.
Finally, our package includes functions for pre-processing
sequencing data [8] and includes a host of network visu-
alization and network manipulation strategies through a
dependency on the igraph package [9]. Our package is
developed under statistical computing environment R and
compatible to be executed in version 3.0.2 or later.

Results and discussion
To estimate the network structures from different types
of high-throughput genomics data, our package consists
of one main function, the XMRF() function, for which
many families of distributions are possible, XMRF(...,
method="GGM"): the GGM for family of Gaussian graph-
ical models, the ISM for Ising models, PGM, TPGM, SPGM,
LPGM for Poisson families of models as described in
[8, 10]. For genomic networks based on sequencing data,
we recommend using the LPGM variant, but all methods
are described in the package vignette. Table 1 summarizes
each of the main families in our XMRF() function as well
as our recommendation for which family to use for various
types of high-throughput genomics data.
The XMRF() function will return an object of GMS class

representing the fitted models. The GMS object contains
the list of fitted networks, the stability of each fitted net-
work, the full regularization path, and the index of the
optimal network. The default plot method of GMS class
enables drawing the learned network in graphical format
and saves the output to a PDF document. The package
also includes plotGML function to write the learned net-
work in graph modeling language, which can be imported
to Cytoscape [11] for further visualization customization.

Choosing the right graphical model for genomics data
The development of high-throughput technology, such
as microarray, SNP array, array-CGH, methylation array,
exome-sequencing, and RNA-sequencing, has generated
a wide variety of genetics data. Each of these genet-
ics data varies in data types. For example, next gener-
ation sequencing (RNA-Seq and miRNA-Seq) data are
read counts; expression profiles from microarray and

Table 1 Recommended families to use in our XMRF package

Genetics data Type XMRF family

RNA-Seq or miRNA-Seq Counts LPGM or SPGM

Microarray or Methylation Continuous GGM

Mutations or CNVs Binary ISM
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methylation array are continuous values; mutations and
CNVs are usually represented in binary, with value one
represents the gene is mutated, amplified or deleted in the
patient, or value zero otherwise (Table 1). To accurately
estimate the underlying network structure from these
data types, one needs to apply the right network infer-
ence algorithm based on the platform-specific data
distribution.
In XMRF, data are modeled using their native

distribution instead of normalizing the data to follow a
Gaussian distribution. To accomplish this, our package
implements methods for three families: Gaussian graphi-
cal models (GGM), Ising models (ISM), and Poisson family
graphical models including regular Poisson graphical
models (PGM) as well as several variants of the Poisson
family of models such as the truncated Poisson (TPGM),
sub-linear Poisson (SPGM), and local Poisson (LPGM) [8].
Note that [10] proposed all these variants of the Poisson
family as the regular Poisson graphical model only per-
mits negative conditional dependencies between nodes;
each of these variants relaxes restrictions resulting in
both positive and negative conditional dependencies. For
genomic networks based on sequencing data, we recom-
mend using the LPGM variant as proposed in [8], noting
that this local model closely approximates the proper
MRF distribution of the SPGM formulation [10].

Poisson graphical model for NGS data
Count data generated by next generation sequencing
(NGS) is a good example of why parametric families
of Markov Networks beyond Gaussian graphical mod-
els are needed. This read count data is highly skewed
and has large spikes at zero so that standardization to
a Gaussian distribution is impossible. Here, we demon-
strate through a real example how to process NGS data so
that we can use Poisson family graphical models to learn
the network structure. Our processing pipeline is given
in [12] and encoded in the processSeq function of the
package.
The level 3 RNA-Seq (UNC Illumina HiSeq RNASeqV2)

data consisting of 445 breast invasive carcinoma (BRCA)
patients from the Cancer Genome Atlas (TCGA) project
[13] was obtained. The set of 353 genes with somatic
mutations listed in the Catalogue of Somatic Mutations in
Cancer (COSMIC) were further extracted [14]. The data
was prepared and stored as the brcadata data object
included in the package. The values in this data object are
the normalized read counts (RSEM) obtained from TCGA
data download portal, representing the mRNA expression
profiles of the genes. The data matrix is of dimension pxn.
Figure 1 shows that the data is more appropriate for Pois-
son family graphical models after being preprocessed with
the processSeq function as given in the following code
snippets:

> library(XMRF)
> data(’brcadata’)
> brca = t(processSeq(t(brcadat),
PercentGenes=1))

To estimate the underlying network structure of the
count-valued data, XMRF implements four different mod-
els from the Poisson family graphical models: regular
Poisson graphical model (PGM) that only permits nega-
tive conditional dependencies, truncated Poisson (TPGM),
sub-linear Poisson (SPGM), and local Poisson (LPGM) [8].
The latter three models are variants of the Poisson fam-
ily that relax restrictions as imposed in a regular Poisson
model, resulting in both positive and negative conditional
dependencies [10]. TPGM should be used if one wants
to truncate the large counts observed in NGS dataset.
Alternatively, SPGM implements a sub-linear truncation
for the NGS data which gives a softer reduction on large
counts. LPGM is a faster algorithm that approximates
the Markov Network while preserving both positive and
negative relationship [8].
In practice, we choose LPGM since it is the fastest and

most flexible way to capture both positive and nega-
tive dependencies [12]. As an example, we applied XMRF
functions to study the relationships between 353 genes
with somatic mutations cataloged in the COSMIC can-
cer gene census database. Gene expression data measured
via RNA-Seq for 445 samples was acquired from the Can-
cer Genome Atlas (TCGA). The processSeq function
was used to process the sequencing data so that our Pois-
son graphical models are appropriate [8]. The estimated
network, Fig. 2, includes multiple associations reported in
published literature, such as the associations of FOXA1,
CCND1, and PBX1 with GATA3, link between ERBB2 and
CDK12, and others. These results validate the utility of
our methods and algorithms implemented in the package
for finding gene interactions.

> library(XMRF)
> data(’brcadat’)
> brca = t(processSeq(t(brcadat),

PercentGenes=1))
> lambda = 0.1 * lambdaMax

(t(as.matrix(brca)))*
sqrt(log(nrow(brca))/ncol(brca))

> brca.lpgm <- XMRF(brca, method="LPGM",
lambda.path=lambda,th=0.005,
sth=0.9)

> plotGML(brca.lpgm, fn="brcanet.gml",
weight=TRUE, vars=rownames(brca))

Gaussian graphical model for expression arrays
When genomics data is profiled with microarrays, such as
with mRNA arrays, miRNA arrays, or methylation arrays,
Gaussian graphical models should be used to estimate the
network structures. Similar workflows as presented in last
section can be applied to fitting Gaussian Markov Net-
works to data that approximately follows a multivariate
Gaussian distribution.
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Fig. 1 Distribution of TCGA BRCA RNA-Seq data before (a) and after (b) preprocessing. The latter gives a distribution more appropriate for Poisson
family graphical models

Here, we give an example of the work-flow of lear-
ning gene networks associated with kidney renal
clear cell carcinoma (KIRC) from tumor patients
[15]:

1. Obtain gene expression data for KIRC, profiled with
mRNA microarray.

2. Obtain data for only tumor samples.
3. Filter genes so that the top 5 % of variable genes

remain.

4. Use the XMRF function to learn the network structure.
Note that it is always good practice to visualize the
data to confirm the distributional family before
model fitting. In this example as shown in Fig. 3, the
data follows a Gaussian distribution and thus fitting a
Gaussian Graphical model is appropriate.

5. Write the network in GML format and view the
network via Cytoscape (Fig. 4).

Code snippets for the above work-flow are provided as
follows:

Fig. 2 Inferred relationships between cancer census genes from TCGA breast cancer patients. The width of edges reflects the strength of inferred
relationships
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Fig. 3 Distribution of mRNA expression profiled with micrarray from
KIRC tumor samples

> # 1. Get TCGA data
> # Obtain mRNA array gene expression data

for KIRC patients
> library(TCGA2STAT)
> kirc<- getTCGA(disease="KIRC",

data.type="mRNA_Array")

# 2. Obtain data for tumor samples
> kirc.tum <- SampleSplit(kirc$dat)$

primary.tumor

> # 3. Filter genes to remain those of
top 5 % most varied genes

> var <- apply(kirc.tum, 1, var)
> nac <- apply(kirc.tum, 1, function(x)

sum(is.na(x)))
> kirc.tum.gd <- kirc.tum[var >= quantile

(var, probs=0.95, na.rm=T)
& !is.na(var) & nac==0, ]

> # Take a look at the data to confirm
distribution family

> hist(kirc.tum.gd, breaks=20)
> # 4. Fit the data to Gaussian

graphical model
> kirc.tum.fit <- XMRF(kirc.tum.gd,

method="GGM", N=100,
stability="STAR",
nlams=10, beta=0.001)

> # Visualized the gene network
> plotGML(kirc.tum.fit, fn="kirc.tum.

array.gml", i=2, weight=TRUE,
vars=rownames(kirc.tum.gd))

Fig. 4 KIRC expressed gene networks estimated by GGM via XMRF(...,method="GGM") for mRNA expression data
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Ising graphical model for mutation data
To fit Markov Networks to binary data, the XMRF function
with method="ISM" can be used. In this section, we give
an example of fitting an Isingmodel to simulated data with
a lattice graph as well as estimating interactions among
mutated genes in TCGA lung squamous cell carcinoma
(LUSC) samples [16].

Learning a lattice graph from simulated data
In the following example, a multivariate binary data
matrix of 400 observations that will give a 5× 5 grid graph
will be simulated. Our XMRF Ising model is fit to infer
the lattice network from simulated data. Models were
fitted over a path of 20 regularization values. StARS sta-
bility selection with 100 iterations were used to select the
optimal network. Figure 5 shows that the estimated opti-
mal network shown (Fig. 5b and d) is almost identical to
the true simulated network (Fig. 5a and c). This result
shows that the Ising graphical model implemented in our
package could correctly identify the relationships between
variables from binary data.
> n = 400
> p = 25
> simdat <- XMRF.Sim(n=n, p=p, model="ISM",

graph.type="lattice")
> ismfit <- XMRF(simdat$X, method="ISM",

N=100, nlams=20, stability=
"STAR", th=0.1, beta=0.1)

> par(mfrow=c(2,2))
> image(simdat$B)
> image(ismfit$network[[ismfit$opt.index]])
> ml = plotNet(simdat$B, fn="")
> ml = plot(ismfit, fn="", mylayout=ml)

Estimate LUSCmutation networks
In this section, we estimate the relationships among
mutated genes in 178 lung squamous cell carcinoma
(LUSC) patients from the TCGA project [16]. We
obtained the data via getTCGA from TCGA2STAT pack-
age. A total of 13655 genes for LUSC patients were
obtained. Genes with a mutation rate of less than 15
% in the cohort or with an undefined gene name
were filtered out before analysis. This left data with
59 genes and 179 patients. Similar to the work-flow
applied on simulated data presented, Ising models were
fit across 20 regularization values, and the optimal net-
work was selected from 100 iterations via the StARS
approach.
> library(TCGA2STAT)
> lusc.mut <- getTCGA(disease="LUSC",

data.type="Mutation")
> mut.dat <- lusc.mut$dat
> mut.rate <- apply(mut.dat, 1, sum)/ncol

(mut.dat)
> mut.gd <- mut.dat[mut.rate>= 0.15, ]
> mut.gd <- mut.gd[-grep("Unknown",

rownames(mut.gd)), ]

> lusc.mut.fit <- XMRF(mut.gd, method="ISM",
N=100, nlams=20,
stability="STAR", th=0.001,
beta=0.1)

> plotGML(lusc.mut.fit, fn="lusc.gml",
vars=rownames(mut.gd), weight=TRUE)

The estimated mutated gene networks for lung squa-
mous cell carcinoma viewed from Cytoscape is shown in
Fig. 6.

Fig. 5 Results of fitting an Ising model to simulated multivariate binary data. The true simulated grid is plotted in (a) and (c). The estimated graph
structure via XMRF(...,method="ISM") is plotted in (b) and (d)



The Author(s) BMC Systems Biology 2016, 10(Suppl 3):69 Page 353 of 380

Fig. 6 LUSC mutated gene networks estimated by Ising model’s XMRF(...,method="ISM")

Tuning parameter selection: network sparsity
Our XMRF package implements two data-driven meth-
ods to determine the sparsity of a fitted network. The
first method is the stability selection over many boot-
strap samples for a single regularization value [7]. The
second method is the StARS selection, which is computed
over a range of regularization values to select a network
with the smallest regularization value that is simultane-
ously sparse and reproducible in random samples [6].
In this section, both of these methods are demonstrated
for an example using the local Poisson graphical model
(LPGM).

Stability selection
Here, we demonstrate the stability selection technique to
learn the network sparsity for networks estimated via the
LPGMmethod.
We simulate a scale-free network with 30 variables

and 200 observations. We determine the network spar-
sity based on the stability score, which retains network
edges that are estimated in more than 95 % (sth=0.95)
of the 50 bootstrap repetitions (N=50). The code is given
below:
> library(XMRF)
> n = 200
> p = 30

# Simulate a scale-free network of 30 notes
and 200 samples

> sim <- XMRF.Sim(n=n, p=p, model="LPGM",
graph.type="scale-free")

> simDat <- sim$X

# Compute the optimal lambda
> lmax = lambdaMax(t(simDat))
> lambda = 0.01* sqrt(log(p)/n) * lmax

# Run Local Poisson Graphical Model (LPGM)
> lpgm.fit <- XMRF(simDat, method="LPGM",

lambda.path=lambda, sth=0.95,
N=50)

Results for the code above are shown in Fig. 7. It shows
that the estimated network structure (Fig. 7b) is equivalent
to the true network structure (Fig. 7a). Note that stability
selection is the default way to determine network sparsity
in XMRF.

StARS selection
If users want to fit a network over a series of regularization
parameters instead of a single lambda as shown in last
section, a numerical vector of regularization values should
be given for the lambda.path parameter of the XMRF
function.
Another option to study the Markov Networks over the

complete regularization path is to let our XMRF method
decide the path from a null model (empty network)
to the full model (saturated network). In this case, the
XMRF(...,method="",...) function will compute
the maximum lambda that gives the null model and the
minimum lambda that gives the full model for each of the
parametric familes employed. The maximum lambda is
computed based on the input data matrix, and is the max-
imum element from column-wise multiplication of data
matrix (data matrix in n x p) normalized by the number of
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Fig. 7 Simulated network from XMRF.Sim(...,model="LPGM") (a) and inferred network estimated via XMRF(...,method="LPGM")
with network sparsity determined via stability selection (b)

observations. Based on the maximum lambda value, the
number of lambda (nlams) and the minimum lambda
(lmin), sequence of appropriate lambda values will be
computed.
Stability selection via StARS seeks to select the lambda

value out of the regularization path which yields the most
stable network (or, least variable to bootstrap perturba-
tions). Specifically, the variability of each fitted network
is measured based on the stability of edges inferred from
the bootstrap samples. The network with the smallest
penalization and variability below the user specified cutoff
(beta) is selected as the final optimal network.
In the following example, we fit the XMRF(...,

method="LPGM") to learn the same simulated scale-
free network of 30 nodes from 200 observations along a
path of 20 regularization parameters.

> library(XMRF)
> n = 200
> p = 30

# Simulate a scale-free network of 50 notes
and 300 samples

> sim <- XMRF.Sim(n=n, p=p, model="LPGM",
graph.type="scale-free")

> simDat <- sim$X

# Run LPGM on a whole regularization path
lpgm.fit <- XMRF(simDat, method="LPGM",

nlams=20, stability="STAR",
th=0.001)

Visualization and data exportation
To enable users to visualize the inferred network in graph-
ical form, XMRF includes three plotting functions with
slight variations to serve different purposes. First, the
default plot function of the GMS class will draw the opti-
mal inferred network and save it to a PDF file with the
following command:

> plot(lpgm.fit, fn="lpgm.fit.net.pdf")

Second, the plotNet function allows users to plot a
specific network with specific layout. For example, to plot
the simulated network and the inferred network in Fig. 7
with the same layout, the following commands can be
used:
> ml = plotNet(sim$B)
> ml = plot(lpgm.fit, mylayout=ml)

The third plot function allows users to view the inferred
network in other graph visualizing software such as the
Cytoscape. The plotGML function will write the network
in the graphmodeling language (GML) format which then
can be imported to Cytoscape. For example, with the
following command:

> plotGML(brca.lpgm, fn="brca.dnet.gml",
weight=TRUE, vars=rownames(brca))

Conclusion
We have developed an open source R package that
allows users to learn the network structure from data
acquired from various high-throughput genomics tech-
nologies. Our tool is the only software that allows data
to be modeled using their native distribution instead of
normalizing the data to follow Gaussian distribution as
most other statistical models require. In addition, the
parallelization of our algorithms provides an efficient tool
for computing large-scale networks.
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