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Abstract

Background: Glioma is the most common brain tumor and it has very high mortality rate due to its infiltration and
heterogeneity. Precise classification of glioma subtype is essential for proper therapeutic treatment and better
clinical prognosis. However, the molecular mechanism of glioma is far from clear and the classical classification
methods based on traditional morphologic and histopathologic knowledge are subjective and inconsistent.
Recently, classification methods based on molecular characteristics are developed with rapid progress of high
throughput technology.

Methods: In the present study, we designed a novel integrated gene coexpression analysis approach, which
involves differential coexpression and differential regulation analysis (DCEA and DRA), to investigate glioma
prognostic biomarkers and molecular subtypes based on six glioma transcriptome data sets.

Results: We revealed a novel three-transcription-factor signature including AHR, NFIL3 and ZNF423 for glioma
molecular subtypes. This three-TF signature clusters glioma patients into three major subtypes (ZG, NG and IG
subtypes) which are significantly different in patient survival as well as transcriptomic patterns. Notably, ZG subtype
is featured with higher expression of ZNF423 and has better prognosis with younger age at diagnosis. NG subtype
is associated with higher expression of NFIL3 and AHR, and has worse prognosis with elder age at diagnosis.
According to our inferred differential networking information and previously reported signalling knowledge, we
suggested testable hypotheses on the roles of AHR and NFIL3 in glioma carcinogenesis.

Conclusions: With so far the least biomarkers, our approach not only provides a novel glioma prognostic molecular
classification scheme, but also helps to explore its dysregulation mechanisms. Our work is extendable to prognosis-
related classification and signature identification in other cancer researches.

Keywords: Glioma molecular classification, Prognostic biomarker, Differential coexpression analysis, Differential
regulation analysis, Glioma carcinogenesis
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Background
Glioma, a broad category of brain and spinal cord tu-
mors, has very poor prognosis because of its infiltration
and heterogeneity. Precise classification of glioma is
essentially required during each patient’s therapeutic
treatment. There are three major types of glioma trad-
itionally classified by affected glial cells: astrocytomas,
oligodendroglioma and ependymoma. From classifica-
tion criterion given by World Health Organization
(WHO) in 2007, glioma is then categorized according to
its grade which is determined by pathologic evaluation
[1]. This classification method of glioma based on mor-
phologic and histopathologic knowledge is associated
with clinical outcomes and used to anticipate the prog-
nosis of patients. However, the traditional classification
scheme is subjective, and is highly relying on individual
experiences. Moreover, patients within same histopatho-
logic subtype and grade may show different clinical out-
comes [2]. Therefore, further investigation of glioma
molecular characteristic factors is necessary for clinical
diagnosis and targeted treatments.
Recently, more classification methods based on mo-

lecular variation are developed with the rapid progress
of high-throughput technologies. These molecular classifi-
cation methods enhance the profiling of cancer subtypes
and promote precision medicine. A large amount of bio-
markers including mRNA expression patterns [3–6], DNA
methylation markers [7], microRNA expression signatures
[8], copy-number profiling patterns [7, 9] and proteome
profiling patterns [10, 11] have been found to identify
glioma molecular subtypes. For instance, The Cancer Gen-
ome Atlas (TCGA) identified clinically relevant subtypes
of glioblastoma according to an 840-gene signature [3].
Wei Yan et al. studied whole genome gene expression data
from samples of the Chinese Glioma Cooperative Group
and provided a prognostic classification scheme featured
with 1577 genes [4]. A nine-gene signature in glioma pa-
tients is defined by Bao et al. based on mRNA expression
data analysis [5]. In Sun et al.’s work, a glioma classifica-
tion scheme based on coexpression modules centered by
EGFR and PDGFRA was suggested [6].
In order to narrow down the searching space, some of

these methods started from known glioma related genes.
Still taking Sun et al.’s work as an example, they investi-
gated the co-expressed genes of EGFR and PDGFRA
and defined them as the molecular biomarkers of glioma
subtypes [6]. However, this strategy retains little chance
of finding out novel factors. Moreover, differential expres-
sion analysis (DEA) is used in most classification schemes,
which proves to be capable of discovering biomarkers
successfully [12–15]. In recent years, differential co-
expression analysis (DCEA) and differential regulation
analysis (DRA) are emerging in the transcriptome analysis
domain as a prospective complement to traditional

differential expression analysis (DEA) [16]. By looking at
changes in gene expression correlation, DCEA and DRA
offer hints about the disrupted regulatory relationships or
abnormal regulations specific to the phenotype of interest
[17–19]. In contrast, traditional DEA calculates expression
level changes of individual genes between phenotypes, and
has less chance to discover causal regulatory factors. Fol-
lowing this sense, we developed a glioma classification
scheme which integrated DCEA and DRA to nonnegative
matrix factorization (NMF) [20] clustering method. This
integrated approach is supposed to have stronger potential
to unveil prognostic signatures than that traditional differ-
ential expression analysis has. By this approach we can
discover biomarkers which are more relevant to regulation
mechanisms underlying glioma carcinogenesis.
In this study, we analysed 6 public transcriptome gli-

oma data sets and identified three glioma prognosis-
related transcription factors, AHR, NFIL3 and ZNF423.
The expression values of these featured genes divided
patients into three distinct molecular subtypes which
were characterized by significantly different clinical out-
comes and gene expression patterns. We investigated
the relevance of the three-TF signature to regulation
mechanisms of glioma carcinogenesis and suggested
AHR, NFIL3 and ZNF423 as promising biomarkers
for not only glioma molecular subtype diagnosis but
also clinical treatment. Our novel integrative gene
coexpression analysis approach is also extendable to
prognosis-related molecular classification and signature
identification in other cancer researches.

Methods
Data sets
Six glioma transcriptome data sets including GSE4290,
GSE16011, GSE4412, Tiantan data set, Rembrandt data
set and TCGA RNA-seq data set, were used in this study
(Table 1). GSE4290, GSE16011 and GSE4412 data sets
were gathered from Gene Expression Omnibus (GEO)
[21–23]. TCGA RNA-seq data set was obtained from
the TCGA data portal and the mRNA expression data of
Glioblastoma multiforme (GBM) and Brain Lower Grade
Glioma (LGG) were merged. We downloaded raw data
(CEL files) of the Rembrandt data set [24] and merged
all data sets by using R package ‘affy’ [25] with
normalization index of mas5.0. The Tiantan data set was
downloaded from Chinese Glioma Genome Atlas [4]. If
expression value of a certain gene was missing in a par-
ticular data set, we ignored this gene in the follow-up
analysis.

Differential co-expression analysis (DCEA) and differential
regulation analysis (DRA)
We developed R package DCGL v2.0 for DCEA and DRA
in our previous work [18, 19], which were used in the
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present study to detect differentially coexpressed genes
and differentially regulated genes in glioma. We used R
package limma for differential expression analysis [26].

Clustering method
We applied nonnegative matrix factorization (NMF)
clustering method [20] to get subgroups with distinct
gene expression patterns. The number of clusters should
keep all clusters as stable as possible, which can be
checked by cophenetic correlation coefficient and heat
map of clusters. Meanwhile, it should be as large as pos-
sible. (Additional file 1: Figure S1).

Survival analysis
Patient’s overall survival time is calculated by counting
the dates between surgery and death or the dates be-
tween surgery and last follow up. Kaplan-Meier survival
curves were generated and analysed by using R package
‘survival’ [27]. P values were calculated by using the log-
rank test to check the significant differences between the
survival curves. Hazard ratio (HR) of one gene is often
used to evaluate the potential risk of death related to
high expression of this gene. If HR value of one gene is
greater than 1, patient with high expression of this gene
will have higher probability of having died. The calculation
of genes’ hazard ratio was performed with ‘survcomp’ with
survival time as the dependent variable [28, 29].

Gene regulatory network modelling
The multivariant linear regression model proves to be
able to infer gene regulatory relationships by gene ex-
pression profiles [30–32]. In our work, we constructed
subtype-specific gene regulatory networks based on both
forward predicted TF-target relationships and subtype-
specific genes expression data by using the linear regres-
sion model. The true regulators of a particular gene and

their regulation efficacies were determined by the step-
wise linear regression.

Results
The identification of a three-TF glioma prognostic
signature and its clinical relevance with the training set
In order to prioritize the regulators that are putatively
causative to glioma, we first identified differentially regu-
lated genes (DRGs) by using DCGL v2.0 [19] in
GSE4290, and then chose the DRGs which were signifi-
cant in both Targets’ Enrichment Density (TED) analysis
and Targets’ DCL Density (TDD) analysis in DCGL v2.0
[19]. TED analysis evaluates enrichment of differential
co-expression genes in a particular TF’s targets and
TDD analysis measures density of differential co-
expression links between a TF’s targets. TF might be
more important or causative if it is significant or has
higher ranking in both TED and TDD analysis. There
are 87 significant TFs in TED analysis result and 79 sig-
nificant TFs in TDD analysis result (Additional file 2:
Table S1). We chose TFs that are significant in both
these two analysis results. Therefore, six DRGs including
AHR, NFIL3, ZNF423, MYC, MYCN and TAL1 were
obtained. We listed their regulation targets based on
TF2target library of DCGL v2.0 [19] which includes a set
of candidate TF-target regulatory relationships. By assum-
ing that these targets should be not only differentially
expressed genes (DEGs) but also differentially co-
expressed genes (DCGs), we acquired 253 links including
6 TFs and their 175 targets. However, some of these 175
genes are not differentially co-expressed with these 6 TFs.
We then cut off these genes by using the differentially reg-
ulated links (DRL) analysis in DCGL v2.0. After sifting out
DRLs, the links decreased to 93 with 6 TFs and their 82
targets. These 88 genes were considered as seed genes
which are potentially related to glioma pathogenesis
(Additional file 3: Table S2).

Table 1 Six glioma data sets used in the study

Data sets Platform Component of samples Use

GSE4290 GPL570 157 glioma (AII 7, AIII 19, GBM 77, OII 38, OIII 12, unknown 4), 23 epilepsy Used for DCEA and DRA
analysis

GSE16011 GPL8542 284 glioma (PA 8, AII 13, AIII 16, GBM 159, OII 8, OIII 44, OAII 3, OAIII 25),8
normal adult brain samples

Training set for searching for
DRA-based signature

Rembrandt GPL570 521 gliomas (A 148, GBM 228, O 67, OA 11, unknown 67), 21 epilepsy Training set for searching for
DRA-based signature

Tiantan Agilent 44 K array 212 glioma (AII 58, AIII 8, GBM 82, OII 18, OIII 10, OAII 21, OAIII 15) Training set for searching for
DRA-based signature

TCGA
mRNA-seq

IlluminaHiseq_RNAseq 519 gliomas (AII 38, AIII 84, GBM 160, OII 83, OIII 54, OAII 55, OAIII 45) Training set for searching for
DRA-based signature

GSE4412 GPL96 85 gliomas(A 8,GBM 59,OA 7,O 11) Validation set of DRA-based
signature

The abbreviations for tumor types were derived from the source data: A astrocytoma, AII astrocytoma grade II, AIII astrocytoma grade III, GBM glioblastoma, O
oligodendroglioma, OII oligodendroglioma grade II, OIII oligodendroglioma grade III, OA oligoastrocytoma, OAII oligoastrocytoma grade II, OAIII oligoastrocytoma
grade III, PA pilocytic astrocytoma
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Four glioma transcriptome data sets including
GSE16011, Tiantan data set, Rembrandt data set and
TCGA RNA-seq data set (the 2nd to 5thdata sets in
Table 1), were used in our study as training sets to
search for glioma classification signatures. Since a few of
the 88 seed genes were not detected in some of the data-
sets, for example, LOC157627 was not in the Tiantan
data set and six genes (C11orf9, EPB49, FRMPD4,
LOC157627, NEFL, SLC7A14) were not in GSE16011,
the expression values of the missing genes were taken as
zero. By using NMF clustering method, these four data
sets were divided into subgroups which have better
prognosis, intermediate prognosis and worse prognosis
associated with the clinical analysis (Fig. 1). When we

looked into the best prognosis and worst prognosis clus-
ters, we found that best prognosis clusters from the four
data sets share 14 common genes which are ZNF423,
ELAVL2, DOCK3, FGF13, GRM5, NRSN1, OPCML,
PAK3, PDE2A, KCNQ5, RIMS2, RGS7, TAGLN3 and
UNC5A; while worst prognosis clusters share 6 common
genes including AHR, IGF2BP3, IGFBP2, IQGAP2,
PLK2 and NFIL3. Notably, there are three transcription
factors AHR, NFIL3 and ZNF423 in these 20 candidate
genes.
According to the basic understanding of gene regula-

tion, changes of transcription factors are upstream events
of cellular transcriptome. This is consistent with the ob-
servation that transcription factors are significantly

Fig. 1 Clustering heat maps and survival analysis results with 88 seed genes in four data sets. The numbers of clusters (k) were determined by
NMF based on the expression signatures of 88 potential glioma regulation related genes. Heat maps of 88 genes in glioma samples are shown
on the left. a-d are respectively GSE16011, Rembrandt data set, Tiantan data set, and TCGA mRNA-seq data set. Kaplan-Meier survival curves of
the overall survival for the patients from each molecular subtype are shown on the right. P-values of the survival curves were calculated by using
log-rank tests. The same colour codes were used in the heat maps and the Kaplan-Meier survival curves in all datasets
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enriched in reported glioma prognostic genes (Additional
file 4: Table S3). And hazard ratios (Table 2 and
Additional file 5: Table S4) are consistent with their
reported functions in cancer progression. That is, hazard
ratio of ZNF423 is less than 1 as high expression of
ZNF423 is associated with better prognosis; hazard ratios
of AHR and NFIL3 are greater than 1 as high expression
of AHR and NFIL3 are associated with shorter survival
time. Therefore, we checked if these three transcription
factors (AHR, NFIL3 and ZNF423) could be a glioma
prognosis-related signature by measuring its clinical rele-
vance with NMF clustering method and survival analysis.
Figure 2a-d show the results of the clustering heat map
and survival analysis. The samples are divided into three
subgroups for each data set according to the cophenetic
correlation coefficient. The survival information between
three subgroups are significantly different. For GSE16011
data set (Fig. 2a), the high expression value of ZNF423 is
associated with the best prognosis group, and samples
with high expression values of AHR and NFIL3 are di-
vided into worst and intermediate prognosis groups. The
survival curves of subgroups have significant differences
(p = 8.51e-11) in this data set. In the Rembrandt data set
which has the largest sample number, the best prognosis
group has higher expression in ZNF423 and the clinical
outcomes are differential as well (p = 2.76e-7) (Fig. 2b).
The heat map of clustering result for Tiantan dataset
shows similar gene expression patterns of ZNF423, AHR
and NFIL3 (Fig. 2c). The statistic survival result shows
three subgroups are different (p = 1.35e-18) despite that
the survival curve of intermediate group is slightly mixed
with the others according to its relatively small group
number (6/212). TCGA RNA-seq data set has the same
gene expression tendency as the above three data sets,
and its subgroups are significantly different in survival in-
formation (p = 7.63e-32) (Fig. 2d). We named the sub-
group with higher ZNF423 expression value as ZG group
and that with higher expression values of NFIL3 and AHR
as NG group. The intermediate group between ZG and
NG groups is IG group. Ages at diagnosis in NG subtype
are older than that in ZG subtype (Additional file 6:

Table S5): 54.77 ± 13.5 in NG and 46.5 ± 13.4 in ZG of
GSE16011 data set; 43.0 ± 12.7in NG and 39.0 ± 10.5 in
ZG of Tiantan data set; 58.5 ± 13.5 in NG and 42.0 ±
14.3 in ZG of TCGA data set. Survival years of ZG
groups are larger than that of NG groups: 3.5 ± 4.5 in
ZG group and 0.7 ± 1.8 in NG group for GSE 16011 data
set; 2.3 ± 0.9 in ZG group and 1.5 ± 0.8 in NG group for
Tiantan data set; 3.5 ± 3.8 in ZG group and 1.2 ± 2.5 in
NG group for Rembrandt data set; 1.0 ± 2.6 in ZG group
and 0.7 ± 1.8 in NG group for TCGA data set.
The statistics shows that DRA-signature subtypes

overlap with morphologically defined glioma subtypes
similarly in these data sets (Additional files 7, 8, 9, 10
and 11: Figure S2-S6). GBM samples are mainly clus-
tered into NG and IG groups with worst prognosis: 81
(50.9 %) and 54 (34.0 %) over total 159 GBM samples
are in NG and IG group in GSE16011 data set; 67
(81.7 %) and 4 (4.9 %) over total 82 GBM samples are in
NG and IG group in Tiantan data set;178 (78.1 %) and
22 (9.6 %) over total 228 GBM samples are in NG and
IG group in REM data set;77 (48.1 %) and 58 (36.3 %)
over total 160 GBM samples are in NG and IG group in
TCGA data set. Majority of other grade II and grade III
glioma cases are divided to ZG group with best progno-
sis and the proportions for each data set are: 62 (56.9 %)
out of 109 grade II and grade III samples are in ZG
group in GSE16011 data set; 90 (69.2 %) out of 130
grade II and grade III samples are in ZG group in Tian-
tan data set; 315 (87.7 %) out of 359 grade II and grade
III samples are in ZG group in TCGA data set. The dis-
tribution of samples crossing different subtypes indicates
that molecular factors may vary within a certain trad-
itional morphological subtype, which makes the diagno-
sis and treatment for molecular subtypes of glioma
necessary replenishment for better prognosis of patients.

Confirmation of the prognostic value of the three-TF
signature in validation set
We validated the three-TF signature in the validation
data set, GSE4412, which has 85 samples. By applying
the NMF clustering method and survival analysis, we

Table 2 Hazard ratios of three TFs in four datasets (GSE16011, Rembrandt, Tiantan, TCGA mRNA datasets)

TFs Gse16011 Rembrandt Tiantan TCGA mRNA Reported functional remarks

HR p-value HR p-value HR p-value HR p-value

ZNF423 0.188 4.81E-15 0.769 4.91E-09 0.4719 0.0014 0.627 5.46E-18 Overexpression of ZNF423 helps growth inhibition and
differentiation. Neuroblastomas with low levels of
ZNF423 show extremely poor outcome. [45, 46]

AHR 1.1818 0.001642 1.2669 6.45E-26 1.5729 1.68E-06 1.616 9.27E-16 AHR leads proliferation of Medulloblastoma cell. The
pathway associated with AHR is active in human brain
tumours with malignant progression and poor survival.
[47–49]

NFIL3 1.394 1.20E-05 1.3529 5.31E-12 2.7649 2.18E-08 2.093 1.86E-15 NFIL3 is found to be overexpressed in different cancer
types [50].
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discovered three subgroups with significantly different
patterns on both gene expression and prognosis result.
Still, ZG group with higher gene expression value of
ZNF423 has best prognosis while AHR and NFIL3 are
highly expressed in NG and IG groups which have
poorer prognosis (Fig. 2e). In spite of the smaller size of
GSE4412 (N = 85) relative to four training data sets
which have hundreds of sample, the survival curves of

three subgroups are significantly different (p = 0.02). The
statistic clinical information of subtypes of GSE4412 is
listed in Additional file 11: Figure S6.

Differential expression of the three-TF signature in glioma
subtypes
Since we obtained the glioma signature genes through
differential coexpression analysis, which does not concern

Fig. 2 The clustering heat maps and survival analysis results with three-TF signature in five data sets. The numbers of clusters (k) were determined
by NMF based on the expression signatures of 3 TFs. Heat maps of three-TF DRA signature in glioma samples are shown on the left. a-e are
respectively GSE16011, Rembrandt, Tiantan, TCGA mRNA-seq and GSE4412 data sets. Kaplan-Meier survival curves of the overall survival for the
patients from each molecular subtype are shown on the right. P-values of the survival curves were calculated by using log-rank tests. The same
colour codes were used in the heat maps and the Kaplan-Meier survival curves of all datasets. The three colours green, red, yellow refer respectively to
ZG, NG and IG subtypes
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about the expression levels of individual genes, we
checked the expression patterns of these three signature
genes across the glioma subtypes. Rembrandt data set with
normal sample data was used because it has the largest
sample size (N = 542) and would reflect the glioma gene
profile in a maximum effort. The expression values of
AHR, NFIL3 and ZNF423 across glioma subtypes are sig-
nificantly different (Fig. 3). These three genes are differen-
tially expressed across subtypes in GSE16011 and the
other three data sets as well (Additional file 12: Figure S7).
This suggests that the differential co-expression analysis is
a powerful complement to differential expression analysis
in classification study. Vice versa, it is in essence the dif-
ferent expression value of signature genes that distinguish
the glioma molecular subtypes.

Comparison of the Three-TF signature and previously
reported diffuse glioma biomarkers
Previously reported glioma biomarkers include 840-gene
signature by TCGA [3], 1577-gene signature by CCGA
[4], 69-EM/PM-gene signature by Sun et al. [6] and nine-
gene signature by Bao et al. [5]. We still adopted GSE4412
as a validation data set. The 85 samples were clustered
with these four signatures respectively by NMF method,
and the survival curves were examined. The p value indi-
cating the significant survival difference with four signa-
tures in order are: 0.088, 0.023, 0.016, 9.24e-5 (Additional
file 13: Table S6). The nine-gene signature has the best
prognosis differentiation because clinical survival informa-
tion was directly included in their regression model. This
means our three-TF signature scheme which leads to
significant p = 0.02 is comparable to the previous classifi-
cation schemes, while our signature is with the least num-
ber of genes, offering more feasibility for clinical
application. Additionally, all of three signature genes are
transcription factors, which might help to explain the
regulation mechanisms underlying glioma carcinogenesis.

It is noticeable that our signature genes do not overlap
with any of the four previously reported signatures.
In order to compare the drug target relevance of our

DRA-based signature and previously reported signatures,
we evaluated the enrichment of the signatures in the 1318
FDA-proved-drug target genes in Open Data Drug & Drug
Target Database (DrugBank) [33]. In GSE4290 data set,
there are 1277 (6.3 %) drug target genes out of total 20,284
expressed genes, while our signature has 1 drug target
AHR over total 3 genes (enrichment significant p = 0.028)
(Additional files 13 and 14: Table S6 and S7). The CCGA
1577-gene signature has 168 drug targets (p = 0). The
TCGA 840-gene signature has 91 drug targets (p = 4.1e-
10). The 69-EM/PM-gene signature has 3 drug targets
which are PDGFRA, MMP16 and EGFR (p = 0.25). There
is no drug target gene in nine-gene signature. The signifi-
cant enrichment of our three-TF signature in drug target
genes indicates its superior potential in medical treatment
although some reported signatures with thousands of genes
have better drug target enrichments.

Exploratory analysis on relevance of the DRA-based
three-TF signature to glioma pathogenesis
We investigated subtype-specific gene regulatory relation-
ships in Rembrandt data set by using regulatory network
modelling method [30–32]. According to the differential
networking information and the previously reported sig-
nalling knowledge, we explored the relevance of our
DRA-based three-TF signature to glioma pathogenesis
and highlighted some significant regulatory relationships
in glioma subtypes (Fig. 4). And the global significant
regulatory relationship of 88 seed genes was shown in
Additional file 15: Figure S8.
As mentioned above, highly expressed AHR is associ-

ated with the worse-prognosis group. We checked the
difference of the regulation relationships of AHR and its
targets among 88 seed genes (Additional file 3: Table S2)

Fig. 3 Expression values of ZNF423, AHR, NFIL3 in glioma subtypes in Rembrandt dataset. Each single point is the gene expression value of
individual sample. Lines in the middle are the median expression values. The four colours blue, green, yellow and red represent respectively
samples in normal, ZG, IG, NG subgroups
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between NG group and normal sample. In Fig. 4a, it was
found that AHR does not regulate DOC2A in normal
samples while negatively regulates DOC2A in NG group,
which was confirmed by the lower expression level of
DOC2A in NG group. Since DOC2A has been reported
as a suppressor gene in many carcinomas such as colo-
rectal cancer and urothelial cancer [34, 35], we suggest
AHR might promote glioma progression through

inhibiting the tumor suppressor gene, DOC2A. Another
regulatory relationship AHR-TAGLN3 is notable as well.
Similarly, AHR negatively regulates TAGLN3 in NG
group (Fig. 4a) and TAGLN3 has lower expression value
in NG group than that in normal samples. TAGLN2,
which is homologous gene of TAGLN3, was reported to
have tumour-suppressive function in bladder cancer
[36]. TAGLN3 might be another important role in

Fig. 4 DRA-signature genes and their notable regulatory networks in different glioma molecular subtypes. a-b Differential regulations of AHR and
NFIL3: the regulatory relationships of normal condition (blue) were shown in left, the regulations of NG group (red) were shown in right. The
labels of edge were indicators to measure the relationship between TFs and targets. Red and green represent positive regulatory efficiency and
negative regulatory, grey represent no relationship between TFs and targets. Higher absolute label value means stronger regulations. c The
expression values of the target genes shown in (a) and (b) in normal condition (blue) and NG group (red), each single point is the gene
expression value of individual sample. Lines in the middle were the median expression values
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promoting glioma progression which leads to worse
prognosis.
We also noticed that NFIL3 with high expression is

featured in the worse-prognosis subtype and it regulates
many cancer related genes (Fig. 4b). For example, PLK2,
a tumour suppressor gene [37], is negatively regulated
by NFIL3 and has lower gene expression value in NG
group. RBP4, a tumor suppressor in ovarian cancer [38],
is negatively regulated by NFIL3 and has lower gene ex-
pression value in NG group. Similarly, SULT4A1, with
lower expression in children brain tumor [39], is regu-
lated positively by NFIL3 in normal samples while nega-
tively by NFIL3 in NG group. The negative regulation
relationship between NFIL3 and NGEF in NG group,
and the lower expression of NGEF was also observed,
which is consistent with the previous report [40].
Interestingly, another two regulation targets of NFIL3,

PRKCB and PAK3, were reported as oncogenes [41, 42],
however, they are negatively regulated by NFIL3 and
show lower expression levels in NG group. More de-
tailed function studies on these two oncogenes seem to
be required to elucidate their functions in glioma
carcinogenesis.

Discussion
Using integrated gene co-expression analysis approach,
we identified three prognostic biomarkers to cluster the
glioma into three molecular subtypes (ZG, NG and IG
subtypes) with significantly different clinical outcomes,
gene expression patterns and transcriptional regulation
patterns. Among the subtypes, ZG is featured with
higher expression of ZNF423 and has better prognosis
with younger age at diagnosis; NG is associated with
higher expression of NFIL3 and AHR, and has worse
prognosis with elder age at diagnosis. This three-TF sig-
nature was validated by independent glioma data set for
its prognostic value. More and more biomarkers of can-
cers including glioma are discovered with rapid develop-
ment of high-throughput technologies and large-scale
genetic data generated increasingly. These multidimen-
sional biomarkers such as mutations and gene expres-
sion patterns supplement histology-dominated profiles
of glioma and other cancers [43]. In the meantime, they
have been driving the development of precision medi-
cine in cancer, which aims to analyse individual patient’s
disease at molecular level and conduct more targeted
treatments.
However, large amount of methods searching for bio-

markers highly rely on prior knowledge such as directly
testing whether there is an association between the sur-
vival results and the well-known tumor related genes, in-
efficiently making use of the high-throughput data that
contains valuable correlation information. Moreover,
most of biomarkers are identified solely according to

their statistical associations with clinical outcomes,
therefore they have limited ability to pursue underlying
pathogenic mechanisms.
In current efforts to carcinogenesis studies, lots of at-

tention has been paid on differential gene expression.
The functional-relevant, differentially expressed genes
(DEG) are always selected to explain regulation mecha-
nisms underlying pathogenesis. However, it has been
well accepted that cancer originates from genomic
changes in genes regulating cell growth and differenti-
ation, which induces abnormal expression of a large
number of genes, and over-activation of cell proliferation
[44]. That is, DEGs are the consequences of differential
regulation mechanisms instead of the causes of pheno-
typic changes. Accordingly, DEG-based signatures are
more likely to be ‘associated’ with a certain phenotype,
but less relevant to the causal mechanisms. In our previ-
ous work, we developed a series of differential co-
expression analysis (DCEA) and differential regulation
analysis (DRA) methods, which aim to explore gene regu-
lation changes, or differential gene regulation [17–19].
DCEA has been considered more promising in identifying
differential regulation mechanisms of phenotypic changes
than differential expression analysis (DEA) [16]. In our
present work, we combined DRA, DCEA and DEA to se-
lect seed genes for signature identification, instead of only
investigating differentially expressed genes as previous
studies did [12–15]. Benefiting from the use of DRA and
DCEA, the searching space of signature genes was nar-
rowed down to the genes most relevant to differential
regulation. Our DRA-based three-TF signature genes have
been proved to be more causal and help to generate test-
able hypothesis on glioma carcinogenesis. Contrarily, in
the method which defines nine-gene signature based on
association between differential expression and clinical in-
formation [5], although its p-value of survival curves is the
smallest and the number of its signature genes is quite
small, the nine genes deliver limited information on
glioma carcinogenesis.
It is noticeable that choosing the prognostic biomarkers

as less as possible is able to make clinical research more
effective. In our present work, we chose only transcription
factors from the 20 candidate genes as glioma signature,
since TFs are believed to be up-stream factors in carcino-
genesis and have potential to be effective drug targets in
treatments. To evaluate the validity of this procedure, we
randomly generated a new three-gene-signature from 20
genes listed in Additional file 4: Table S3 and conduct the
survival analysis of their molecular subtypes (Add-
itional file 16: Table S8). It was found that p-value of
our three-TF signature is significant and smaller than
the average of p-values of randomly generated ones
(Additional file 17: Figure S9). Additionally, the haz-
ard ratio values of the three TFs (Table 2) match with
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previous knowledge about their functions. All above
means these three TFs have sufficient power to classify
prognostic molecular subtypes, indicating that transcrip-
tion factors are priorities in biomarker candidates. Based
on our inferred differential networking information and
the previously reported signalling knowledge around our
signature genes, we generated testable hypotheses on the
roles of AHR and NFIL3 in glioma carcinogenesis. We
also proposed some testable hypotheses on the roles of
AHR and NFIL3 in glioma carcinogenesis which are
worthy of further experimental investigations.

Conclusions
In conclusion, our classification scheme, which is based
on differential co-expression and differential regulation
analysis, is able to predict the prognosis of glioma by
only three genes. Our research explores the glioma mo-
lecular mechanism at transcriptional regulation level and
provides potential drug targets for different glioma mo-
lecular subtypes. This integrated approach is extendable
to other cancer researches for the identification of com-
plex disease biomarkers with hints for not only diagno-
sis, but also pathogenesis.

Additional files

Additional file 1: Figure S1. Cophenetic correlation coefficients of
nonnegative matrix factorization (NMF) clustering method with 88 seed
signatures. (TIF 6064 kb)

Additional file 2: Table S1. Significant TFs of TDD and TED in GSE4290.
(XLSX 15 kb)

Additional file 3: Table S2. Information of 88 seed genes.
(XLSX 13 kb)

Additional file 4: Table S3. TF enrichment in reported prognostic
featured genes. (XLSX 12 kb)

Additional file 5: Table S4. Hazard ratio values of 17 non-TF in 20
target genes. (XLSX 14 kb)

Additional file 6: Table S5. Tukey’s test for ages between molecular
subtypes in four data sets. (XLSX 11 kb)

Additional file 7: Figure S2. Comparison of 3-TF signature subtypes and
morphologically defined glioma subtypes in GSE16011 data set. (TIF 2970 kb)

Additional file 8: Figure S3. Comparison of 3-TF signature subtypes
and morphologically defined glioma subtypes in Rembrandt data set.
(TIF 2182 kb)

Additional file 9: Figure S4. Comparison of 3-TF signature subtypes
and morphologically defined glioma subtypes in Tiantan data.
(TIF 2631 kb)

Additional file 10: Figure S5. Comparison of 3-TF signature subtypes
and morphologically defined glioma subtypes in TCGA mRNA data set.
(TIF 2772 kb)

Additional file 11: Figure S6. Comparison of 3-TF signature subtypes
and morphologically defined glioma subtypes in GSE4412 data set.
(TIF 2051 kb)

Additional file 12: Figure S7. The differential expression patterns of
three TF in glioma subtypes in four data sets. (TIF 1005 kb)

Additional file 13: Table S6. Comparison of 3-TF signature and
reported gene expression signatures. (XLSX 8.9 kb)

Additional file 14: Table S7. Drug targets in 3-TF signature and
reported gene expression signatures. (XLSX 13 kb)

Additional file 15: Figure S8. Regulatory networks of three TFs in
subtypes of Rembrandt data set. (TIF 2278 kb)

Additional file 16: Table S8. Survival analysis of clustering results by
three-random-gene signatures. (XLSX 80.4 kb)

Additional file 17: Figure S9. The p-value distribution of survival analysis
of clustering results by three-random-gene signatures. (TIF 995 kb)

Abbreviations
DCEA, differential coexpression analysis; DEA, differential expression analysis;
DEG, differentially expressed genes; DRA, differential regulation analysis; HR,
hazard ratio; NMF, nonnegative matrix factorization; TF, transcription factor

Acknowledgements
This work was supported by the grants from the National “973” Key Basic
Research Development Program (2012CB316501 and 2013CB910801), the
National Natural Science Foundation of China (31171268 and 81272279), the
Program of International S&T Cooperation (2014DFB30020), and the
Fundamental Research Program of Shanghai Municipal Commission of
Science and Technology (14DZ1951300 and 14DZ2252000). We thank Dr.
Hong Li and Dr. Zhen Wang for their valuable suggestion about this
manuscript.

Availability of data and materials
The datasets and supporting materials are presented in the additional
supporting files.

Authors’ contributions
SW and JL designed the study, performed bioinformatics analysis and
drafted the manuscript. MC participated in the drug target relevance
studies. JY participated in the design of the study and performed the
statistical analysis. YYL and YXL conceived of the study, and participated
in its design and coordination and helped to draft the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable. We used only data from public databases.

Declarations
Publication cost for this article has been paid by the corresponding authors.
This article has been published as part of BMC Systems Biology Volume 10
Supplement 3, 2016: Selected articles from the International Conference on
Intelligent Biology and Medicine (ICIBM) 2015: systems biology. The full
contents of the supplement are available online at http://
bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-
supplement-3.

Author details
1School of Biotechnology, East China University of Science and Technology,
Shanghai 200237, China. 2Shanghai Center for Bioinformation Technology,
1278 Keyuan Road, Shanghai 201203, China. 3Key Laboratory of Systems
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
4Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai
201203, China. 5School of Life Science and Technology, Tongji University,
Shanghai 200092, China. 6Shanghai Engineering Research Center of
Pharmaceutical Translation, 1278 Keyuan Road, Shanghai 201203, China.

Published: 26 August 2016

The Author(s) BMC Systems Biology 2016, 10(Suppl 3):71 Page 378 of 380

dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
dx.doi.org/10.1186/s12918-016-0315-y
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-3
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-3
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-3


References
1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al.

The 2007 WHO classification of tumours of the central nervous system. Acta
Neuropathol. 2007;114(2):97–109.

2. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al.
Molecular subclasses of high-grade glioma predict prognosis, delineate a
pattern of disease progression, and resemble stages in neurogenesis.
Cancer Cell. 2006;9(3):157–73.

3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.
Integrated genomic analysis identifies clinically relevant subtypes of
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and
NF1. Cancer Cell. 2010;17(1):98–110.

4. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, et al. Molecular
classification of gliomas based on whole genome gene expression: a
systematic report of 225 samples from the Chinese Glioma Cooperative
Group. Neuro Oncol. 2012;14(12):1432–40.

5. Bao ZS, Li MY, Wang JY, Zhang CB, Wang HJ, Yan W, et al. Prognostic value
of a nine-gene signature in glioma patients based on mRNA expression
profiling. CNS Neurosci Ther. 2014;20(2):112–8.

6. Sun Y, Zhang W, Chen D, Lv Y, Zheng J, Lilljebjorn H, et al. A glioma
classification scheme based on coexpression modules of EGFR and PDGFRA.
Proc Natl Acad Sci U S A. 2014;111(9):3538–43.

7. Wiestler B, Capper D, Sill M, Jones DT, Hovestadt V, Sturm D, et al.
Integrated DNA methylation and copy-number profiling identify three
clinically and biologically relevant groups of anaplastic glioma. Acta
Neuropathol. 2014;128(4):561–71.

8. Li R, Gao K, Luo H, Wang X, Shi Y, Dong Q, et al. Identification of intrinsic
subtype-specific prognostic microRNAs in primary glioblastoma. J Exp Clin
Cancer Res. 2014;33:9.

9. Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, et al.
Identification of prognostic gene signatures of glioblastoma: a study based
on TCGA data analysis. Neuro Oncol. 2013;15(7):829–39.

10. Iwadate Y, Sakaida T, Hiwasa T, Nagai Y, Ishikura H, Takiguchi M, et al.
Molecular classification and survival prediction in human gliomas based on
proteome analysis. Cancer Res. 2004;64(7):2496–501.

11. Motomura K, Natsume A, Watanabe R, Ito I, Kato Y, Momota H, et al.
Immunohistochemical analysis-based proteomic subclassification of newly
diagnosed glioblastomas. Cancer Sci. 2012;103(10):1871–9.

12. Hibbs K, Skubitz KM, Pambuccian SE, Casey RC, Burleson KM, Oegema Jr TR,
et al. Differential gene expression in ovarian carcinoma: identification of
potential biomarkers. Am J Pathol. 2004;165(2):397–414.

13. Bhattacharya S, Srisuma S, Demeo DL, Shapiro SD, Bueno R, Silverman EK, et
al. Molecular biomarkers for quantitative and discrete COPD phenotypes.
Am J Respir Cell Mol Biol. 2009;40(3):359–67.

14. Sulman EP, Aldape K. The use of global profiling in biomarker development
for gliomas. Brain Pathol. 2011;21(1):88–95.

15. Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, et al. RNA
expression patterns in serum microvesicles from patients with glioblastoma
multiforme and controls. BMC Cancer. 2012;12:22.

16. de la Fuente A. From ‘differential expression’ to ‘differential networking’ -
identification of dysfunctional regulatory networks in diseases. Trends
Genet. 2010;26(7):326–33.

17. Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY. Link-based quantitative methods to
identify differentially coexpressed genes and gene pairs. BMC Bioinformatics.
2011;12:315.

18. Liu BH, Yu H, Tu K, Li C, Li YX, Li YY. DCGL: an R package for identifying
differentially coexpressed genes and links from gene expression microarray
data. Bioinformatics. 2010;26(20):2637–8.

19. Yang J, Yu H, Liu BH, Zhao Z, Liu L, Ma LX, et al. DCGL v2.0: an R package
for unveiling differential regulation from differential co-expression. PLoS
One. 2013;8(11):e79729.

20. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular
pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004;
101(12):4164–9.

21. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al. Neuronal
and glioma-derived stem cell factor induces angiogenesis within the brain.
Cancer Cell. 2006;9(4):287–300.

22. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP,
Duijm JE, et al. Intrinsic gene expression profiles of gliomas are a
better predictor of survival than histology. Cancer Res. 2009;69(23):
9065–72.

23. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, et al.
Gene expression profiling of gliomas strongly predicts survival. Cancer Res.
2004;64(18):6503–10.

24. Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K.
Rembrandt: helping personalized medicine become a reality through
integrative translational research. Mol Cancer Res. 2009;7(2):157–67.

25. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy–analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

26. Smyth GK. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol.
2004;3:Article3.

27. Kramar A, Com-Nougue C. Estimate of adjusted survival curves. Rev
Epidemiol Sante Publique. 1990;38(2):149–52.

28. Schroder MS, Culhane AC, Quackenbush J, Haibe-Kains B. survcomp: an R/
Bioconductor package for performance assessment and comparison of
survival models. Bioinformatics. 2011;27(22):3206–8.

29. Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of
survival models for breast cancer prognostication based on microarray data:
does a single gene beat them all? Bioinformatics. 2008;24(19):2200–8.

30. He F, Balling R, Zeng AP. Reverse engineering and verification of gene
networks: principles, assumptions, and limitations of present methods and
future perspectives. J Biotechnol. 2009;144(3):190–203.

31. Yu H, Tu K, Wang YJ, Mao JZ, Xie L, Li YY, et al. Combinatorial network of
transcriptional regulation and microRNA regulation in human cancer. BMC
Syst Biol. 2012;6:61.

32. Tu K, Yu H, Hua YJ, Li YY, Liu L, Xie L, et al. Combinatorial network of
primary and secondary microRNA-driven regulatory mechanisms. Nucleic
Acids Res. 2009;37(18):5969–80.

33. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al.
DrugBank: a comprehensive resource for in silico drug discovery and
exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.

34. Mok SC, Chan WY, Wong KK, Cheung KK, Lau CC, Ng SW, et al. DOC-2, a
candidate tumor suppressor gene in human epithelial ovarian cancer.
Oncogene. 1998;16(18):2381–7.

35. Karam JA, Shariat SF, Huang HY, Pong RC, Ashfaq R, Shapiro E, et al.
Decreased DOC-2/DAB2 expression in urothelial carcinoma of the bladder.
Clin Cancer Res. 2007;13(15 Pt 1):4400–6.

36. Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K,
et al. The tumour-suppressive function of miR-1 and miR-133a targeting
TAGLN2 in bladder cancer. Br J Cancer. 2011;104(5):808–18.

37. Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for
cancer therapy. Nat Rev Drug Discov. 2010;9(8):643–60.

38. Lorkova L, Pospisilova J, Lacheta J, Leahomschi S, Zivny J, Cibula D, et al.
Decreased concentrations of retinol-binding protein 4 in sera of epithelial
ovarian cancer patients: a potential biomarker identified by proteomics.
Oncol Rep. 2012;27(2):318–24.

39. Partap S, Fisher PG. Update on new treatments and developments in
childhood brain tumors. Curr Opin Pediatr. 2007;19(6):670–4.

40. Ladha J, Sinha S, Bhat V, Donakonda S, Rao SM. Identification of genomic
targets of transcription factor AEBP1 and its role in survival of glioma cells.
Mol Cancer Res. 2012;10(8):1039–51.

41. Surdez D, Benetkiewicz M, Perrin V, Han ZY, Pierron G, Ballet S, et al.
Targeting the EWSR1-FLI1 oncogene-induced protein kinase PKC-beta
abolishes ewing sarcoma growth. Cancer Res. 2012;72(17):4494–503.

42. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in
cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.

43. Merino DM, Shlien A, Villani A, Pienkowska M, Mack S, Ramaswamy V, et al.
Molecular characterization of choroid plexus tumors reveals novel clinically
relevant subgroups. Clin Cancer Res. 2015;21(1):184–92.

44. Yan LH, Wei WY, Cao WL, Zhang XS, Xie YB, Xiao Q. Overexpression of E2F1
in human gastric carcinoma is involved in anti-cancer drug resistance. BMC
Cancer. 2014;14:904.

45. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA, et al.
ZNF423 is critically required for retinoic acid-induced differentiation and is a
marker of neuroblastoma outcome. Cancer Cell. 2009;15(4):328–40.

46. Holzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, et al. NF1 is a tumor
suppressor in neuroblastoma that determines retinoic acid response and
disease outcome. Cell. 2010;142(2):218–29.

47. Dever DP, Opanashuk LA. The aryl hydrocarbon receptor contributes to
the proliferation of human medulloblastoma cells. Mol Pharmacol. 2012;
81(5):669–78.

The Author(s) BMC Systems Biology 2016, 10(Suppl 3):71 Page 379 of 380



48. Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Kohle C, Wick W, et al.
Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/Smad
pathway in human glioblastoma cells. Oncogene. 2009;28(28):2593–605.

49. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An
endogenous tumour-promoting ligand of the human aryl hydrocarbon
receptor. Nature. 2011;478(7368):197–203.

50. Keniry M, Pires MM, Mense S, Lefebvre C, Gan B, Justiano K, et al. Survival
factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev.
2013;27(8):916–27.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Systems Biology 2016, 10(Suppl 3):71 Page 380 of 380


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data sets
	Differential co-expression analysis (DCEA) and differential regulation analysis (DRA)
	Clustering method
	Survival analysis
	Gene regulatory network modelling

	Results
	The identification of a three-TF glioma prognostic signature and its clinical relevance with the training set
	Confirmation of the prognostic value of the three-TF signature in validation set
	Differential expression of the three-TF signature in glioma subtypes
	Comparison of the Three-TF signature and previously reported diffuse glioma biomarkers
	Exploratory analysis on relevance of the DRA-based three-TF signature to glioma pathogenesis

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Declarations
	Author details
	References

