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Abstract

Background: Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of
controlling the progression of biological pathways and regulatory networks. Despite recent computational
development of controllability of general complex networks and structural controllability of Boolean networks, there
is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further,
no realtime control strategy has been proposed to drive a Boolean network.

Results: In this study, we applied semi-tensor product to represent boolean functions in a network and explored
controllability of a boolean network based on the transition matrix and time transition diagram. We determined the
necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition
matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability
of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms
of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these
six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy
to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to
the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with
published experimental results.

Conclusions: This control strategy allowed us to apply realtime control to drive Boolean networks, which could not
be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive
understanding of the evolution of Boolean networks and might be extended to output feedback control design.
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Background
Boolean networks have been successfully applied tomodel
gene regulations and protein interactions for the last two
decades because the up or down regulation of molecular
expressions can be described as discrete Boolean func-
tions [1–4]. In these applications, molecules and their
interactions were treated as nodes and edges, respec-
tively. Boolean networks were characterized with network
structure, i.e. the organization of nodes and edges, and
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the interactive Boolean functions among the nodes [5].
Recent advances in high through-put technology such as
genomics and proteomics have prompted us to deter-
mine the interactions among molecules, thus establishing
a Boolean network for a small biological system is feasible.
Currently, the most common senorio of biological

experiments is to modify a specific molecular expression
through gene knock-out or dosage injection and to eval-
uate the down stream effects of the modified molecule
by examining expressions of a panel of genes based on
expertise knowledge or using unbiased screening. Such
experimental design only changes the initial state of a bio-
logical network and no other stimuli (control input) is
introduced to the system during the response. Further,
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such experimental design was performed without answer-
ing the following questions: 1) whether changing the state
of one node or a group of nodes of a network will drive
the network to desired states; and 2) how to determine the
effect of structural and functional changes of a network.
Similar questions have been answered for linear time

invariant systems as reachability and controllability of a
system. In general, a particular state x1 is reachable if
there exists a control input to transfer the system from
any initial state to x1 in a finite time. Meanwhile, a sys-
tem is defined as reachable if every state of the system is
reachable [6]. Controllability of a system is very similar to
reachability definition, which means if there exists a con-
trol input to transfer the system from any initial condition
to the origin in finite time. For a linear time invariant sys-
tem, we can always translate a state to the origin using
coordinate transformation. And therefore, reachability is
a fundamental check for controllability.
Preliminary results on controllability of general net-

works were obtained via pinning control strategy in
terms of the spectral properties of network structure [7].
Barabasi’s group has mapped controllability conditions
of linear time invariant systems to complex networks
and computationally determined the driver nodes for a
network [8]. Their results answered the question which
nodes might affect the progression of a network. Yuan
and colleagues further examined the effect of weights
of the edges on controllability of a general network [9].
Both results focused on finding the minimal number of
nodes to control the network. However, these results are
computational analysis due to the lack of mathemati-
cal representation of complex networks. In the year of
2003, Cheng proposed a mathematical representation of
Boolean networks with semi-tensor product [10], which
provided a possible approach to systemically examine
the controllability of Boolean Networks. Sun and Cheng
defined the controllability of a Boolean network and
obtained preliminary controllable condition on network
structure [11–13]. However, the definition and conditions
were mathematical oriented and have not been linked to
Boolean operations in real networks, which imposed extra
difficulty for users without the required mathematical
background.
In this study, we defined both structural and func-

tional requirements for a reachable Boolean network
using semi-tensor product. We found 6 forms for con-
trollable 2-node Boolean networks with both structural
and functional conditions, developed a sharable tool to
determine whether an arbitrary Boolean network is reach-
able or not, and gave possible structural and functional
changes to modify the reachability. Most importantly, we
proposed the first state feedback control strategy to drive a
Boolean network by integrating current status of all nodes
in the network. The control strategy allowed realtime

application and will provide effective control to drive the
network to a desired state.

Boolean networks
Boolean networks proposed by Kauffman are discrete-
time dynamics systems with Boolean state-variables [5].
Each node of a Boolean network is a Boolean state vari-
able with logic value 0 (false) or 1 (true) corresponding to
down or up regulation of a molecule in a biological net-
work. States of all nodes in a Boolean network will lead to
a Boolean vector.
A Boolean function with k variables is a mapping B:

{0, 1}k → {0, 1} from the set of all k-tuples over {0, 1} to a
binary output. This function describes how to determine
a Boolean-valued output based on certain logical opera-
tions from k binary inputs. It can also be interpreted as
how the expression of a molecule will be determined by
other k molecules interacting with it. The basic Boolean
operations include AND (conjunction), OR (union), and
NOT (inhibition). A list of sixteen logical operations was
shown in Table 1.

Algebraic representation of Boolean networks
A Boolean network with n logical variables Vi, i =
1, 2, . . . , n and m control inputs uj, j = 1, 2, . . . ,m can be
expressed as

V1(t + 1) = B1(V1(t), . . . ,Vn(t),u1(t), . . . ,um(t))
... (1)

Vn(t + 1) = Bn(V1(t), . . . ,Vn(t),u1(t), . . . ,um(t)),

where Vi and uj take value from the set {0, 1} [14]. The
representation of each Boolean function is defined as Bi :
{0, 1}n+m → {0, 1}, i = 1, . . . , n, which is preassigned
Boolean logical functions determined by the biological
process. For a n-node boolean network, there are 2n pos-
sible states. If there is no control input uj, Bi is a 2 × 2n
matrix because each logical value 0 or 1 is expressed as a
vector (0, 1)T or (1, 0)T , respectively. The algebraic state-
space representation of the Boolean control network is set
up based on the semi-tensor product of matrices which
will be introduced in our method part [10, 14, 15].
For each Boolean function, there is a unique truth table

while the algebraic expression of a Boolean function is
not unique. This means that there exist different forms of
structures and operations of a network with same Boolean
function. In this study, we assume each Boolean func-
tion is represented with the simplest form to reduce the
complexity of analysis.

Results
We first defined all reachable states of a Boolean network
with control applied at the beginning and then removed
the control input from the system. This exactly mimics the
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Table 1 Logical matrices of 16 Boolean operations

Logical connective Logical operator Logical matrix for 2-node
symbol Boolean networks

True �
⎛
⎝ 1 1 1 1

0 0 0 0

⎞
⎠

False ⊥
⎛
⎝ 0 0 0 0

1 1 1 1

⎞
⎠

Proposition x1 x1

⎛
⎝ 1 1 0 0

0 0 1 1

⎞
⎠

Proposition x2 x2

⎛
⎝ 1 0 1 0

0 1 0 1

⎞
⎠

Negation (inhibition) x1 ¬x1

⎛
⎝ 0 0 1 1

1 1 0 0

⎞
⎠

Negation (inhibition) x2 ¬x2

⎛
⎝ 0 1 0 1

1 0 1 0

⎞
⎠

Conjunction ∧
⎛
⎝ 1 0 0 0

0 1 1 1

⎞
⎠

Disjunction (union) ∨
⎛
⎝ 1 1 1 0

0 0 0 1

⎞
⎠

Converse implication ←
⎛
⎝ 1 1 0 1

0 0 1 0

⎞
⎠

Material conditional →
⎛
⎝ 1 0 1 1

0 1 0 0

⎞
⎠

Converse nonimplication �

⎛
⎝ 0 0 1 0

1 1 0 1

⎞
⎠

Material nonimplication �

⎛
⎝ 0 1 0 0

1 0 1 1

⎞
⎠

Biconditional ↔
⎛
⎝ 1 0 0 1

0 1 1 0

⎞
⎠

Alternative denial ↑
⎛
⎝ 0 1 1 1

1 0 0 0

⎞
⎠

Joint denial ↓
⎛
⎝ 0 0 0 1

1 1 1 0

⎞
⎠

Exclusive disjunction ⊕
⎛
⎝ 0 1 1 0

1 0 0 1

⎞
⎠

situation of modifying one node or a group of nodes in
the network initially and examining the response.We then
extended the reachability to controllability.

Determining reachability using graphical approach
For a n-node Boolean network, an integrated state repre-
sents the status of n variables in the network. All together
there are 2n integrated states, representing each possible
status of the n nodes. An integrated state is denoted as
ej2n , j = 1, 2, · · · , 2n, in which ej2n means the jth column
of 2n × 2n identity matrix. A graphical representation,

time transition diagram, was proposed to illustrate the
transition among the integrated states. Each node of the
time transition diagram corresponds to one integrated
state ej2n of a dynamic network. A directed edge from
ej2n to ek2n , j, k = 1, 2, · · · , 2n, indicates temporal transi-
tions from an integrated state ej2n to an integrated state
ek2n . The directed edge also represents that the jth column
in the transition matrix is ek2n . The transition matrix of
a Boolean network is calculated using semi-tensor prod-
uct, and each column of the transition matrix is a vector
ek2n . From the left to the right, each column of the transi-
tion matrix represents the transition from ej2n , j increasing
from 1 to 2n, to its next integrated state represented by
a column vector ek2n . Specifically, the left most column of
the transition matrix represents the transition from e12n
to its next integrated state, and the right most column in
the matrix represents the transition from e2n2n to its next
integrated state. Therefore, there are a total of 2n outgo-
ing arrows in the time transition diagram and a node may
have multiple incoming arrows but has only one outgoing
arrow.
Reachability of a node in the time transition diagram

means the corresponding integrated state can be reached
from any initial integrated state in finite time. If each node
in the time transition diagram is reachable, the Boolean
network is reachable.

Finding 1 A Boolean network with n nodes (n > 1) is
reachable if and only if the signal flow goes through each
node in the time transition diagram by one direction, indi-
cating that each node has one outgoing arrow and one
incoming arrow.

There are some specific properties for the transition
matrix of a reachable Boolean network: 1) There is only
one 1 in each column and each row, suggesting an inte-
grate state can only be reached by one other integrated
state; 2) Every diagonal elements is zero. It means that the
jth column is not ej2n . This property excludes self transi-
tion of one integrated state. 3) If the jth column is ek2n ,
then the kth column is not ej2n , n ≥ 2, which excludes
transition between two integrated states. However, this
property is not true for a 1-node reachable Boolean net-
work. The transition matrix of 1-node reachable boolean
network satisfies that the 1st column is e22 while the 2nd
column is e12.
Here, an example of a 3-node Boolean network is pre-

sented in Fig. 1 to show how the reachability is determined
and all 8 integrated states representing possible status of
the 3 nodes in the Boolean network are listed in Table 2.
Based on these integrated states listed in Table 2 and time
transition diagram in Fig. 1, whatever changes we make
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a

b

c

Fig. 1 Determination of the reachability of a three-node Boolean network with given Boolean functions. Based on the logical operations (a) for this
network, the corresponding time transition matrix (b) and the time transition diagram (c) can be obtained by semi-tensor product. A signal flow
among five integrated states e38 → e58 → e78 → e88 → e48 → e38 is formed as a circle. According to Finding 1, it means that all these five integrated
states are reachable, which are highlighted in red, while the other three states e18, e

2
8 and e68 are not reachable, which are highlighted in blue

to the nodes through knock out of a node (value 0) nor
dosage injection to a node (value 1), the network can not
reach the integrated state e18 (node 1 is 0, node 2 is 1, and
node 3 is 1), e28 (node 1 is 1, node 2 is 1, and node 3 is 0),
e68 (node 1 is 0, node 2 is 1, and node 3 is 0). If we force the
initial status of the system to be these three states, the net-
work will deviate from these states and never come back.
This result can provide a guideline for experiment design
to examine down stream effect for a giving pathway with
known Boolean network. For the network shown in Fig. 1,
when e18, or e28, or e68 is a desired state we would like the

Table 2 Relationship between eight integrated states of a
3-node Boolean network and logical values of the 3 nodes

Node 1 Node 2 Node 3 Integrated state

1 1 1 e18

1 1 0 e28

1 0 1 e38

1 0 0 e48

0 1 1 e58

0 1 0 e68

0 0 1 e78

0 0 0 e88

network to go, a more complicated control strategy should
be introduced in stead of just modify status of one node of
a group of nodes.

Reachable 2-node Boolean network with logical
operations. We examined all 2-node Boolean networks
with combinations of 16 logical operations as shown in
Table 1. We found that there were only six simplest forms
of reachable 2-node Boolean networks. These six Boolean
networks were shown in Fig. 2 with their corresponding
time transition diagrams and transition matrices.
Interestingly, these six simplest networks show highly

coupled property, which can be divided into three groups.
In each group, if state x1 is swapped with x2 in one of the
coupled networks, it exactly becomes the other network.
Therefore, for any given 2-node Boolean network dynam-
ics with logical operations, it will be straightforward to
know that it is reachable or not when it reduces to its sim-
plest form. In addition, this provided a baseline to check
reachability and controllability of a Boolean network with
more nodes.

Feedback control design for N-node lower-triangle
Boolean networks Starting from the known 6 forms of
2-node reachable Boolean networks, their extensions to
N-node Boolean networks can be derived based on the
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Fig. 2 The six simplest 2-node reachable Boolean networks with their logic operations. The left column shows simplest reachable Boolean functions
of two variables, the middle column represents the state transition matrix, and the right column illustrates the time transition diagram among four
integrated states of two variables. The four integrated states of all six Boolean networks are all reachable

property of transition matrix. Further, for the extended
N-node Boolean network with control input added to
the nth node directly, the feedback control input can be
designed to implement the reachability of the N-node
Boolean network.

Finding 2 For a given N-node lower-triangle Boolean
network dynamic with control input located at the
nth node, if the first N-1 Boolean network dynamic
is a reachable (N-1)-node Boolean dynamics, a feed-
back control can be designed, which is extracted from
the Nth logical function of extended N-node reachable
Boolean dynamics from the (N-1)-node reachable Boolean
dynamics.

Given one of the 6 reachable 2-node boolean networks
in Fig. 2, we can extend the network with extra nodes once
the added boolean functions guarantee the time transition
diagram satisfy the condition in our 1st finding. For an

extended N-node reachable Boolean network, if we divide
its (2n × 2n transition matrix LN into sub-blocks, and
define 0-block as a square matrix with all zero elements,
and 1-block as square matrix with non-zero element, the
structure of the transition matrix LN in terms of the
sub-blocks will mimic the transition matrix for boolean
networks with less nodes.
Specifically, if 1-block in transition matrix of 2-node

network appears at row i and column j, then for a 3-node
network extended from 2-node network, the two 1-blocks
only appear at row 2i − 1 and column 2j − 1, row 2i and
column 2j or at row 2i − 1 and column 2j, row 2i and
column 2j − 1 respectively. An example of how to design
the feedback control input of the 3-node Boolean network
is shown below, which extends from 2-node reachable
Boolean network. And the relationship between transition
matrices was shown in Fig. 3. Further, the Boolean func-
tion for the 3rd node can be treated as control input u as
shown below,
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a c
d

eb
Fig. 3 The pipeline of extended 3-node reachable Boolean network from 2-node reachable Boolean network. If transition matrix L3

(
23 × 23

)
of

3-node Boolean network system, is divided into 4 × 4 blocks, then the new transition matrix represented by the 4 × 4 matrix is exactly the same as
transition matrix L2 of fundamental 2-node Boolean network dynamic. a The transition matrix of a 2-node reachable network; (b) Time transition
diagram of 2-node network; (c) Each 1-block is extended to two 1-blocks; (d) The transition matrix of extended 3-node extended reachable network;
(e) Corresponding time transition diagram of extended 3-node extended network

x1(k + 1) =¬x2(k)
x2(k + 1) =x1(k)
x3(k + 1) =u,

where u is the control input of the lower-triangle dynamic,
which will be designed later.
For the 2-node reachable Boolean network represented

by

x1(k + 1) =¬x2(k)
x2(k + 1) =x1(k),

we illustrate the inter relationship between the transition
matrices and time transition diagram. Based on one pos-
sible transition matrix that guarantees the reachability of
each integrated state, the boolean operation matrix M
can be obtained and the corresponding boolean function

for the 3rd node is determined. With the possible transi-
tion matrix shown in Fig. 3, the corresponding Boolean
function is listed as
x1(k + 1) = ¬x2(k)
x2(k + 1) = x1(k)
x3(k + 1) = (¬x1(k) ∧ ¬x2(k) ∧ ¬x3(k))

× ∨(x1(k) ∧ x3(k)) ∨ (x2(k) ∧ x3(k)).

Then, the feedback control input u is designed as

u=(¬x1(k)∧¬x2(k) ∧ ¬x3(k))∨ (x1(k) ∧ x3(k)) ∨(x2(k) ∧ x3(k)).

Analysis of reachability for P53 pathway
The p53 pathway responds to intrinc and extrinsic stress
signals that can disrupt the fidelity of DNA replication,
genome stability, cell cycle progression, and cell division.
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The pathway contains complicated feedback regulatory
mechanisms and many experimental results have been
accumulated to illustrate the regulations. In the major
switch of p53 pathways as shown in Fig. 4, there are four
state nodes are denoted as x1, x2, x3 and x4, which present
as ‘ATM’, ‘p53’, ‘Wip1’, ‘Mdm2’, respectively [16]. The rela-
tionship between integrated states and its corresponding
Boolean values of four genes is shown in Table 3 below.
The Boolean network representation of 4 genes is

x1(k + 1) =¬x3(k)
x2(k + 1) =x1(k) ∧ (¬x4(k))
x3(k + 1) =x2(k)
x4(k + 1) =¬x1(k) ∧ (x2(k) ∨ x3(k))

(2)

The transition matrix is

L=(
e1416, e

10
16, e

6
16, e

2
16, e

16
16, e

12
16, e

8
16, e

4
16, e

13
16, e

13
16, e

5
16, e

5
16, e

15
16, e

15
16, e

8
16, e

8
16

)
(3)

The corresponding time transition diagram is shown in
Fig. 5. From the time transition diagram, there exists a
cycle including e816, e416, e216, e1016, e1316, e1516, suggesting a sta-
ble pulse generated by P53 pathway switches. Based on
Table 3, each integrated state corresponds the specific val-
ues of four states. In Fig. 5, the high expression level of a
gene presents Boolean value ‘1’ while low expression level
means Boolean value ‘0’.
Additionally, this stable pulse can be reached by differ-

ent initial integrated states. One of the time course, which
includes the main loop, is presented in Fig. 6 based on

Fig. 4 The major switch of p53 pathway. The major interactions for
p53 pathway, were presented among four nodes: ‘ATM’, ‘p53’, ‘Wip1’,
‘Mdm2’ respectively. The red line means the inhibition impact while
the black linestands for the promotion impact

Table 3 The relationship between integrated states and its
corresponding Boolean values of four genes

ATM p53 Wip1 Mdm2 Integrated state

1 1 1 1 e116

1 1 1 0 e216

1 1 0 1 e316

1 1 0 0 e416

1 0 1 1 e516

1 0 1 0 e616

1 0 0 1 e716

1 0 0 0 e816

0 1 1 1 e916

0 1 1 0 e1016

0 1 0 1 e1116

0 1 0 0 e1216

0 0 1 1 e1316

0 0 1 0 e1416

0 0 0 1 e1516

0 0 0 0 e1616

our simulation. The network exhibits the one-phase or
two-phase dynamic, which depends on the initial states.
If the initial is one of e816, e

4
16, e

2
16, e

10
16, e

13
16, e

15
16, there exists

only one-phase pulse, i.e. steady state pulse, which is a
periodical pulse. If the initial states are others integrated
states, there exists the two-phase pulse (transient pulse
and steady state pulse), where the first phase is depends on
the time distance between any state belongs to the peri-
odical circle and the initial states and it ends at reaching
any one state in the e816 → e416 → e216 → e1016 → e1316 →
e1516 → e816 circle. The second phase is characterized by the
periodical circle.
To verify that our predictions on P53 pathway progres-

sion, we examined the experimental results published on
P53 pathways. The published results confirmed that 1)
P53 pathway has a stable pattern pulses generation [17],
and 2) there exists two-phase transition in P53 pathways
[18].

Discussion and conclusions
Reachability of Boolean networks is a central issue for net-
work analysis. However, due to the lacking of a systemic
approach to present network progression with respect to
the structure and functions of a network, little is known
about reachability of a complex network. Recent results
are acquired with computational estimates and on struc-
tural property [8, 9, 19]. The most significant contribu-
tions of this study were listed below. We have developed
a tool to determine the reachability for Boolean networks
with arbitrary number of nodes and Boolean functions.
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Fig. 5 The time transition diagram of sixteen integrated states of 4 nodes in p53 pathway. The solid lines present the time path. As time goes on, any
initial integrated state will reach a signal flow including six integrated states e816 → e416 → e216 → e1016 → e1316 → e1516 → e816. This phenomena
induces that the states change periodically after a period of time

This tool allows general non-engineer users to verify
whether a Boolean network is reachable or not. Further,
with a given Boolean network, we can recognize all the
reachable states and separate them from non-reachable
states. If a desired state of the network is among the
reachable states, a modification of initial states through
gene knock out or dosage injection may lead to desired
response. Otherwise, a more complicated control should
be introduced.

We also found six simplest forms for reachable 2-D
boolean networks. This result provided the structure of
reachable transition matrix and allowed us to examine
possible modification of structure and function of a net-
work. Finally, we proposed the first state feedback control
design strategy of N-node Boolean networks. The control
is determined by status of all nodes in the network and
is feasible for realtime application. For instance, a possi-
ble control design was introduced to a 2-node network to

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 ATM
p53
Wip1
Mdm2

Fig. 6 The pulses of p53 pathway. Expression levels of four genes in the major switch of P53 pathway lead to pulse diagram. The high expression
level of a gene presents Boolean value ‘1’ while low expression level means Boolean value ‘0’. Expression levels of each node also lead to a specific
integrated state in the time transition diagram. The four different pulse lines, which are ATM (black solid line), p53 (blue solid line), Wip1 (green solid
line), Mdm2 (red solid line), show cyclic changes after 10 sec
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form a 3-node reachable Boolean network shown in Fig. 3.
Though the last Boolean function may be complicated,
it provides possible direction for state feedback control
design. Simplification and optimization of the state feed-
back control design and output feedback control design
will be conducted as our future research.
Finally, we presented the analysis of the major switch in

P53 pathway to predict the progression of the pathway and
validated our prediction with published results.

Methods
Semi-tensor product. Semi-tensor product ′

�
′ allows

us to multiply two matrices without the requirement of
matching their dimensions [10].
For a logical dynamics, we know that ′1′ and ′0′ are

used to represent logical states ′True′ and ′False′, respec-
tively. In order to define the logical values for computing
and analysis, vector forms of Boolean variables are applied
using semi-tensor product paper. The semi-tensor prod-
uct of two matrices A ∈ R

m×n and B ∈ R
p×q is that

A� B = (A ⊗ Iα/n)(B ⊗ Iα/p), (4)

where α = lcm(n, p), lcm(n, p) denotes the least multiple
of n and p. Iα/n and Iα/p are the (α/n×α/n) identity matrix
and (α/p × α/p) identity matrix, respectively. Operation
⊗ means the Kronecker product [20].

Representation of Boolean network dynamicss using
semi-tensor product. We summarize the mathematical
tool of semi-tensor product in Cheng’s papers as follows.
[14, 21]

Cheng’s result 1: Any logical function
f (x1, x2, · · · , xn) with logical states x1, x2, · · · , xn ∈ D
can be expressed in a multi-linear form as

f (x1, x2, · · · , xn) = M � x1 � x2 · · · � xn (5)

where M is a 2 × 2n logical matrix.
Cheng’s result 2: Consider a Boolean network with
states xi ∈ D and denote integrated state
x(k) = x1(k) � x2(k) · · · � xn(k), there exists a
unique matrix L ∈ {0, 1}2n×2n such that

x(k + 1) = L� x(k), (6)

L is the transition matrix of this Boolean network.

Cheng’s results allow us to represent the dynamics
of Boolean networks with an algebraic state space rep-
resentation. Then, the time transition diagram can be
determined by this transition matrix L.

Examining all the 2-node reachable Boolean networks
with logical operations. For any 2-node (node x1 and
node x2) Boolean network, denote the integrated state

x(k) = x1(k) � x2(k) as a 4 × 1 vector, the dynamics can
be represented by a multi-linear form as below

x1(k + 1) = M1 � x1(k) � x2(k)
= M1 � x(k),

x2(k + 1) = M2 � x1(k) � x2(k)
= M2 � x(k),

where M1 and M2 are the 2 × 4 undetermined logical
matrices. Suppose

M1=
(

α11 α12 α13 α14
α21 α22 α23 α24

)
,M2=

(
β11 β12 β13 β14
β21 β22 β23 β24

)
,(7)

noticing that if one of α1j and α2j, j = 1, 2, 3, 4, is zero,
the other one must be one. Also, the same condition is on
the situation of β1j and β2j, j = 1, 2, 3, 4. In other words,
α1j +α2j = 1 and β1j +β2j = 1, where α1j,α2j,β1j,β2j ∈ D.
Therefore,M1 andM2 has 24 combination cases.
There exists a unique matrix L such that

x(k + 1) = L� x(k),

where L = M1 � (I4 ⊗ M2) � �2. Moreover, �2 is a fixed
16× 4 matrix provided below, which only depends on the
number of nodes.

�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

By substituting the expressions of M1, M2, and �2 into
the calculation formula of L, the matrix L is obtained as

L = M1 � (I4 ⊗ M2) � �2 (9)

=

⎛
⎜⎜⎝

α11β11 α12β12 α13β13 α14β14
α11β21 α12β22 α13β23 α14β24
α21β11 α22β12 α23β13 α24β14
α21β21 α22β22 α23β23 α24β24

⎞
⎟⎟⎠ .

Based on Finding 1, in order to ensure it is a reachable
Boolean network, the transition matrix should satisfy the
jth column is not ej2n and if jth column is ek2n , then kth col-
umn is not ej2n , which means transion matrix L here must
be a special asymmetric permutation matrix, and satisfy
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that all the elements on the diagonal are zeros. So, there
are only six different forms of L in total as shown below.

L1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ , L2 =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ (10)

L3 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , L4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ (11)

L5 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , L6 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (12)

According to the forms of Li, i = 1, 2, · · · , 6, the related
M1 and M2 can be determined and their corresponding
most simplistic logic equations can be obtained respec-
tively, which are listed below.
In terms of L1,M1 andM2 can be reduced as

M1 =
(
0 1 0 1
1 0 1 0

)
, M2 =

(
1 1 0 0
0 0 1 1

)
. (13)

Then, the most simplistic Boolean network dynamics
equation related to L1 is

x1(k + 1) =¬x2(k)
x2(k + 1) =x1(k).

(14)

All the other five sets of M1 and M2 corresponding Li,
i = 2, 3, 4, 5, 6, can be obtained through the same way. All
possible Boolean networks and corresponding transition
matrices were shown in Fig. 2.

Extending N-node reachable network dynamics from
2-node reachable Boolean networks. Denote Mi, i =
1, 2, · · · , n as 2 × 2n logical matrices of each logical func-
tion of a N-node Boolean network. Extension of the first
n logical functions to extended n+ 1 nodes Boolean func-
tions leads to M∗

i , i = 1, 2, · · · , n + 1. Specifically, M∗
n+1

indicates the (2 × 2n+1) logical matrix of the last logical
function. Moreover, the relationship between Mi and M∗

i
is

M∗
i = E �Mi, i = 1, 2, · · · , n, (15)

where matrix E is a fixed 2 × 4 matrix shown as

E =
(
1 1 0 0
0 0 1 1

)
. (16)

In terms of n nodes reachable Boolean network system,
the corresponding expression of transition matrix Ln is

Ln = M1 �
n∏

i=2
[ (I2n ⊗ Mi) � �n] , (17)

where Mi are 2 × 2n logical matrices of dynamics, i =
1, 2, · · · , n. �n is a fixed 22n × 2n matrix, which only
depends on the number of nodes.
Then, for n + 1 nodes reachable Boolean network sys-

tem, the corresponding expression of transition matrix
Ln+1 is

Ln+1=M∗
1 �

n+1∏
i=2

[ (I2n+1 ⊗ M∗
i ) � �n+1]

=M∗
1 �

n∏
i=2

[ (I2n+1 ⊗ M∗
i ) � �n+1]�((I2n+1 ⊗ M∗

n+1) � �n+1)

=E �M1�
n∏

i=2
[(I2n+1 ⊗(E�Mi))��n+1]�(I2n+1⊗M∗

n+1)��n+1

=L∗
n �(I2n+1 ⊗ M∗

n+1) � �n+1,

where L∗
n = E �M1 �

∏n
i=2[ (I2n+1 ⊗ (E �Mi)) � �n+1],

which is a 2n×2n+1 matrix. Due to (I2n+1 ⊗M∗
n+1)��n+1

is a 2n+2 × 2n+1 matrix, L∗
n matrix will be extended as

L∗
n ⊗ I2 when doing the semi-product. Therefore, Ln+1

is a 2n+1 × 2n+1 matrix, which has multi-level-nested
structure based on matrices L2, L3, · · · , Ln of 2 − D,
3−D, · · · , n−D reachable or reachable Boolean network
systems. According to the property of transition matrix,
when extending to more nodes reachable networks, each
1-block will be extended to a 2×2 identity matrix or skew-
identity matrix, which means a 1-block can be extended
to two 1-blocks. If there is an odd number of identity
matrices or skew-identity matrices, the extended Boolean
network is reachable. Based on this rule, the logical matrix
M∗

n+1 can be derived, then the feedback controller can be
determined.
Starting from the six forms of 2-node reachable logical

Boolean network, we can find all the 3-node correspond-
ing reachable Boolean network dynamics with logical
operations. By that analogy, N-node (n > 2) reachable
logical Boolean network can be obtained.
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