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Abstract

Background: Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight
into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research
on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant
neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge
necessary to grasp and to apply a model to their own research.

Results: We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel
Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input
variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of
heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of
the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available
under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-
cytoscape/.

Conclusion: In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in
terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our
visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and
gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will
benefit from the systems biology perspective.

Keywords: Cancer, Tumor growth, In silico, In silico medicine, Visualization, Visual analysis, Computational biology,
Cellular Potts model, Glazier and Graner model, Cell proliferation

Background
Around 13 % of all deaths worldwide are due to can-
cer [1]. Cancer depicts a group of diseases which refer
to abnormal new growth of cells which can spread and
invade different areal parts throughout the body [2].
A tumor is most commonly described as an abnormal
growth of clustered cells which can be either benign
(well-structured and non-harmful) or malignant (cancer-
ous) [3]. Treatment against cancer directly relates to the
growth-behaviour rendering the onset of therapy critical
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for its outcome. As a matter of fact, oncology is primar-
ily based on prediction aspects [4]. In this regard, we
focus on the assessment and prediction of tumor growth.
The growth of tumors depends on their supply of oxygen,
nutrients as well as survival factors and is influenced by
growth factors as well as its local surroundings [5]. Char-
acteristics are individually based on the different types
of tumors [6]. The mathematical basis for tumor growth
has been described in the mid of the last century not to
be exclusively exponential but to be following a continu-
ous deceleration as presented by the Gompertz function
[7, 8]. Modern approaches, for example, take the hetero-
geneous subclonal mixtures [9] of tumor cells into account
or even its interdependency to cellular motility [10]. Our
model includes basic ideas of tumor growth, set for further
enhancement through multiple expansion possibilities.
We apply in-silico modeling of tumor-growth as a primary
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tool, and further advance it to a novel Web-based simula-
tion, evenhandedly available for biomedical scientists and
clinicians with a focus on feature visualization. Features
are key to learning and understanding. Thus, features are
of enormous importance for knowledge discovery.

Computational modeling in biomedical science
These days, biomedical science heavily relies on com-
puterized support for analyzing big data, quantifying
dynamic and multiscale events, or likewise for simulat-
ing complex models. Computational models have been
applied for intra- and inter-cellular, tissue- and organ-
specific aspects [11]. Additionally, there is the ongoing
project of creating a virtual physiological human [12] in
order to support clinical decision-making. The project
includes multi-level modeling of a wide range of infor-
mation dealing with patient-specific signaling and genetic
data up to whole-organ physiological mechanisms.
There are two main advantages of the bioinformatic

approach in computational modeling of disease. First,
simulations can be used for predictions in regard to
the basic idea of alternative testing methods in addition
to or instead of laborious experimentation. Alternative
testing methods comprise the categories of replacement,
reduction as well as refinement of in-vivo experimenta-
tion, that are summed up by the 3R principle [13, 14].
Thereby, in-silico methods are applied to in-vivo and in-
vitro extrapolation [15, 16]. Secondly, prediction models
overcome the lack of experimental methods for insuf-
ficient or nonexistent early screening tests. In general,
models can be used to gain insight into complex bio-
logical systems and may address the gaps in litera-
ture as well as form the foundation for future research
[17–19]. Simplification and approximation of the numer-
ous detailed information gained from biomedical science
offers the possibility to patient-personalized prediction,
avoids hard-to-measure variables or compensates non-
measurable factors [20]. Still, models are, so far, inflexible
to simple extensions or even rescaling. Furthermore, we
have to overcome the conflict between complexity and
oversimplification. For instance, global mapping of cell
community is computationally too laborious while the
averaged approach lacks detailed description of molecular
variables [21]. Still, in silico modeling and other computa-
tional techniques help answering key questions in cancer
research [22–25].
We emphasize the approach of computational mod-

eling of biological systems and developing computa-
tional modeling tools for simulation and reproducibility
of experiments in biologic research. Fisher et al. [26]
coin the term Executable Biology which highlights the
difference between mathematical and computational bio-
models in regard to their representation. Executable Biol-
ogy describes computational algorithms in support to

reproducible results in biomedical research as well as
efficient simulation and analysis of biological systems. In
this regard, Executable Biology is recommended to be
integrated as standard method into bio-science.
Regarding the dynamics of tumor growth, computa-

tional models for various types of tumors exist, from
animal models and the human body, dealing with the
individual stages of tumor development [27]. In silico can-
cer modeling provides significant opportunities, however,
Edelman et al. [28] argue that it is yet in its infancy.
Understanding the tumor heterogeneity with respect

to personalized cancer treatment represents the ultimate
goal of computational tumor-growth modeling. For that
matter, multiple groups of scientist have to work together,
accentuating the need for interchangeable infrastruc-
ture of linking big data and adoptable specialized
models [29].

Mathematical modeling of tumor growth
Tumor growth kinetics follow relatively simple laws that
can be mathematically described [30]. Such mathematical
models could forecast individual phases of tumor growth
[31]. In general, there are basic modeling approaches
of cancer kinetics [28], that include exponential growth,
the Gompertz model [32], metabolic models [33], the
so-called universal model [34] and hybrid models [35].
Various mathematical models have been developed for
the description and prediction of tumor growth. Each
model, available so far, is optimized for specific scales of
time and size plus certain aspects of metabolism or inter-
actions [28, 35]. In regard to different biological scales,
Deisboeck et al. [36] discuss innovative multi-scale cancer
modeling approaches, ranging from atomic and molecu-
lar up to macroscopic scale. However, there is no universal
law yet. Simple models have prediction rates less than
70 %, while some models used for specialized simulations
achieve ≥ 80 % prediction rates [30]. Cancer models can
be categorized based on their basic mechanisms to cal-
culate tumor growth, but several additional factors have
to be considered. Tumors originate from differentiating
cells exhibiting the behavior of excessive proliferation up
to migration [20, 37]. Tumors can be either dormant or
growing [38, 39]. After reaching a critical mass, primary
tumor growth stops andmigration throughmetastasis will
occur. From a biological perspective, tumor growth also
depends on the underlying network structure [40–42].

Cellular Potts modeling of tumor-growth
The Cellular Potts model (CPM) poses a most widely
used example of agent-basedmodels which are feasible for
research regarding cell-based phenomena and, therefore,
are favorable for cancer research [43, 44]. The CPM was
first presented by Graner and Glazier [45, 46]. The CPM
or also named Glazier-Graner-Hogeweg (GGH) model
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is based on individual cells in contrast to continuum
models which summarize cell populations to tissues and
continuous materials [47, 48]. It represents a modeling
approach on tissue level with the main focus on intra-
cellular and intercellular events as well as the cellular
microenvironment. It has been implemented for tumor
progression and invasion before [43]. The model includes
single-cell characteristics of cellular geometry and inter-
actions, rendering the simulation more efficient for ques-
tions on a detailed level than for a general overview.
Glazier and Graner’s model was originally developed for
simulating the rearrangement of individual cells and cell
sorting [46]. They upgraded the model to a compartmen-
tal view of cellular subelements. In principle, various cells
are described as objects covering multiple shifting nodes
on a 2D or 3D lattice while moving and changing their
size. Thereby, CPM simulations support studies on type-
specific cellular morphology and interaction [49]. The
model describes different cell states and allows for addi-
tional parameters such as cell division and migration [50]
as well as chemical diffusion and the extracellular matrix
(ECM) [51]. Graner et al. [45] showed that differential cell
adhesion and chemotaxis can be controlled through CPM,
while the model is robust in regard to certain parame-
ter choices. Glazier et al. [47] revise several development
steps of the CPM and Szabo et al. [43] summarize the
usefulness of CPM for simulating multi-cellular processes
related to cancer. Boas et al. [52] recently conducted
a global sensitivity analysis of the CPM, taking model
extensions for angiogenesis into account, and showed that
introducing a dynamic parameter for chemoattraction
has the highest impact, being followed by the diffusion
coefficient and cell-cell adhesion.
CPM has been used in a wide range of applications and

there are extensions in terms of kinetics also referred to
as extended CPM as well as hybrid CPM models [49].
The background of CPM modeling on cell sorting for
various cell-types has been successfully used for the sim-
ulation of benign tumor growth [53] and cancer inva-
sion [54]. Moreover, multiscale-models based on CPM
have been implemented for various cancer-related studies
[43, 51, 55–60].

Visualization for computational modeling
Visualization supports the understanding of biological
data and provides insight into biological systems [61].
Visualization and computation mutually contribute to the
sense-making process of biomedical analysts [62]. It is
advised to provide integrated frameworks for biological
studies. Graphical representations used for biological data
visualization need to be adjusted to an appropriate level of
detail. Graphs, in which each node represents a biological
object and each edge a relation between these nodes, are
often found in visualizations of biological data. While it

has been primarily used for large interaction networks so
far, graph visualization offers several user-friendly layout
algorithms and is applicable for a wide are of application
areas, ranging from social networks, finance to biology
[61, 63]. Our recent study [64] on integrated visualization
of biological networks highlights current possibilities for
using Web technologies to support analysts in exploring
biological relations.
The field of computational cancer biology lacks visu-

alization types apart from network visualization. The
“cBioPortal” with its focus on cancer genomics offers
interactive visualization of pathway networks, mutations
in protein domains, statistical information and trends on
gene sets and clinical patient data of 10 published can-
cer studies [65]. Besides, there are only a few attempts
on integrating visualization in computational modeling
tools for cancer biology. Simulation results of a multiscale
model for glioma growth have been visualized by the use
of the software SciRun [66]. Specific cell growth processes
can be simulated and visualized with the tool CellSys
[67]. CompuCell3D [68] and the Tissue Simulation Toolkit
[69] are exemplary frameworks for testing and extend-
ing computational models, integrating visualization fea-
tures on cell interactions for simulation and analysis.
Last but not least, there have been efforts in developing
a virtual biobank [70] and a cancer modeling commu-
nity [36] to exchange data and to facilitate visualization
integration.
Though computational modeling has become a feasible

tool for tumor growth research, simulation tools are rare.
There is a step by step tutorial available how to simulate
collective cell behavior based on Cellular Potts modeling
[71]. CompuCell3D is one of these tools which has been
used for in silico modeling of cellular and multi-cellular
behaviors [68]. The latter research group introduces a
tutorial for building cell-based simulations for visualizing
tumor growth by making use of an open source library
for simulating the CPM, written in C++. Though provid-
ing step-by-step instructions, basic knowledge of the use
of the terminal and a C++ compiler are required. This
technical know-how is often a limitation to clinicians and
researchers in biomedical sciences. Moreover, they do not
describe how to create iterative computations and how to
differentiate between cell-types.
However, despite the availability of many different

tumor growth models on the one hand and many Web-
based visualization libraries on the other hand, adequate
and usable simulation tools are still rare. To our knowl-
edge, there have been no efforts in creating easy to
use,Web-based computational cancer modeling tools that
integrate visualization features. Our main idea is creating
usable and extendable implementations of tumor models
to foster ease of use of simulations and support knowledge
discovery.
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Methods
Mathematical basis of tumor growth
In general, tumor growth is mathematically summarized
by the Gompertz function [7, 8, 32, 43]:

Vt
V0

= e
a

x∗(1−e−at)

with tumor size at variable time Vt and the initial tumor
size V0, a and b being tumor-type characteristic con-
stants, for cell clone division [7, 8]. In detail, we choose to
describe tumor growth using the CPM by GGHwhere the
probability for a spin copy and therefore cell proliferation
is expressed as:

p
(
σi,j → σi′,j′

) =
{
e

−�H
T if �H > 0;

1 if �H ≤ 0;
(1)

The CPM is a time-discrete markov chain and its tran-
sitions σi,j → σi′,j′ are calculated by a Hamiltonian (or
energy) function �H , a sum of several terms [46, 47]. We
further describe details on its implementation within the
next subsection.

Implementation of the CPM
The Potts model is based on the differential adhesion
hypothesis which states that motile cells rearrange them-
selves according to the lowest energy configuration along
the potential energy landscape [46, 72]. Within the CPM
by GGH, cells are assigned certain spin states. Cells are
build up by multiple cellular bricks, likewise termed (cel-
lular) lattice nodes, sites or points. A multi-scale growth
is accomplished through surface adhesion and space com-
petition of cellular bricks scattered through the discrete
lattice. Cellular bricks are associated with spins at lattice
sites. Spins can be flipped between spin states allocating a
celluar brick to another cell. These spin-copy attempts are
calculated through Monte Carlo Steps (MCS). MCS are
the mathematical basis for the probability simulation. The
key parts of the computation are theHamiltonian function
�H , also referred to as configuration energy [47], shown
in Eq. 2, and the temperature T shown in Eq. 3.

H = J
∑
i,j

(
1 − δσi,jσi′ ,j′

)
(2)

If �H < 0 the new spin state is always accepted because
the system’s energy will be decreased. If �H ≥ 0 the new
spin state is accepted with a certain probability. While the
cell is growing its target volume increases too. A cell in
the CPM is the set of all cellular bricks with the same
cell-index. Each cell relates to a certain cell-type. The
cell-types are defined by the set τ .

�H constitutes the energy of interactions between cel-
lular bricks i with the neighbour j. The discrete version of
the Kronecker delta δ = 1 if two neighbouring bricks are
from the same cell, otherwise δ = 0.

A cell will reach a critical point for division upon mini-
mum �H . Each cellular brick is assigned a σi,j with type-
dependent interaction energies, the spin-spin coupling
energy constants J(σi,j) to neighbouring cells. J effects a
cell to be inclined to comprise a formation of connected
cellular bricks over loose entities.
MCS is a series of n spin-copy attempts for a lattice

consisting of n lattice sites. Each MCS step resembles
the rearrangement of cells and, therefore, the time. The
calculation shown beneath includes the temperature T
which resembles a cellular motility factor [47]. The MCS
calculates a change in configuration of H0 to H1 for:

�H = H1 − H0 ≤ 0 or otherwise p = e
−�H
T (3)

The CPM Hamiltonian H is the sum of a series of terms
that are related to different cell attributes such as interac-
tion energy as well as volume. Extended versions exist that
include other addends [49]. The original CPM includes a
second term next to the first term of all surface energies
J. H also includes a λ as cellular constraint as function of
elasticity, shown in Eq. 4.

H = J
∑
i,j

(
1 − δσi,jσi′ ,j′

)
+ λ

∑
σ

(v(σ ) − Vt(σ ))2 (4)

In more detail, H includes the number of lattice sites
v(σ ) in a given domain with the spin σ , and the target
number Vt(σ ) within that domain. The second term con-
fines a cell’s volume v to the range of a specific target
volume V, while the variable σ i′j′ sums up the number
of neighbours. We focus on a schematic two-dimensional
cellular grid. A cell’s volume v and target volume Vt is
thereby reduced to area a and At .

Web-based model implementation
The implementation for the purpose of visual analysis of
tumor growth includes:

• CPM implementation, based on Glazier et al. 1993
[46]

• Servlet for client-server communication
• Network visualization based on Cytoscape.js [73]
• Line chart visualization based on Flot [78]
• HTML5 frontend
• Tests
• Documentation

TheCPM is implemented as server side backend. There-
upon a cross-browser user interface integrates client side
visualization libraries for multiple visualization outputs
(Fig. 1).
The presented tool cpm-cytoscape offers an HTML5

based graphical user interface that makes use of JavaScript
(JS) libraries, first and foremost Cytoscape.js. Below the
frontend, the backend is implemented in JAVA and
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Fig. 1 Architectural Representation of cpm-cytoscape: The architecture is composed of two distinct layers: The frontend layer contains a
Cross-browser web presentation layer. It contains the customizable visualization components as well as a dynamic user interface for interacting with
the CPM implementation via AJAX (with GET/POST). At the backend layer the JSONCPMServlet serves as interface for the actual CPM Lattice
computation in the backend

information between frontend and backend is exchanged
in JavaScript Object Notation (JSON), a common data
exchange format that is used by Cytoscape.js. The JSON
data holds a reference for the output container as well as
several elements. The elements further contain child ele-
ments such as the complete set of edges and nodes, while
each node again contains data about id, position, color,
neighbour, parent, selection and other parameters. More-
over, the JSON structure includes information about the
graph’s layout and style parameters. By making use of a
Java implementation of the CPM computation, a set of
Java Servlets are requested asynchronously and delivering
the data needed both for the computation in the backend
and for the visualization rendering in the frontend.

Visualization
We developed an HTML5 frontend that can be easily
adjusted by means of modern web design via editing
markup, JS and presentation stylesheets. The frontend can
further be extended by integrating additional control ele-
ments as well as by making use of additional JS-based
visualization libraries. For the visualization we searched
for a library capable of rendering nodes along a lattice, and
we found Cytoscape.js to be the graph visualization library
of our choice. We use visualization libraries to create
and update the visualization during a simulation run. The
rendering method requests the JSONCPMServlet, a Java
servlet that delivers data needed for the frontend render-
ing. Therefore, the JSONCPMServlet first receives JSON
data, parses it, maps it and sends it back as JSON, that is
then used for the graph rendering. For now, the frontend

rendering parts include a graph visualization and a simple
line chart. We use Cytoscape.js to plot the lattice-based
graph visualization as well as Flot, a Jquery.js extension, to
draw simple line charts.

Usage of cpm-cytoscape
Based on a study on a brain cancer type modelled
by CPM [51] and our ongoing work on tumor growth
profiles for simulation [74] we introduce the tool
through a short tutorial at https://github.com/davcem/
cpm-cytoscape. We encourage readers to use GitHub for
having a closer look at our implementation, explore its fea-
tures and suggest enhancements as well as participate in
the development. Design and implementation of the pre-
sented tool took place in an iterative manner. Informal
validations have been conducted by several discussions
with a domain expert. The basic idea up to the model’s
implementation and the tool’s user interface have been
co-designed and reviewed by a domain-expert.

Results
Wepresent a new 2D visualization approach for a dynamic
cellular model simulation that accounts for lattice size, cell
size, environment parameters and interactions between
cells. The tool developed and used for the simulations has
been published in the GitHub repository, saved as cpm-
cytoscape. It can be obtained via the url address: https://
github.com/davcem/cpm-cytoscape. Further, we provide
a demo version that is online available on: http://styx.cgv.
tugraz.at:8080/cpm-cytoscape/.

https://github.com/davcem/cpm-cytoscape
https://github.com/davcem/cpm-cytoscape
https://github.com/davcem/cpm-cytoscape
https://github.com/davcem/cpm-cytoscape
http://styx.cgv.tugraz.at:8080/cpm-cytoscape/
http://styx.cgv.tugraz.at:8080/cpm-cytoscape/
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We created the tool to allow for easy manipulation by
its user. The upper region offers a number of variables
which can be set by the user in order to discriminate
and process various experiments. The CPM is computed
solely in the Java backend, while initialization parameters
can be adjusted in the frontend and are communicated
by requesting the servlet. By varying several parameters
the user is allowed to simulate a wide range of conditions.
These parameters are the lattice’s size (x,y), the count of
monte carlo steps, its’ substeps, max σ , the matrix den-
sity, interaction parameters as well as the temperature.
The Java packages consist of the implementation of the
CPM itself, a graph converter to convert the CPM lattice
into a graph structure, a more specific cytoscape con-
verter to represent the graph enrichment needed for the
visualization library as well as the servlet to provide the
communication interface between backend and frontend
via JSON.
Individual cells are visualized as group of nodes, we refer

to as cellular bricks, on a grid. Cytoscape.js provides a
grid layout rendering algorithm that arranges the nodes
in a square grid whereby the circular nodes represent
subcompartments of cells. We differentiate between light
cells that represent normal cells, dark cells that represent
mutated cells and the ECM that surrounds cells. The ECM
is represented as grey nodes. The other nodes with σ ≥ 1
are represented by the colored, either dark or light nodes.
For now, we only differentiate between a light and a dark
cell-type. Nodes which are not indexed as light or dark
cells are attributed to the ECM. They resemble the cellular
surroundings without peculiar growth variables.
The growth rate can be visualized as line chart for σ =

2 by using the button “show line chart”. The line chart
shows the amount of computation steps on the x-axis and
the amount of cellular bricks on the y-axis. Experimen-
tal data can be exported as spreadsheet in the format of
comma-separated values. This option offers the possibility
of making the data available offline for further analysis.

Initialization and lattice settings: The lattice is created
on the left side of the browser window by pressing the but-
ton initialize (Fig. 2). Thereby, the size and likewise the
number of nodes is determined by the input of variables x
and y. This allows to adjust the experimental area. Nodes
are indexed randomly to light and dark cells or ECM
according to the input of the number of cellular clusters σ ,
matrix density and the light/dark ratio. After initializing a
random graph according to the user interface’s settings the
computation possibilities with the button “compute next
simulation run” and “compute next two simulation runs”
are enabled (Fig. 2).
Our implementation of the CPM currently consists of

maxSigma cells relating to 3 different cell-types, while
σ = 0 attributes to the ECM, the odd numbers refer

to dark cells and the even numbers to light ones. There-
fore, by making use of the max σ parameter one can
also define more than two different cells, also referred to
as cellular clusters. Max σ defines the quantity of indi-
vidual cell components or respectively cellular clusters.
If max σ is set to 2 we use the color lightblue for light
(normal/healthy) cellular bricks and darkred for the dark
(tumor/mutated) ones (Fig. 2). If max σ is set to > 2 we
use a colorscheme for coding dark and light cell nodes
slightly differently to better distinguish between differ-
ent σ , shown in Fig. 3. The factor σ can be redefined
to resemble the number of cell-types. The cell-types are
represented by τ , in some papers also referred to as cell
or medium. We currently distinguish between three cell-
types, namely ecm, light and dark cells as denoted in the
original paper by Graner et al. [46]. A cell-type is referred
to as τi, while τ = {0, 1, 2} with τi=0 = ECM, τi=1 = dark,
τi=2 = light.
Thematrix density defines the number of cellular bricks

indexed as light or dark cells in relation to the given
number of nodes. Setting matrix density = 1 uses all lat-
tice sites for cellular bricks. Setting matrix density = 0
represents a lattice site filled only with ECM.
The parameters MCS and #substeps represent units of

time, while a substep is related to a random copy attempt.
We implemented the number ofMCS and substeps as vari-
ables and allow the parameters to be defined and adjusted
by the user. Each MCS is divided into a specified amount
of substeps for simulating different time settings.
The temperature T functions as cellular motility fac-

tor since high T leads to frequent spin-copies, thus, an
increase in the number of cellular bricks and an increase in
cellular invasive radius. The impact ofT on the overall run
is highlighted in Fig. 4 (panel A). The default temperature
is set to 10 degrees as suggested in [46, 75]. A comparison
of our default settings with values, previously published by
others, are summarized in Table 1.
The parameter for area energy λ represents a limit-

ing factor to cell growth, also termed cellular elasticity λ.
Panel B in Fig. 4 demonstrates the impact of λ. High λ val-
ues more strongly constrain cell growth while low λ leads
to frequent spin-copies. The target area At is related to
the lattice’s size parameters x and y, while the target area
factors for light and dark cells can be adjusted.
The energy interaction parameter J is the basis to the

overall Hamiltonian and spin-copy attempts. This so-
called boundary energy coefficient determines cell growth
as multiplicative degree of freedom [47]. Panels C to F
in Fig. 4 illustrate the impact of low and high interac-
tion values for different cells as light and dark cells and
ECM on the overall simulation outcome and the underly-
ing Hamiltonian and spin-copy attempts. The impact on
the simulation by the parameter variables are presented
within Fig. 4.
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Fig. 2 Overview of the tool’s user interface: 1© At top there are adjustable parameter settings for CPM computation and 3© buttons for initializing
and computing the lattice sites. 2© The left side shows the initialization output as rendered graph with grey nodes representing parts of ECM, while
colored nodes representing cellular bricks corresponding either to light blue colored (normal/healthy) or dark red colored (tumor/mutated) cells.
The table below shows information about the initialized cell data. 5© The right side shows the output for the last computation step, while the table
below contains computed cell data. 4© A toggle buttons controls the 6© lightbox in the middle that provides line chart visualization and export

Application example of cpm-cytoscape
We created a step-by-step tutorial on the presented
tool using a tumor growth example based on parame-
ters from a study on a brain cancer type modelled by
CPM [51], available under https://github.com/davcem/
cpm-cytoscape [74]. This example results in cellular
growth of dark cells, representing tumor cells, showing
a trend similar to Gompertz law. The simulated cancer
cells thereby imitate 2D cultured glioma cells or likewise
tumor-spheroids implanted in animals [51].

Discussion
We present a web-based solution to allow for simple
access to such a tumor growth visualization tool via Inter-
net. By making use of the CPM implementation, we
describe a potential use case for the cpm-cytoscape tool.
The manipulable tool offers the advantage of adjustable
settings for several input variables. By correlating various

growth parameters we highlight the importance of hetero-
geneous cell interactions regarding its impact on tumor
growth.

Options to visualization: There are many JS-based visu-
alization libraries which can be used to foster the goals
of visualization, namely to facilitate understanding and
to gain novel insight, in our case into one of the many
questions of biomedical research [76]. We make use of
Cytoscape.js since it features user-friendly presentation of
interaction data and supports several common browsers
like Chrome, Firefox and Safari, while the first is the fastest
one. It represents an open-source library on graph the-
ory that was written in JS and developed for analysis and
visualisation [73]. Thereby, layouts of the display area can
be altered while graph elements can be accessed offering
several possible operations including sorting and filtering
as well as graph querying. These options can be exploited

https://github.com/davcem/cpm-cytoscape
https://github.com/davcem/cpm-cytoscape
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Fig. 3 Screenshot of a graph rendering with σmax = 14: The graph consists of 14 distinct cells (also denoted to as cellular clusters). Each cell is
represented by a certain amount of nodes that we call cellular bricks. Cellular bricks with dark red or purple color tones correspond to the dark
(tumor/mutated) cells, while nodes in a light shade of blue to green are referencing the so called light (normal/healthy) cells. The amount of these
are listed in the table below the graph visualization. For this example, the cell with id = 9, represented by the purple nodes, consists of 39 cellular
bricks at the initialization phase. After 2 computation steps, we see at the right side, that the cell with id = 9 has grown and now holds 465 cellular
bricks. Grey nodes represent the ECM

for future extensions to the tool. Moreover, Cytoscape.js
[77] is regularly updated and supports directed as well as
undirected, mixed or multi-graphs.
Furthermore, Cytoscape.js layouts can be easily changed

by just specifying another graph layout for the layout
parameter in the cytoscapeRender method. There are also
alternative visualization libraries that can be used in the
frontend [77–79]. Possible alternatives to Cytoscape’s lay-
out algorithm would be using a bubble chart layout or
even a three dimensional surface plot layout that can be
created with another JS library such as D3.js.
Cytoscape.js offers different layout rendering options

out of the box. We chose to use the grid layout that
fits into traditional CPM visualization. In general, tumor
growth kinetics and effects of cell growth can be visual-
ized as line chart with the two dimensions of volume/size
or cell number over time [80]. Therefore, we use the exten-
sion of simple line charts. Time series visualization may
help users from the fact that time spans and iterations
can dynamically be adjusted and are neither restricted by
sensory constraints nor by experiment and animal costs.

Lattice-based visualization of cells: The lattice is orga-
nized in two dimensions, since 2D-modeling reduces the
computational load just as well as visualization compre-
hensiveness. Still, in terms of numbers, themodel could be
manually transcribed and extended to a third dimension
as the need arises.

In a figurative sense, the lattice represents tissue in the
biological context. Cellular bricks are translated as tex-
tural compartments of a biological cell-layer. By way of
example, the two-dimensional cellular grid can then be
described as representative cross-section translated from
the possible style of tissue slices. In a conceptional matter
of speaking, cellular bricks represent variable compart-
mental states of a cell that can be translated to several
criteria such as the impact of genes or likewise proteins,
effects by modulators, inhibitors as well as promoters, or
localized phenomena in general. The specific factors can
be applied and extended in regard to the individual focus
of research in a problem-directed manner.

Initialization and lattice-site settings: The variable
number of lattice sites offers the possibility to adjust
the computational workload according to the require-
ments of individual questions. In difference to general
computational models, the Web-based implementation is
attempted to be computed with low latency. Good ren-
dering performance of computation results is needed to
create dynamic output for smaller lattice sizes at once,
as well as to enable animation for multiple computation
steps at once. Still, some experiments concerning specific
timing problems will have to be conducted using a high
number of nodes. Thus, the variables can be be chosen in
compliance with the requirements.
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Fig. 4 Cell growth in relation to varying parameters: line chart showing representative ratios between numbers of dark and light cellular bricks over
computed steps. Comparison of varying parameters, for temperature T = 80, 20, 10, 0,−1 (panel A), λ = 1, 0.1, 0.05, 0.01, 0 (panel B),
Jmix = 0, 2, 5, 10, 15, 100 (panel C), comparison of various Js as indicated for Jdark , Jlight , Jmix , Jecm (panel D), Jecm = 100, 50, 10, 0 (panel E), Jdark and
Jlight each 0 or 100 (panel F). Adjusted to default settings of nodes = 32 ∗ 32,mcs = 32,mcssubsteps = 64, σmax = 2, λ = 0.05, targetAreas = 0.4,
initial dark/lightratio = 1/4
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Table 1 CPM parameter settings: comparison of presented default settings and values from literature [45, 46, 51, 75]

Max X * Y MCS, substeps max σ matrix density T JECM Jlight Jdark Jmixed λ At(light) At(dark) ratiolight/dark

default settings 32 * 32 32, 64 2 0.8 10 16 15 2 11 0.05 0.4 0.4 1/4

GGH 1992 40 * 40 100, 1 2 1 10 16 14 2 11 1 0 0 1

GGH 1993 ≤ √
40 ∗ 1000 ∗ √

40 ∗ 1000 16, max X * Y 1000 1 5 8–16 14 2 11 1 40 40 1

Ouchi 2003 128 * 128 1 , 1 16 1 10 –/0 –5 –25 –3 10 64 64 1

Rubenstein 2008 500 * 500 400, Max X * Y 65 <0.1 0 0 2 2 9 1 40/2 50/2 1
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The random distribution, to a certain degree, simulates
environmental behaviour and the random occurrence of
mutations within cells. Spheroid models start from an
initial mass of proliferative cells only. Still, in nature,
mutated cells showing abnormal growth are intermixed
with “normal” cells. Thereby, our tool allows to set var-
ious cell-types. Tumor cells are set to grow by means
of proliferation and further invasion. The ECM can be
set as background or individual cells to be equally or
inhomogeneously in size and distribution [51]. For the
future, we plan to implement extensions that will include
additional initialization settings, such as the introduc-
tion of a dynamically configurable cell-type or another
dimension. Further variations could include the option
of spheroid models. Another elaborate feature could
even offer pre-defined cellular mixtures corresponding to
uploaded images from treated tissue-slices.

The impact and translation forMCS and #substeps: A
MCS’s series of random copy attempts is equal to the total
amount of cellular bricks. Graner and Glazier [45, 46] pro-
posed MCS to be 16 × x × y while x × y ≈ 1000 and
x = y ≈< 40 and did not make use of defining substeps.
They suggested this setting for observing gradual move-
ment behaviour. Later works define oneMCS to consist of
as many index-change attempts as the number of pixels in
the lattice x×y. If the setting forMCS×#substeps is lower
than x × y, then unintended results are observed.
The time, by means ofMCS steps, is an abstraction and

relates to tumor specifics. The various kinds of tumor
cells proliferate and divide more frequently than normal
cells, depending on the localities and their differentiation
status. Thereby, tumors can be classified by their spatial
occurrence, and further, be characterized by their tem-
poral growth dynamics. For each case, MCS steps can be
translated to either hours, days or years. Future exten-
sions to our tool will include pre-defined initialization
settings of growth rates and time units corresponding to
exemplary tumor types.

Temperature T : In general, temperature affects move-
ment, and in our case, cell growth. In more detail, T
functions like a cellular motility factor since high T will
lead to frequent division of cells, thus, an increase in the
number of cellular bricks and an increase in cellular inva-
sive radius as shown in Fig. 4 (Panel A). If the interaction
energy, represented by the several J parameters, is much
greater than T, cells will shed into loose bricks at the
boundaries. If T is too large, relative to J, boundaries will
become stiff. Low temperatures inhibit proliferation. Sub-
zero temperatures stop changing spin values and therefore
kinetics and growth. At very low subzero temperatures,
any biological activity is effectively stopped but cells could

also take damage through freezing, that could be taken
into account as additional factor in future studies.

The energy interaction parameter J : The range of the
individual interaction energies is defined by the original
cell-types as well as the manifested mutations responsi-
ble for the excessive proliferation by tumor cells. Thereby,
these factors correlate with the class of tumor and it’s
tissue-residency. Individual cells exhibit heterogeneous
tendencies towards growth correlating to tumor aggres-
sivity, thus, interaction energies can vary over time. This
phenomenon can be manually emulated by adjusting the
individual interaction parameters after a specified num-
ber of MCS. Future extensions could include this adjust-
ment as an automatic option in correlation to underlying
relations of further variables.
In our case, default parameters of cpm-cytoscape impli-

cate low values within the first term for the Hamiltonian
computation, consisting of the interaction parameters J, in
comparison to the second term, factoring values of area
calculation such as λ, a andAt (see details to Eq. 4). As can
be seen in Fig. 4 (panel C) a change in Jmix, the interaction
energy between different cells, impacts growth of dark
cells considerably. However, there are no significant dif-
ferences if the J parameter of dark or light cells is changed
selectively (panel F). Changes of JECM, the interaction
energy between parts of ECM, result in similar insignifi-
cance, though high values can lead to sudden changes in
the ratio between dark and light cells through dark cells
migrating to and taking over former ECM space (panel
E). Rather high values are needed to manipulate ratios.
Figure 4 (panel D) demonstrates three cases of combined
changes in the interaction parameters Jdark , the interac-
tion energy of dark cells, in comparison to the interaction
energy of light cells Jlight , as well as Jmix and Jecm. The
ratio between dark and light cells is only slightly decreased
upon an 100-fold increase of Jdark . However, the number
of dark cells over light cells is completely reduced upon
increasing Jmix and Jecm. At the same time, the relation
between Jdark and Jlight plays a minor role in determin-
ing the probability of spin-copy attempts rather to their
measure in proportion to Jmix and Jecm. This fact can be
translated to the biological importance of heterogeneous
interactions between cells and their environment. Fur-
ther refinement will include the integration of additional
parameters such as Jdark−ecm, Jlight−ecm or other Jdiff as well
as the search for suitable realistic values to relate to differ-
ent cell-types, a factor to be taken into account in future
studies.

The target area and the parameter for area energy λ:
The factor λ is considered a constraint, in our case, for
limiting cell growth. The so-called cellular elasticity λ
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attaches the value of area calculation within the Hamilto-
nian computation. Differences between current and target
area will likely have more effect on spin-copy attempts if
λ is high. If λ becomes too high relative to the residual
calculation parameters, any spin-copy attempt should be
refused. This is true as long as the cellular area is differ-
ent from the target area. The quadratic function does not
distinguish whether the cellular area is larger or smaller
than the target area. In terms of cell size, cellular elastic-
ity will play a major role for rigid cells which tend to stay
within the range of their target volume. Cell growth and
division are correlated so that cells of unequal size will
divide at a given speed and even out to a mean cell size.
This is true only, if cell growth rate is constant. An abnor-
mal increase in cell size is possible under the influence of
excessive discharge of growth hormones or similar patho-
logical circumstances such as hypertrophy. Other cases of
instant changes in cell size include the natural processes
of cellular differentiation and enlargement or shrinkage
according to the metabolic state.
Generally, various cell-types are differently sized. Some

cancers are known to manifest giant cells. Even normal
cells exhibit different dimensions according to their ori-
gin. Cell diameters range from 1μm to 1mm and more, for
instance nerve cells can reach a length over 1m [81]. Fur-
thermore, cell-sizes vary within one cell-type. Still, cells
have medial sizes specific to their type. This constraint is
thereby necessary to limit cellular growth to an underlying
biological scale.
For future matters, the discrete view of cellular area

can have a completely different meaning. Cellular bricks
resemble conceptional factors that occur or are replaced,
distributed or accumulated within individual cells. These
factors will be assigned by the researcher depending on a
given task and scope of work.

The ECM occupies space which is not attributed to cel-
lular clusters. Its energy area is initially suppressed, but
if reprogrammed to a positive number within the source
code, the ECM will grow and spread like light and dark
cells. This could simulate gap-filling after cell-death and
be the case of radiation procedures, cellular starvation or
exposure effects of chemicals. This variation will be of
importance in future studies introducing multiple affec-
tors of cell growth by integration of biomedical databases,
including drug, protein and genetic information related to
tumor growth.

The matrix density was introduced as factor for sim-
ulating various cell densities within the area of interest.
For instance, tissue slices could show distinct cellular
colonization in locally fragmented patterns. Moreover,
different cell-types as well as organelles can exhibit var-
ious densities. In general, varying cell densities can be

attributed to the water content relative to the mass of
proteins, nucleotides, carbohydrates or lipids within and
around the cells.
Cell density often resembles the proliferative state of

cells controlling protein expression. Consequently, the
change in matrix density can be used for future stud-
ies focusing its effect on tumor growth, dormancy or
metastasis. Further, matrix density can be interpreted in
a more formalized manner, such as the variable abun-
dance and occurrence of discrete factors within cellular
regions.

The role of fostering in silico modeling: There is a
trend towards computational simulations of biological
processes making use of different mathematical mod-
els [82]. In particular simulation-based experiments in
the field of bioinformatical cancer research can save
resources in terms of time and costs. Collaboration
between experimentalists and modelers has to be pro-
moted and extended. This fact is most interesting for
fostering cooperation of researchers from the interdisci-
plinary fields of computer science, mathematics, human-
computer interaction, life sciences and biomedicine [83].
The tool represents a basic instrument to supporting

biomedical researches and a preliminary step towards
supporting clinical scientists. Until now, the tool has not
been evaluated by clinicians. Future plans are to conduct
further iterative testing and verification and to experiment
with machine learning approaches [84].

Conclusion
Recent advances in Computational Biology show high
potential to deepen the understanding of origin and pro-
gression of cancer. Our general aim is to enrich cancer
research by providing a tool that will make Computational
Biology applicable to both researchers and clinicians. We
focus on the fundamental pathological processes of cancer
which are represented by tumor growth. Since abnormal
cell growth involves chaotic, heterogeneous and highly
differentiated structures, we chose to investigate cellular
growth on the single-cell level. By refining model param-
eters of the cellular potts model, we highlight the impact
of heterogeneous interceullular interactions on tumor
growth.
Herein, we describe the implementation of the CPM for

the purpose of simulation and visual analysis of tumor
growth and provide its sources on github. We chose
the lattice-based visualization style as primary approach
to present and display tumor growth for research pur-
poses. The graph computation allows for multiple dif-
ferent visualization approaches. The user interface is
highly adjustable and its implementation is designed to be
extended. The possibilities and accessibility of our simula-
tion and visualization approach might ultimately promote
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researchers and practitioners to progressing the field of
tumor research towards personalized medicine.
Our approach offers several potential future applica-

tions of studying tumor dynamics. First, we plan to
implement more simplistic models in order to offer fast
computations and visualizations. Secondly, we plan to
integrate various profiles into the tool, to offer exem-
plary simulations on different types of tumors [74]. Next
to iterative testing, profiles lead to the task of verifi-
cation. Furthermore, the implementation of additional
dynamic parameters may enhance the simulation’s pos-
sibilities. Multiple optional features to modeling as well
as visualization styles will provide preferential outcomes
in regard to detailed information or fast overview per-
formance. Another interesting step towards supporting
researchers and clinicians is providing image loading and
size detection of regions of interests as input parame-
ter for the simulation. Future integrations will include
biomolecular networks such as drug-protein impact or
genetic alteration patterns. Harnessing tumor growth data
and related gene data as well as providing an open source
database for tumor growth related data [85] are big steps
forward to supporting science collaborations and clinical
applications, and finally help contributing to fight cancer.
We believe that our approach is a motivator for fostering

in silico modeling towards 3R and a better understanding
of tumor dynamics.
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