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Abstract

Background: Canonical correlation analysis (CCA) is a multivariate statistical method which describes the
associations between two sets of variables. The objective is to find linear combinations of the variables in each data
set having maximal correlation. In genomics, CCA has become increasingly important to estimate the associations
between gene expression data and DNA copy number change data. The identification of such associations might
help to increase our understanding of the development of diseases such as cancer. However, these data sets are
typically high-dimensional, containing a lot of variables relative to the number of objects. Moreover, the data sets
might contain atypical observations since it is likely that objects react differently to treatments. We discuss a method
for Robust Sparse CCA, thereby providing a solution to both issues. Sparse estimation produces canonical vectors with
some of their elements estimated as exactly zero. As such, their interpretability is improved. Robust methods can cope

with atypical observations in the data.

Results: We illustrate the good performance of the Robust Sparse CCA method by several simulation studies and
three biometric examples. Robust Sparse CCA considerably outperforms its main alternatives in (1) correctly detecting
the main associations between the data sets, in (2) accurately estimating these associations, and in (3) detecting

outliers.

Conclusions: Robust Sparse CCA delivers interpretable canonical vectors, while at the same time coping with
outlying observations. The proposed method is able to describe the associations between high-dimensional data sets,

which are nowadays commonplace in genomics.

Furthermore, the Robust Sparse CCA method allows to characterize outliers.

Keywords: Canonical correlation analysis, Penalized estimation, Robust estimation

Background

Canonical correlation analysis (CCA), introduced by [1],
identifies and quantifies the associations between two sets
of variables. CCA searches for linear combinations, called
canonical variates, of each of the two sets of variables hav-
ing maximal correlation. The coefficients of these linear
combinations are called the canonical vectors. The cor-
relations between the canonical variates are called the
canonical correlations. CCA is used to study associations
in, for instance, genomic data [2], environmental data [3],
or biomedical data [4]. For more information on canonical
correlations analysis, see e.g. [5], Chapter 10.
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Sparse canonical vectors are canonical vectors with
some of their elements estimated as exactly zero. The
canonical variates then only depend on a subset of the
variables, those corresponding to the non-zero elements
of the estimated canonical vectors. Hence, the canonical
variates are easier to interpret, in particular for high-
dimensional data sets. Sparse estimation shows good per-
formance in analyzing, for instance, genomic data (e.g.
[6-8]), or biological data (e.g. [9, 10]). Examples of CCA
for high-dimensional data sets can be found in, for exam-
ple, genetics [11-13] and machine learning [14].

Different approaches for sparse CCA have been pro-
posed in the literature. Parkhomenko et al. [15] use a
sparse singular value decomposition to derive sparse sin-
gular vectors. Witten et al. [16] develop a penalized matrix
decomposition, and show how to apply it for sparse
CCA. Waaijenborg et al. [17], Lykou and Whittaker [18],
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An et al. [19] and Wilms and Croux [20] convert the
CCA problem into a penalized regression framework to
produce sparse canonical vectors. Chen et al. [21] and
Gao and Zhou [22] discuss theoretical properties for
sparse CCA. All these methods are not robust to out-
liers. A common problem in multivariate data sets, how-
ever, is the frequent occurrence of outliers. In genomics,
for instance, some patients can react very differently to
treatments because of their individual-specific genetic
structure. Therefore, the possible presence of outlying
observations should be taken into account.

Several robust CCA methods have been introduced in
the literature. Dehon and Croux [23] considers robust
CCA using the Minimum Covariance Determinant esti-
mator [24]. Asymptotic properties for CCA based on
robust estimators of the covariance matrix are discussed
in [25]. Branco et al. [26] use a robust alternating regres-
sion approach to obtain the canonical variates. CCA can
also be considered as a prediction problem, where the
canonical variates obtained from the first data set serve as
optimal predictors for the canonical variates of the second
data set, and vice versa. As such, [27] use a robust M-
scale to evaluate the prediction quality, whereas [28] use a
robust estimator of the multivariate linear model. None of
these methods, however, are sparse.

This paper proposes a CCA method that is sparse and
robust at the same time. As such, we deal with two impor-
tant topics in applied statistics: sparse model estimation
and the presence of outliers in the data. We use an alter-
nating robust, sparse regression framework to sequen-
tially obtain the canonical variates. Robust Sparse CCA
has clear advantages: (i) it provides well interpretable
canonical vectors since some of the elements of the canon-
ical vectors are estimated as exactly zero, (ii) it is still
computable for high-dimensional data sets, where the
sample size exceeds the number of variables in each data
set, (iii) it can cope with outliers in the data, which are
even more likely to occur in high dimensions, and (iv) it
provides an interesting way to characterize these outliers.

Simulation studies were performed to investigate the
performance of Robust Sparse CCA. These simulations
show that Robust Sparse CCA achieves a substantially
better performance compared to its leading alternatives
CCA, Robust CCA and Sparse CCA. We illustrate the
application of the Robust Sparse CCA method to an envi-
ronmental data set and two genomic data sets. Robust
Sparse CCA provides easy interpretable results. More-
over, we use Robust Sparse CCA to detect outlying obser-
vations in such high-dimensional data sets.

Methods

First, we consider the robust and sparse estimator for the
CCA problem. Next, we discuss the algorithm. Finally, we
discuss the simulation designs and performance measures
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used to compare the performance of Robust Sparse CCA
to standard CCA, Robust CCA and Sparse CCA.

The estimator
We consider the CCA problem in a regression framework
([29, 30]). Given a sample of n observations x; € RP and
y; € R?7 (i =1,...,n). The two data matrices are denoted
asX =[x1,...,x,]  and Y =[yy... ,yn]T.Weassumethe
data matrices are robustly centered using the median. The
estimated canonical vectors are collected in the columns
of the matrices A € RP*” and B € R?*". Here r is the
number of canonical vectors. The columns of the matrices
XA and YB contain the estimates of the realizations of the
canonical variates, and we denote their j# column by u;
and Vj, for 1 < j < r. The objective function defining the
canonical vector estimates is
n
(A,B) = argmin Y _ ||ATx; — BTy, |>. (1)
AB) i

The objective function in (1) is minimized under the
restriction that each canonical variate @; is uncorrelated
with the lower order canonical variates G, with 1 <
k < j < r. Similarly for the canonical vectors within the
second set of variables. For identification purpose, a nor-
malization condition requiring the canonical vectors to
have unit norm is added. Typically, the canonical vectors
are obtained by an eigenvalue analysis of a certain matrix
involving the inverses of sample covariance matrices. But
if n < max(p, q), these inverses do not exist.

We estimate the canonical vectors with an alternating
regression procedure. If the matrix A in (1) is kept fixed,
the matrix B can be obtained from a Least Squares regres-
sion of the canonical variates on y (and vice versa for
estimating A keeping B fixed). The standard Least Squares
estimator, however, is not sparse, nor robust to outliers.
Therefore, we replace it by the sparse Least Trimmed
Squares (sparse LTS) estimator [31]. The sparse LTS esti-
mator can be applied to high-dimensional data and is
robust to outliers.

The algorithm
We use a sequential algorithm to derive the canonical
vectors.

First canonical vector pair. Denote the first canoni-
cal vector pair by (Aj,B;). Assume that the value of
A; is known. Denote the vector of squared residuals by

T . 2,
r’(B;) = (r%,...,r,%) , with rl.2 = (AlTxi — BlTyi) i =
1,...,n. The estimate of B; is obtained as
h q
Bi|A; = argminz (rz(Bl))i:n + hip, Z by, (2)
B =1 j=1

where A, > 0 is a sparsity parameter, by; is the j
element, j = 1,...,q, of the first canonical vector Bj,
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and (r*(B1)),, < ... < (r*(By)),, are the order statis-
tics of the squared residuals. The canonical vector By is
normed to length 1. The solution to (2) equals the sparse
LTS estimator with XA; as response and Y as predictor.
Regularization by adding a penalty term to the objective
function is necessary since the design matrix Y can be
high-dimensional. Sparse model estimates are obtained by
adding an L; penalty to the LTS objective function, sim-
ilar as for the lasso regression estimator [32]. The sparse
LTS estimator is computed with trimming proportion
25 %, so size of the subsample # = |0.75x1]. To increase
efficiency, we use a reweighting step. Further discussion
and more detail on the sparse LTS estimator is provided
in Additional file 1. As such, we get a robust sparse
estimate §1.

Analogously, for a fixed value B;, denote the vector of
squared residuals by r>(A;) = (r%, )T, with ’”1‘2 =
(BlTyi — AlTx,')2 ,i = 1,...,n. The sparse LTS regression
estimate of A; with YB; as response and X as predictor is
given by

h

P
A|B; = argminz (rZ(Al))i:n + hAg, Z layl,  (3)
A = j=1

where 14, > 0 is a sparsity parameter, ay; is the j ele-
ment, j = 1,...,p of the first canonical vector A;, and
(r*(AD),,, < ... < (r*(A1)),,, are the order statistics of
the squared residuals. The canonical vector A is normed
to length 1.

This leads to an alternating regression scheme, updating
in each step the estimates of the canonical vectors until
convergence.

After convergence of the algorithm, the values of A; and
B; in subsequent iterations remain stable, and the same
observations will be detected as outliers in regressions (2)
and (3).

Higher order canonical vector pairs. We use deflated
data matrices to estimate the higher order canonical vec-
tor pairs (see e.g. [26]). For the second canonical vec-
tor pair, the deflated matrices are X3, the residuals of a
column-by-column LTS regression of X on all lower order
canonical variates, @ in this case; and Y}, the residuals
of a column-by-column LTS regression of Y on v;. Since
these regressions only involve a small number of regres-
sors, the standard LTS estimator with A = 0 can be
used.

The second canonical variate pair is then obtained by
alternating between the following regressions until con-
vergence:

h

]32|A2 = argmin Z
B; i=1

q
*(B)),,, + g ) 1b3L (4)

j=1
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where r? (B3) = ( .,rz)T, with r

n (A*TXZz _B;T
Yz,i) ,i=1,...,n

h p
A;lB; = argminz (rz(A;))i:n + hhas Z |a§i|, (5)
Ay =1 j=1
where r?(A}) = (,...,r)7T, with 7 = (BgTYEl -

A;sz'l.)Z,z =1,...
are both normed to length 1. We obtain G = X;K; and
= Y;B;.

Finally, the second canonical vector needs to be
expressed as linear combinations of the columns of the
original data matrices, and not the deflated ones. Since we
want to allow for zero coefficients in these linear combina-
tions, a sparse approach is needed. To obtain a sparse A,
we regress ity on X usmg the sparse LTS estimator, yield-
ing the fitted values Gy = XAz To obtain a sparse Bz, we
regress V; on Y using the sparse LTS estimator, yielding
the fitted values vo = YB,.

The higher order canonical variate pairs are obtained in
a similar way. We perform alternating sparse LTS regres-
sions as in (4) and (5), followed by a final sparse LTS step to
retrieve the estimated canonical vectors (KZ,EZ). It is not
really necessary to use a sparse approach in regressions (4)
and (5), other penalty functions can be used.

A schematic representation of the complete algorithm is
provided in Additional file 2.

Finally, note that as in other sparse CCA proposals
(e.g. [15-17, 20]) the canonical variates are in general
not uncorrelated. The robust sparse canonical vectors we
obtain yield an interpretable basis of the space spanned by
the canonical vectors. This basis can be made orthogonal
(but not sparse) after suitable rotation if one desires so.

Initial value. A starting value for A; is required to start
up the algorithm. We compute the first robust principal
component of Y, denoted z;. The first robust principal
component is calculated from the first eigenvector of the
robustly estimated covariance matrix. For this aim, we use
the spatial sign covariance estimator [33]. We regress z;
on X using the sparse LTS. The estimated regression coef-
ficient matrix of this regression is used as initial value
for A;. To obtain an initial estimate for the higher order
canonical vectors Aj, for [ = 2,...,r, we use the first
robust principal component of the deflated data matrix
and proceed analogously.

We performed several numerical experiments to inves-
tigate the sensitivity of the outcome of the algorithm to
the choice of initial value. In low-dimensional settings,
the choice of initial value is not important. In high-
dimensional settings, a good initial value is more impor-
tant. Note that the initial value should exist and be easily
computable in all settings, which holds for our proposal.

. el
,n. The canonical vectors 32 and A,
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Number of canonical variates to extract. To decide on
the number of canonical variates r to extract, we use the
maximum eigenvalue ratio criterion of [19]. We apply the
Robust Sparse CCA algorithm and calculate the robust
correlations 01, . . ., frmax, With rmax = min(p, ¢, 10). For
high-dimensional data sets, we consider a maximum of
10 canonical correlations, since in practice, more than 10
canonical vector pairs are never used. Each f; is obtained
by computing the correlation between V; and @i; from the
bivariate Minimum Covariance DeAterminant (MCD) esti-
mator with 25 % trimming. Let k; = p;/pj41 for j =
1,...,rmax — 1. We extract r pairs of canonical variates,
where r = argmale}j.

Convergence criterion. In each step of the alternat-
ing regression algorithm we update the estimates of the
canonical vectors ﬁ;‘ and K}*, for! = 1,...,r. We iterate
until the relative change in the value of the convergence
criterion in two successive iterations! is smaller than the
convergence tolerance value ¢ = 1072. As convergence
criterion, we consider

1¢h )~y o
Convergence criterion = 7 Z (r2 (A;‘, B;‘))m ,
i=1
forl = 1,...,r, where r? (K;‘,ﬁ;‘) = (r3,. ..,r%)T, with
r? = <K;<szl. - ﬁ;‘Tyzi>2 ,i=1,...,n.Xj and Y] are the
original data sets for / = 1, and the deflated data matrices
for [ = 2,...,r. In the simulations we conducted, conver-
gence was almost always reached.? For data sets with # =
100, p = g = 10, on average 6 iterations per canonical vec-
tor pair are needed to converge. For n = 50,p = g = 100,
on average 10 iterations are needed to converge.

Choice of the sparsity parameter. The sparsity parame-
ters controlling the penalization on the regression coeffi-
cient matrices are selected with the Bayesian Information

Criterion (e.g. [34]). We use a range of values for the spar-
sity parameters and select the one with the lowest value of

| =
™M=

BICy; = n-log (P AD),, | +dfiz, - loglm,

i=1

A
M=

BIC;%;F =n-log (rz(ﬁ}k))m + dﬁﬁzk -log(n),

i=1

forl = 1,..

number of non-zero estimated regression coefficients.
Computation time. All computations are carried out in
R version 3.2.1. The code of the algorithm is made avail-
able on a webpage of the first author (http://feb.kuleuven.
be/ines.wilms/software). For data sets with » = 100,p =
q = 10, on average 10 seconds are needed to extract

1, with dfy., and dfy;, the respective
1 !
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one canonical vector pair on an Intel Xeon E5-2699 v3 @
2.30GHz machine. For n = 50,p = g = 100, we need
540 seconds on average, for n = 100,p = g = 10000,
computation time increases to 11 hours on average. But
even in high dimensions, the number of iterations remains
lows (8 on average). The high computing time needed for
p = q = 10000 is mainly due to the sparse LTS estimator,
taken from the R-package robustHD [35]. By including
a variable screening step [36] preceding the computation
of the sparse LTS estimator, one could reduce the total
computation time considerably.

Simulation designs

To investigate the performance of Robust Sparse CCA, we
conduct a simulation study. We consider several simula-
tion designs.

In the “Uncorrelated Sparse Low-dimensional” and
“Correlated Sparse Low-dimensional” design, there is one
canonical variate pair and the canonical vectors have a
sparse structure. The variables within each data set are
uncorrelated in the first design, and correlated in the sec-
ond design. In the “NonSparse Low-dimensional” design,
there are two canonical variate pairs and the canoni-
cal vectors are non-sparse. The remaining three designs
are high-dimensional with a lot of variables compared
to the sample size. Only Sparse CCA and Robust Sparse
CCA can be computed. In the “Sparse High-dimensional
1” design with n = 100,p = 100,q = 4, there is
one canonical variate pair and the canonical vectors are
sparse. In the “Sparse High-dimensional 2” design with
n = 100,p = g = 100, there is one canonical vari-
ate pair and each canonical vector contains ten non-zero
elements. In the “Sparse Ultra High-dimensional” design
there are much more variables (p = g = 10000) than
observations (# = 100). There is one canonical variate
pair and each canonical vector contains ten non-zero ele-
ments. The number of simulations for each design except
the last one is M = 1000. For the “Sparse Ultra High-
dimensional design” M = 100 to reduce computational
burden.

For each design, the following settings are considered

(a) No contamination. We generate data matrices X and
Y according to a multivariate normal distribution
Ny14(0, %), with covariance matrix

ope Exy:|
Z =
|:ExTy Zyy

described in Table 1.

(b) t-distribution. We generate data matrices X and Y
according to a multivariate t-distribution with three
degrees of freedom #3(0, X).
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Table 1 Simulation designs
Design X X, Xy
. ) = iy 5 |09 013
Uncorrelated Sparse Low-dimensional 107 -1y 1077 - g 107 -
0551 0543
n=100,p=6,g=4
1 04 O 1 04 0 r T
N 2 5 , | 08 0143
Correlated Sparse Low-dimensional 107-104 1 O 10741 04 1 1074
0551 05x3
0 0 lyxq 0 0 hx - -
n=100,p=6,g=4
NonSparse Low-dimensional 1072 I 1072 lg 1072 0.1,54
n=100,p=12,g9g=38
045 0
Sparse High-dimensional 1 1071, 107" -1, 107" P2 T
00gx2>  0ogx2
n=100,p =100,g =4
S 0 0.8 0
Sparse High-dimensional 2 1077 .| 21010 T 1077 1010 F10>50
0 1073 lgoxao 090x10  090x90
n=>50,p=qg=100
A 1 fi=j
with §; =
08 ifi #],
S 0 0.8 0
Sparse Ultra High-dimensional 1077 .| 21010 p 1077 1010 T10x99%0
0 1073 logooxgo00 09990x10 09990x 9990
n=100,p = g = 10000
) 1 ifi=j
with §; =
08 if i},

(c) Contamination. 90 % of the data are generated from
Ny 14(0, %), and 10 % of the data are generated from
Np+q (2, Zcont), with

Similar conclusions can be drawn from other
contamination settings (e.g. where only one of the
two data sets is contaminated) and are available from
the authors upon request.

ix
0

0

Ycont = |: x
yy

Performance measures

In our simulation study, the estimators are evaluated on
their estimation accuracy and sparsity recognition perfor-
mance.

For evaluating estimation accuracy, we compute for
each simulation run m, with m = 1,...,M, the angle
0" (A™, A) between the subspace spanned by the esti-
mated canonical vectors (contained in the columns of A”)
and the subspace spanned by the true canonical vectors

(contained in the columns of A). We proceed analogously
for the matrix B. The average angles, measuring the esti-
mation accuracy, are given by

M
N 1 N
9(A,A)=MZQ"’(A’",A) and

m=1

1 M

e 1 .
e(B,B)_lee (B",B).

m=

For evaluating sparsity, we use the true positive rate and
the true negative rate

#(0,)) : Kf/” # 0andA;; # 0}
#((i,)) : Ayj # 0}
#{(i,)) : A}l = OandA;; = 0}
#{(i,)) : Ay = 0}

TPR(A”, A) =

TNR(A”, A) =

We proceed analogously for the matrix B. A true posi-
tive is a coefficient that is non-zero in the true model, and
is estimated as non-zero. A true negative is a coefficient
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that is zero in the true model, and is estimated as zero.
Both should be as high as possible for a sparse estima-
tor. Note that the false positive rate is the complement of
the true negative rate (i.e. FPR=1-TNR). A sparse estima-
tor should control the FPR, which can be seen as a false
discovery rate, at a sufficiently low level.

In our empirical applications, to decide on the num-
ber of canonical variate pairs to extract, we use the
maximum eigenvalue ratio criterion, as discussed in the
“Methods” Section. To compare the performance of the
CCA approaches, we perform a leave-one-out cross-
validation exercise and compute the cross-validation
score

h
11 —~ ~
cv=—- > IATx; — BT il (6)
i=1

where KZ; and ﬁzl contain the estimated canonical vec-
tors when the i observation is left out of the estimation
sample and # = |[n(1 — )], with ¢ = 0 (0 % Trim-
ming) or « = 0.1 (10 % Trimming). We use trimming
to eliminate the effect of outliers in the cross-validation
score.

Results

Simulation study

We compare the performance of the Robust Sparse CCA
method with (i) standard CCA, (ii) Robust CCA, and (iii)
Sparse CCA. The alternating regression algorithm is used
for all four estimators, for ease of comparability. Robust
CCA uses LTS instead of sparse LTS, and corresponds to
the alternating regression approach of [26]. Sparse CCA
uses the lasso instead of sparse LTS, Pearson correlations
for computing the canonical correlations, and ordinary
PCA for getting the initial values. The sparsity parameters
for sparse CCA are selected with BIC. Standard CCA is
like sparse CCA, but using the LS instead of the lasso.

Summary results for the estimator A are in Table 2. The
results for B are similar and, therefore, omitted. Standard
errors around the average angles, TPRs and TNRs are in
almost all cases smaller than 6 % of the reported numbers
in Table 2.

First we discuss the results from the “Uncorrelated
Sparse Low-dimensional” design. In the scenario with-
out contamination, the sparse estimators Sparse CCA and
Robust Sparse CCA achieve a much better average esti-
mation accuracy than the non-sparse estimators CCA
and Robust CCA. As expected, a sparse method results
in increased estimation accuracy when the true canon-
ical vectors have a sparse structure. Looking at sparsity
recognition performance, Sparse CCA and Robust Sparse
CCA perform equally good in retrieving the sparsity in the
data generating process. In the contaminated simulation

Page 6 of 13

setting, the robust estimators maintain their accuracy.
Robust Sparse CCA performs best and clearly outper-
forms Robust CCA: for instance, Robust Sparse CCA
achieves an average estimation accuracy of 0.05 against
0.15 for the contamination setting, see Table 2. The non-
robust estimators CCA and Sparse CCA are clearly influ-
enced by the outliers, as reflected by the much higher
values of the average angle (A, A) in Table 2. Sparse CCA
now performs even worse than Robust CCA. The con-
sidered contamination induces overfitting in Sparse CCA,
reflected in the low values of the true negative rate, or
alternatively, the high values of the false positive rate.

In an unreported simulation study, we investigated the
effect of the signal strength on the results. We vary the
value of the true canonical correlation in the first design
from 0.1 to 0.9, thereby increasing the signal strength.
If outliers are present, Robust Sparse CCA always per-
forms best. The margin by which it outperforms Sparse
CCA is larger if the signal is stronger. If no outliers are
present, Sparse CCA performs best for weak signal levels
below 0.6.

Similar conclusions can be drawn from the “Corre-
lated Sparse Low-dimensional” and “NonSparse Low-
dimensional” design. Note that the true negative rate in
Table 2 is omitted for the “NonSparse Low-dimensional”
design since the true canonical vectors are non-sparse.
In the situation without contamination, the price the
sparse methods pay in the “NonSparse Low-dimensional”
design is a decreased estimation accuracy, as measured
by the average angle. For Robust Sparse CCA compared
to Robust CCA this decrease is marginal. In the contami-
nated settings, the robust methods perform best and show
similar performance.

For the high-dimensional designs, only Sparse CCA
and Robust Sparse CCA are computable. For the “Sparse
High-dimensional 1” design, Robust Sparse CCA is com-
petitive to Sparse CCA if no outliers are present. When
adding outliers, the performance of Sparse CCA gets dis-
torted. For the heavier tailed t-distribution, the average
estimation accuracy of Robust Sparse CCA compared to
Sparse CCA is much better: 0.56 against 0.70. For the
contamination setting, the average estimation accuracy of
Robust Sparse CCA is even more than twice as good as
the average estimation accuracy of Sparse CCA. Similar
conclusions hold for the second high-dimensional design.

In the “Sparse Ultra High-dimensional” design, Sparse
CCA performs best if no outliers are present. For the heav-
ier tailed t-distribution, Robust Sparse CCA and Sparse
CCA perform comparable in terms of estimation accu-
racy. But in the presence of outliers, Robust Sparse CCA
improves estimation accuracy of Sparse CCA by about
22 %. Moreover, Robust Sparse CCA achieves a good bal-
ance between the TPR and the TNR, while Sparse CCA
suffers from a low TPR if outliers are present.
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Table 2 Simulation results. Average of the angles between the space spanned by the true and estimated canonical vectors; average
true positive rate and true negative rate are reported for each method

Design Method No contamination t-distribution Contamination
6(A,A) TPR TNR 6(AA) TPR TNR 6(AA) TPR TNR
Uncorrelated CCA 0.11 1.00 0.00 022 1.00 0.00 038 1.00 0.00
Sparse Robust CCA 0.14 1.00 0.00 0.15 1.00 0.00 0.15 1.00 0.00
Low-dimensional Sparse CCA 0.04 0.98 0.97 0.19 0.94 0.63 0.34 1.00 0.04
Robust Sparse CCA 0.04 1.00 0.82 (AN 1.00 0.52 0.05 1.00 0.76
Correlated CCA 0.06 1.00 0.00 0.13 1.00 0.00 043 1.00 0.00
Sparse Robust CCA 0.08 1.00 0.00 0.09 1.00 0.00 0.09 1.00 0.00
Low-dimensional Sparse CCA 0.13 1.00 1.00 0.19 0.96 0.76 0.57 0.52 0.02
Robust Sparse CCA 0.07 1.00 0.57 0.09 1.00 0.34 0.07 1.00 0.53
NonSparse CCA 0.08 1.00 NA 032 1.00 NA 0.20 1.00 NA
Low-dimensional Robust CCA 0.1 1.00 NA 0.12 1.00 NA 0.12 1.00 NA
Sparse CCA 041 093 NA 067 0.82 NA 0.23 1.00 NA
Robust Sparse CCA 0.16 0.99 NA 022 0.99 NA 0.13 1.00 NA
Sparse Sparse CCA 0.65 0.62 0.99 0.70 0.71 0.87 0.36 1.00 0.80
High-Dimensional 1 Robust Sparse CCA 0.66 0.84 0.86 0.56 0.82 0.86 0.16 0.96 0.97
Sparse Sparse CCA 1.08 0.31 1.00 1.14 0.23 1.00 125 0.38 097
High-Dimensional 2 Robust Sparse CCA 0.59 0.87 0.87 0.60 0.94 0.89 0.84 0.97 0.82
Sparse Ultra Sparse CCA 1.18 0.17 1.00 1.22 0.15 1.00 1.25 040 1.00
High-dimensional Robust Sparse CCA 142 0.93 1.00 1.24 0.98 1.00 0.98 1.00 1.00

In sum, Robust Sparse CCA shows the best over-
all performance in this simulation study. It performs
best in sparse contaminated settings. In sparse non-
contaminated settings, Robust Sparse CCA is competi-
tive to Sparse CCA. In contaminated non-sparse settings,
Robust Sparse CCA is competitive to Robust CCA.

Comparison of Robust Sparse CCA to other CCA
alternatives
We compare the performance of Robust Sparse CCA to

— the sparse CCA methods of [15, 16] and [17]. The
sparsity parameters of all methods are selected as
proposed by the respective authors. Note that these
methods are not robust.

— sparse CCA applied on pre-processed data. As a
pre-processing step to remove outliers, we
transformed the data towards normality by replacing
them by their normal scores (see e.g. [37], page 150).

— sparse CCA using the robust initial value for the
algorithm as Robust Sparse CCA.

Summary results for the estimator A are in Table 3. For
reasons of brevity, we only report the results from the
“Sparse High-dimensional 2” design. Similar conclusions

are obtained from the other designs and are available from
the authors upon request.

If no outliers are present, (i) Robust Sparse CCA is
competitive to the sparse CCA methods of [15, 16] and
[17]. (ii) Robust Sparse CCA performs comparable to
Sparse CCA on pre-processed data. (iii) Sparse CCA with
the same initial value as Robust Sparse CCA performs
comparable to Sparse CCA.

If outliers are present, (i) Robust Sparse CCA outper-
forms the sparse CCA methods of [15, 16] and [17]. (ii)
Robust Sparse CCA outperforms Sparse CCA on pre-
processed data. Sparse CCA on pre-processed data per-
forms better than Sparse CCA. (iii) Robust Sparse CCA
outperforms Sparse CCA with the same initial value. Here,
differences in performance between Robust Sparse CCA
and Sparse CCA stem from the use of the sparse LTS
instead of the lasso regressions. Hence, the use of the
sparse LTS estimator in the alternating regression scheme
is essential.

Applications

We consider three biometric applications. The first data
set is low-dimensional and often used in Robust Statistics.
The other two data sets are high-dimensional and have
been used before in papers on sparse CCA. We show that
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Table 3 As in Table 3, comparing Robust Sparse CCA to other alternatives in the “Sparse High-dimensional 2 design”

Method No contamination t-distribution Contamination

6(A,A) TPR TNR G(A,A) TPR TNR 6(A,A) TPR TNR
Sparse CCA of [15] 0.93 1.00 0.93 141 0.94 0.72 1.28 0.89 0.00
Sparse CCA of [16] 0.79 0.65 1.00 1.16 0.30 0.92 1.57 0.00 0.00
Sparse CCA of [17] 0.44 1.00 0.08 1.01 1.00 0.02 1.25 1.00 0.00
Sparse CCA on pre-processed data 0.58 092 0.79 0.72 0.88 0.74 1.36 0.74 0.25
Sparse CCA with robust initialization 1.07 032 1.00 113 0.24 1.00 1.25 0.38 0.97
Robust Sparse CCA 0.59 0.87 0.87 0.60 0.94 0.89 0.84 0.97 0.82

the performance of Robust Sparse CCA on these data sets
is much better than the performance of Sparse CCA.

Evaporation data set
We analyze an environmental data set from [38]. Two sets
of environmental variables have been measured on n = 46
consecutive days from June 6 until July 21.3 The first set
contains p = 3 soil temperature variables (maximum,
minimum and average soil temperature). The second set
contains g = 7 environmental variables (maximum, min-
imum and average air temperature; maximum, minimum
and average daily relative humidity; and total wind). The
aim is to find and quantify the relations between the soil
temperature variables and the remaining variables.

As a first inspection of the data, we use the Distance-
Distance plot [39] in Fig. 1. The Distance-Distance plot
displays the robust distances versus the Mahalanobis

distances. The vertical and horizontal lines are drawn at
values equal to the square root of the 97.5 % quantile of
a chi-squared distribution with 10 degrees of freedom.
Points beyond those lines would be considered as outliers.
The Distance-Distance plot reveals some outliers: objects
31 and 32, for example, are extreme outliers. This sug-
gests the need for a robust CCA method. Table 4 reports
the cross-validation scores from Eq. (6) for the four CCA
methods. For all methods two canonical variate pairs are
extracted. The method that achieves the lowest cross-
validation score has the best out-of-sample performance.
Robust Sparse CCA achieves the best cross-validation
score.

Table 5 shows the estimated canonical vectors for the
Robust CCA and Robust Sparse CCA method. By adding
the penalty term, the number of non-zero coefficients
in the two canonical vectors is reduced from a total of

Distance-Distance Plot
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Fig. 1 Evaporation data set: Distance-Distance plot
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Table 4 Evaporation data set: Cross-validation score for standard
CCA, Robust CCA, Sparse CCA and Robust Sparse CCA

Method CV-score CV-score

0% Trimming 10 % Trimming

CCA 0.74 049
Robust CCA 0.57 0.39
Sparse CCA 0.57 041
Robust Sparse CCA 048 0.31

20 for Robust CCA to 10 for Robust Sparse CCA. The
price to pay for the sparseness is a slight decrease in
the estimated canonical correlations (computed using the
bivariate MCD estimator, see “Methods” Section): they
drop from 0.93 to 0.87 for the first one, and from 0.56
to 0.48 for the second canonical correlation. We find
this decrease acceptable, given the gained sparsity in the
canonical vectors. The sparse structure of the canoni-
cal vectors facilitates interpretation. The first canonical
variate in the soil temperature data set, for instance, is
uniquely determined by the variable AVST.

Nutrimouse data set
This genetic data set is publicly available in the R pack-
age CCA [11]. Two sets of variables, i.e. gene expressions

Table 5 Evaporation data set: Estimated canonical vectors using
Robust CCA and Robust Sparse CCA

Robust CCA Robust Sparse CCA

Variables \ 1 2 1 2
Canonical Vectors

First ~ MAXST: Max. daily -035 -076 O -0.70
soil temperature

data  MINST: Min. daily soil ~ 0.03 0.63 0 0.71
temperature

set AVST: Avg. daily soil 093 0.18 1 0
temperature

Second MAXAT: Max. daily 0.54 -0.11 094 0

air temperature

data  MINAT: Min. daily air 067 0.84 0.14 0.38
temperature

set AVAT: Avg. daily air 0.14
temperature

MAXH: Max. daily
relative humidity

MINH: Min. daily
relative humidity

AVH: Avg. daily
relative humidity

WIND: Total wind,
measured in miles
per day

Canonical 0.93 0.56 0.87 048
correlations

-003 017 036

-0.13  0.09 0 0

-003 036 0 0.85

-028 032

-024 0

-037  -019 0 0
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and fatty acids, are available for # = 40 mice. The first set
contains expressions of p = 120 genes measured in liver
cells. The second set of variables contains concentrations
of g = 21 hepatic fatty acids (FA). In this experiment,
there are two groups of mice (wild-type and PPAR« defi-
cient mice) that receive a specific diet (five possible diets).
More details on how the data were obtained can be found
in [40]. The aim is to identify a small set of genes that are
correlated with the fatty acids.

In this data set, the number of experimental units is
smaller than the number of variables. Therefore, stan-
dard CCA nor Robust CCA can be performed. Robust
Sparse CCA and Sparse CCA can be applied in this high-
dimensional setting and produce interpretable, sparse
canonical vectors. For both methods, one canonical vari-
ate pair is extracted. The cross-validation scores from
Eq. (6) are reported in Table 6. Robust Sparse CCA out-
performs Sparse CCA. The cross-validation scores are
reduced by about 90 % when using the robust method.

Given its better out-of-sample performance, we discuss
the estimated canonical vectors obtained using Robust
Sparse CCA.

The top panel of Fig. 2 displays the coefficients of the
selected genes, i.e. those genes with non-zero estimated
coefficients, in the first canonical vector: 24 out of 120
variables are selected. The solution is very sparse, facili-
tating interpretation. Martin et al. [40] find a consistent
reduction of Cyp3all in PPARw livers on the one hand,
and an overexpression of CAR1 on the other hand. Both
genes are selected and have among the highest (absolute)
coefficients. The coefficients of the selected fatty acids are
displayed in the bottom panel of Fig. 2: 13 out of 21 fatty
acid variables are selected. The fatty acids C22:6n-3,
C22:5n-3,C22:5n-6,C22:4n-3 and C20:5n-3 are
related to the effect of the five diets used in this experi-
ment. From Fig. 2, we see that four out of these five fatty
acids are selected.

Breast cancer data set

The genetic data set is described in [41] and available
in the R package PMA [42]. Two sets of data, i.e.
gene expression data (19 672 variables) and comparative
genomic hybridization (CGH) data (2149 variables) are
available for n = 89 patients, and this for 23 chromo-
somes. We analyze the data for each of the chromosomes
separately, each time using the CGH and gene expression

Table 6 Nutrimouse data set: Cross-validation score for Sparse
CCA and Robust Sparse CCA

Method CV-score CV-score
0% Trimming 10 % Trimming
Sparse CCA 98.78 92.53

Robust Sparse CCA 6.30 431




Wilms and Croux BMC Systems Biology (2016) 10:72

Page 10 of 13

0~
20~

Coefficients

00
0

PON
Pex11a
SR.BI
CAR1
ACOTH
CIDEA
CYP24
Lpin1
THIOL
ACBP
C16SR
L.FABP
CYP3A11
Lpin2
SPI1.1
BIEN
FAS
LCE
PLTP
GSTa
FDFT
PMDCI
Waf1
mHMGCoAS

80—
90—
v0-

Coefficients

20~
00
20

C20.1n.9

C20.2n.6

C16.1n.9

C18.2n.6

C20.5n.3

C22.6n.3

C22.5n.3

C18.3n.6

C18.0

C16.0

C20.3n.6

C22.5n.6

C22.4n.6

Fig. 2 Nutrimouse data set: Coefficients of selected genes (top) and coefficients of selected fatty acids (bottom) in the first canonical vector pair

variables for that particular chromosome. Depending on
the chromosome, either 1, 2, 3, or 4 canonical vector pairs
are extracted. The aim is to identify a subset of CGH vari-
ables that are correlated with a subset of gene expression
variables.

Results of the cross-validation scores of Eq. (6) are
reported in Fig. 3. For each of the 23 chromosomes, we
plot the value of the cross-validation score (0 % trim-
ming) for Robust Sparse CCA (horizontal axis) and Sparse
CCA (vertical axis). Results when using 10 % trimming
are similar and, therefore, omitted. The cross-validation
scores of Robust Sparse CCA are much better than those
of Sparse CCA: all points are lying above the 45°-line.

For chromosomes 1, 3, 4, and 11, for instance, the cross-
validation scores of Robust Sparse CCA are more than
10 times lower than those of Sparse CCA. Since Robust
Sparse CCA performs much better, outliers might be
present for these chromosomes. Hence, it is safer to use
Robust Sparse CCA instead of Sparse CCA.

The Robust Sparse CCA method yields an interesting
way to characterize the outliers. To this end, we create
the Residual Distance plot of the residuals XA — YB, and
this for each of the 23 chromosomes. The Residual Dis-
tance plot displays the robust distance of the residuals
(vertical axis) versus the observation number (horizontal
axis). Points above the horizontal black line are marked
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as outliers. Results for chromosome 3 and 8 are displayed
in Fig. 4, results for the other chromosomes are avail-
able upon request. For some chromosomes, like chromo-
some 3, the difference in cross-validation scores of Robust
Sparse CCA and Sparse CCA in Fig. 3 is outspoken, sug-
gesting that outliers might be present. We use the Residual

Distance plot (Fig. 4, left panel) to detect which patients
are outlying. In the Residual Distance plot of chromosome
3 a lot of patients are marked as outliers. For chromo-
some 8, on the other hand, the cross-validation scores of
Sparse CCA and Robust Sparse CCA are nearly identical,
which might suggest that there are no outliers. Looking at
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the Residual Distance Plot of chromosome 8 (Fig. 4, right
panel), no outliers are indeed detected.

Discussion

Robust Sparse CCA has three important advantages over
Robust CCA. (i) Robust Sparse CCA improves model
interpretation since only a limited number of variables,
those corresponding to the non-zero elements of the
canonical vectors, enter the estimated canonical variates
(cfr. evaporation application), (ii) if the number of vari-
ables approaches the sample size, the estimation precision
of Robust CCA suffers, and (iii) if the number of variables
exceeds the sample size, Robust CCA can not even be per-
formed. Robust Sparse CCA can still be computed (cfr.
nutrimouse and breast cancer application).

The key ingredient of the Robust Sparse CCA algorithm
is the sparse LTS proposed by [31]. The choice of the sub-
sample size %, see Eq. (2) involves a trade-off between
robustness and estimation accuracy. We use 1 = |0.75-n],
as recommended by [31]. This guarantees a sufficiently
high estimation accuracy and a good robustness/accuracy
trade-off. If the researcher thinks that the proportion of
outliers in one of the two data sets is larger than 25 %,
one could consider higher values of /. Our Robust Sparse
CCA algorithm starts by robustly centering each vari-
able using the coordinatewise median. The spatial median
(e.g. [37], page 251) could serve as an alternative to the
coordinatewise median.

Several questions are left for future research. One could
use a joint selection criterion for the number of canonical
variate pairs and the sparsity parameter. This would, how-
ever, increase computation time substantially. To obtain
sparse canonical vectors, we use a Lasso penalty. Other
penalty functions such as the Adaptive Lasso [43] could
be considered. The Adaptive Lasso is consistent for vari-
able selection, whereas the Lasso is not. Furthermore,
we use a regularized version of the LTS estimator. One
could also use a regularized version of the S-estimator
or the MM-estimator to increase efficiency. Up to our
knowledge, however, the sparse LTS is the only robust
sparse regression estimator for which efficient code [35] is
available.

Conclusion
Sparse Canonical Correlation Analysis delivers inter-
pretable canonical vectors, with some of its elements
estimated as exactly zero. Robust Sparse CCA retains this
advantage, while at the same time coping with outlying
observations.

Typically, the canonical vectors are based on the sam-
ple versions of the covariance matrices. One could think
of estimating those covariance matrices with an estima-
tor that is robust and sparse at the same time, and then,
to compute the eigenvectors. This approach would result
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in canonical vectors being robust, however, not sparse. To
circumvent this pitfall, we reformulate the CCA problem
in a regression framework.

Nowadays, high-dimensional data sets where the
researcher suspects contamination to be present are com-
monplace in genetics. This requires tailored methods such
as Robust Sparse CCA to analyze the information they
contain.

Endnotes

'One iteration includes one cycle of estimating A}|B}
and B} |A].

2Less than 5 % of all simulation runs did not reach con-
vergence after 50 iterations. In case of non-convergence,
results from the last iteration run are taken.

3We treat the different measurements from the consec-
utive days as being independent from each other.
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