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Abstract

Background: Gene expression is known to be an intrinsically stochastic process which can involve single-digit
numbers of mRNA molecules in a cell at any given time. The modelling of such processes calls for the use of exact
stochastic simulation methods, most notably the Gillespie algorithm. However, this stochasticity, also termed “intrinsic
noise”, does not account for all the variability between genetically identical cells growing in a homogeneous
environment.
Despite substantial experimental efforts, determining appropriate model parameters continues to be a challenge.
Methods based on approximate Bayesian computation can be used to obtain posterior parameter distributions given
the observed data. However, such inference procedures require large numbers of simulations of the model and exact
stochastic simulation is computationally costly.
In this work we focus on the specific case of trying to infer model parameters describing reaction rates and extrinsic
noise on the basis of measurements of molecule numbers in individual cells at a given time point.

Results: To make the problem computationally tractable we develop an exact, model-specific, stochastic simulation
algorithm for the commonly used two-state model of gene expression. This algorithm relies on certain assumptions
and favourable properties of the model to forgo the simulation of the whole temporal trajectory of protein numbers
in the system, instead returning only the number of protein and mRNA molecules present in the system at a specified
time point. The computational gain is proportional to the number of protein molecules created in the system and
becomes significant for systems involving hundreds or thousands of protein molecules.

Conclusions: We employ this simulation algorithm with approximate Bayesian computation to jointly infer the
model’s rate and noise parameters from published gene expression data. Our analysis indicates that for most genes
the extrinsic contributions to noise will be small to moderate but certainly are non-negligible.

Keywords: Stochastic simulation, Gene expression, Extrinsic noise, Approximate Bayesian computation

Background
Experiments have demonstrated the presence of consider-
able cell-to-cell variability in mRNA and protein numbers
[1–5] and slow fluctuations on timescales similar to the
cell cycle [6, 7]. Broadly speaking, there are two plausible
causes of such variability. One is the inherent stochastic-
ity of biochemical processes which are dependent on small
numbers of molecules. The other relates to differences
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in numbers of protein, mRNA, metabolites and other
molecules available for each reaction or process within a
cell, as well as any heterogeneity in the physical environ-
ment of the cell population. These sources of variability
have been dubbed as “intrinsic noise” and “extrinsic noise”,
respectively.
One of the earliest investigations into the relationship

between intrinsic and extrinsic noise employed two copies
of a protein with different fluorescent tags, expressed from
identical promoters equidistant from the replication ori-
gin in E. coli [8]. By quantifying fluorescence for a range
of expression levels and genetic backgrounds the authors
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concluded that intrinsic noise decreases monotonically as
transcription rate increases while extrinsic noise attains a
maximum at intermediate expression levels. Other studies
have considered extrinsic noise in the context of a range
of cellular processes including the induction of apoptosis
[9]; the distribution of mitochondria within cells [10]; and
progression through the cell cycle [11]. From a computa-
tional perspective, extrinsic variability has been modelled
by linking the perturbation of model parameters to per-
turbation of the model output using a range of methods,
including the Unscented Transform [12] the method of
moment closure [13], and density estimation [14].
Taniguchi et al. [7] carried out a high-throughput quan-

titative survey of gene expression in E. coli. By analysing
images from fluorescent microscopy they obtained dis-
crete counts of protein andmRNAmolecules in individual
E. coli cells. They provided both the measurements of
average numbers of protein and mRNA molecules in a
given cell, as well as measurements of cell-to-cell vari-
ability of molecule numbers. The depth and scale of
their study revealed the influence of extrinsic noise on
gene expression levels. The authors demonstrated that the
measured protein number distributions can be described
by Gamma distributions, the parameters of which can be
related to the transcription rate and protein burst size [15].
To quantify extrinsic noise they consider the relationship
between the means and the Fano factors of the observed
protein distributions. They also illustrate how extrinsic
noise in protein numbersmay be attributed to fluctuations
occurring on a timescale much longer than the cell cycle.
Here we aim to describe extrinsic noise at a more

detailed, mechanistic, level using a stochastic model of
gene expression. A relatively simple mechanistic model
of gene expression may represent mRNA production
as a zero order reaction with protein being produced
from each mRNA via first order reactions. This can be
described as the one-state model since the promoter is
modelled as being constitutively active (Fig. 1). In the
one-state model, mRNA production is represented by a
homogeneous Poisson process and the Fano factor of the
mRNA distribution at any time point will be one. How-
ever, experimental counts of mRNA molecules in single
cells indicate that the Fano factor is often considerably
higher than one [7].
Such a description calls for quantitative inference of the

model’s parameters. We achieve this by relying on the
data made available by Taniguchi et al. and employing
approximate Bayesian computation (ABC) [16, 17]. One
difficulty that arises when trying to investigate the extent
and effect of extrinsic noise is that it is difficult to sepa-
rate it from intrinsic noise. To overcome this confounding
effect, the parameters of our model come in two varieties.
Firstly, reaction rate parameters describe the probability
of events occurring per unit of time. These correspond to
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Fig. 1 Schematic representations of the one- and two-state models.
In the one-state model (top), mRNA is produced at a constant rate
(k1). Protein is produced from mRNA with first order kinetics at a rate
k2. Both mRNA and protein molecules are degraded according to first
order kinetics with rates d1 and d2 respectively. The two-state model
(bottom) has the added feature of two promoter states. In the inactive
state the promoter produces mRNA at a fraction (k0) of that of the
active state. Switching between the two states corresponds to a
telegraph process characterised by two rate constants (kon and koff)

the reaction rate parameters of a typical stochastic model
which accounts for intrinsic noise. Secondly, noise param-
eters describe the variability in reaction rate parameters
caused by the existence of extrinsic noise. In this model,
extrinsic noise is represented by a perturbation of the
model’s rate parameters using a truncated Gaussian dis-
tribution. The magnitude of the perturbation of each rate
parameter depends on the corresponding noise parame-
ter, which is closely related to the standard deviation of the
relevant Gaussian (see “Methods”). This approach allows
us to simultaneously infer the rate parameters and the
magnitude of extrinsic noise and may be thought of as an
application of mixed effect modelling [18] in the context
of exact stochastic simulation.
Stochastic simulation and ABC inference methods are

both computationally costly endeavours. In this particu-
lar case, the experimental data corresponds to snapshots
of the system at a single time point. The data are made
available in the form of summary statistics, measures of
central tendency (e.g. mean) and statistical dispersion (e.g.
variance).
Thus, a complete temporal trajectory of the system is

not necessary to carry out comparisons with the data.
This allows us to make the problem computationally
tractable. To this end, we develop a model-specific sim-
ulation method which takes advantage of the Poissonian
relationship between the number of surviving protein
molecules produced from a given mRNAmolecule and its
lifetime, under certain assumptions.

Results and discussion
Posterior distributions of parameters
We begin our analysis by examining the posterior dis-
tributions of parameters obtained for each gene using
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the ABC Sequential Monte Carlo (ABC-SMC) inference
procedure [16] A selection of distributions is shown in
Fig. 3 and the Additional files 2, 3, 4 and 5 supplemen-
tary figures. The simulated summary statistics converged
to within the desired threshold of the experimental mea-
surements for 86 out of 87 genes. The inferred posterior
for the one remaining gene converged relatively slowly and
we chose to terminate the process after 30 days of CPU
time.
Figure 2 shows a contour plot of the distribution of sum-

mary statistics and the mRNA degradation rate, obtained
from particles in the final ABC-SMC population for a
typical gene (dnaK).
We begin with a discussion of features of the poste-

rior parameter distributions, that are common to most
genes. Next, we examine the relationships between model
parameters and summary statistics of the model outputs.
Lastly, we carry out a sensitivity analysis on the inferred
posteriors to assess the importance of each parameter in
setting the overall levels of extrinsic noise.
In the two-state model, the switching of the promoter

between active and inactive states is described by a tele-
graph process that can be parametrised either in terms of
the switching reaction rates (kon and koff) or in terms of
the on/off bias (kr) and frequency of switching events (kf )

(Fig. 1). The simulation algorithm takes parameters in the
form of kon and koff. However, the effects of kr and kf on
the observedmRNAdistributionmay be interpretedmore
directly and intuitively.
For the majority of genes the k0 and kr parameters are

relatively small. This appears to be a prerequisite for a
high Fano factor of the mRNA distribution and the mean
marginal inferred values of these parameters are nega-
tively correlated with Fano factors across all 86 genes as
discussed below. A low switching rate combined with a
low basal expression rate ensures that there are two dis-
tinct mRNA expression levels. This in turn produces a
larger variance in measured mRNA counts and results
in Fano factor values well above one. Conversely, genes
for which mRNA production appears to be more Poisso-
nian were inferred to have basal mRNA production rates
close to one, i.e. similar to the active mRNA production
rates. In other words, these genes appear to be constitu-
tively active. Here again, we point out that the two-state
promoter model provides a convenient abstraction and a
hypothesis for explaining the super-Poissonian variance
in mRNA copy number [5, 19]. However, based on these
observations it is difficult to determine whether a model
with more states or some other more elaborate regula-
tory model, would not be more appropriate. Our attempts
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Fig. 2 Posterior distribution of summary statistics and the mRNA degradation rate for the gene dnaK. Contour plots indicating the density of points
with the corresponding summary statistic for each particle in the final population. The summary statistics for each particle are calculated from 1000
simulation runs. The posterior distribution consists of 1000 particles
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at carrying out the inference procedure with a one-state
model indicate that extrinsic noise alone does not explain
the observed mRNA distributions without also producing
unacceptably high variability in protein numbers.
Our initial inference attempts used only the summary

statistics from the data. We observed that the production
and degradation rate parameters for mRNA (k1 and d1)
and protein (k2 and d2) tended to be positively correlated
in the posterior parameter distributions of many genes.
This is due to limited identifiability of model parameters
since different combinations of rates may produce simi-
lar steady state expression levels. We included the mRNA
degradation rate in the inference procedure with the aim
of overcoming the problem of unidentifiable parameters.
However, this did not alleviate the problem entirely and
there is still considerable uncertainty, or sloppiness, in
the posterior with regard to some directions in parame-
ter space. While this does make it difficult to pick precise
parameter values it also illustrates how using ABC pro-
vides us with a way of measuring the model’s sensitivity to
changes in parameters. Our approach provides an indica-
tion of the possible range of extrinsic noise values that can
account for the observed variability in mRNA and protein
numbers (Fig. 3).
Although the posterior summary statistics (and mRNA

degradation rate) are reasonably well constrained and

distinct for each gene, the distributions of model param-
eters can still be relatively broad (Fig. 3). There are a
number of reasons for this. Firstly, changes in parame-
ters associated with active transcription and translation,
as well as degradation rates, are more easily inferred
than parameters describing switching between promoter
states, basal transcription or extrinsic noise. In particular,
when the production and degradation rates for the same
species are subjected to different extrinsic noise parame-
ters, the inference procedure struggles to resolve between
the different source of extrinsic noise. This explains the
correlation between the means of inferred extrinsic noise
parameters (Fig. 4). Such correlations between extrinsic
noise parameters are not observed in the posterior of each
gene or when taking the single particle with the high-
est weight from the final population of each gene as in
Fig. 5.
A comparison of Figs. 4 and 5 suggests that a certain

level of extrinsic noise is expected for all genes. However,
the extrinsic noise may affect various combinations of rate
parameters and it may not be possible to discern if, for
example, the production rate or the degradation rate is
more affected by extrinsic variability. While our inference
procedure does not indicate a distinctive lower boundary
for the amount of extrinsic noise affecting each reaction
rate, there is usually an upper limit to the inferred noise

Fig. 3 Posterior distribution of model parameters for the gene dnaK. Contour plots indicating the density of points with the corresponding
parameter values for each particle in the final population. The posterior distribution consists of 1000 particles
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Fig. 4 Relationships between means of the marginal parameter posteriors. Scatter plots of the means of the marginal distributions of parameter
posteriors are shown for all pairs of parameters. Each point corresponds to a gene. Warmer hues are used to indicate a higher density of data points

Fig. 5 Relationships between the heaviest particles. Scatter plots of the particles with the highest weight in the final ABC-SMC population, shown
for all pairs of parameters. Each point corresponds to one particle from the inferred posterior of one gene. Warmer hues are used to indicate a
higher density of data points



Lenive et al. BMC Systems Biology  (2016) 10:81 Page 6 of 17

parameters ranges. The extrinsic noise parameters for
most genes are below 0.2 in the units set here (Fig. 5); how-
ever, for some genes, ηkon and ηkoff have relatively broad
posterior marginal distributions.
To better understand the relationship between model

parameters and observed patterns of gene expression, we
look for correlations between means and variances of the
inferred marginal parameters of each gene and the sum-
mary statistics used in the inference procedure (Fig. 6). As
expected, the correlation between the measured mRNA
degradation rate, calculated form mRNA lifetime, and the
inferred mRNA degradation rate parameter of the model,
is close to one.
The promoter switching rate parameters, kon and koff,

display positive and negative correlation with the mean
mRNA number, respectively (as may be expected). They
have the opposite relationship with the Fano factor associ-
ated with the mRNA distribution. This is consistent with
the idea that distinct levels of transcription are required
to account for the observed mRNA Fano factors. The cor-
responding extrinsic noise parameters ηkon and ηkoff are
positively correlated with mRNA abundance. However,
the means and variances of the marginal distributions
of these parameters are negatively correlated with the
Fano factor of the mRNA distribution. This indicates that
when promoter switching is affected by higher extrinsic
noise, the mRNA distribution becomes more Poissonian
as the effect of the two distinct promoter states is averaged
out.

Curiously, the mean and variance of the protein degra-
dation rate (d2) are positively correlated withmeanmRNA
number and negatively correlated with the mRNA Fano
factor. Unlike the translation rate (k2), it shows no signifi-
cant correlation with the mean or variance of the protein
number.

Parameter sensitivity
There are two complementary approaches to investigat-
ing the sensitivity of a modelled system to its parameters
or inputs [20]. One approach is to consider a single point
in parameter space and study how the model responds to
infinitesimal changes in parameters. This local approach
usually involves calculating the partial derivatives of the
model output with respect to the parameters of interest.
Alternatively, one may consider how the model behaviour
varies within a region of parameter space by sampling
parameters and observing model behaviour. Regardless of
the method used, different linear combinations of param-
eters will affect the model output to varying degrees [21].
Gutenkunst et al. [22] coined the terms “stiff” and “sloppy”
to describe these differences. They defined a Hessian
matrix,

Hχ2

i,j ≡ d2χ2

d log θid log θj
,

where χ2 provides a measure of model behaviour, such
as the average squared change in the species time course.

k1 d1 kon koff k0 k2 d2 kon koff k0 k2 d1 d2

variances of posterior marginal parameter values

mRNA mean

mRNA Fano factor

protein mean

protein variance

mRNA degradation rate

mRNA mean

mRNA Fano factor

protein mean

protein variance

mRNA degradation rate

k1 d1 kon koff k0 k2 d2 kon koff k0 k2 d1 d2

mean of posterior marginal parameter values

Fig. 6 Heat maps of correlation coefficients between parameters and summary statistics. Heat maps are of the correlation coefficients calculated
between experimentally obtained summary statistics and the mean (top) or the variance (bottom) of the marginal posterior for each model
parameter. Correlation coefficients for which the associated p-values are greater than 0.05, after correcting for multiple testing using the
Benjamini-Hochberg method [43], are treated as zero for plotting purposes
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By considering the eigenvalues of this Hessian, λi, the
authors were able to quantify the (local) responsiveness of
the system to a given change in parameters. Conceptually,
moving along a stiff direction in parameter space causes a
large change inmodel behaviour; conversely moving along
a sloppy direction results in comparatively little effect on
the output of the system.
Secrier et al. [23] later demonstrated how these ideas

can be applied to the analysis of posterior distributions
obtained by ABC methods [24]. Principal component
analysis (PCA) may be used to approximate the log poste-
rior density using a multivariate normal (MVN) distribu-
tion. They showed that the eigenvalues of the covariance
matrix, si, of this MVN distribution are related to the
eigenvalues of the Hessian as λi = 1/si.
To assess the the stiffness/sloppiness of the inferred

parameters we carry out PCA of the covariance matrices
of log posterior distributions for each gene. In interpret-
ing the results of the PCA we assume that the posterior
distribution is, in practice, unimodal. The principal com-
ponents (eigenvectors), ν, and the corresponding loadings
(eigenvalues), s, provided by the PCA are then used to
obtain the eigen-parameters, q, as

qi = siνi.

We calculate the projections of each parameter, θi, onto
each eigen-parameter, qj, as

cij = θi · qj.

As a measure of the overall sloppiness of each param-
eter, l, we use the sum of the contributions of each
parameter to the eigen-parameters, li = ∑

j cij. This can
also be thought of as the sum of the projections of each
principal component onto the parameter, weighted by the
fraction of total variance explained by each of the principal
components.
Having obtained a measure of the sloppiness of each

parameter, for each gene, we carry out hierarchical clus-
tering [25] of genes and parameters using a Euclidean
distance metric for both (Fig. 7).
The majority of genes show a similar pattern of param-

eter stiffness/sloppiness. The most distinctive and the
second most distinctive clusters consist of just two genes
each, yiiU with aceE and cspE with map, respectively.
These four genes are distinguished by unusually sloppy
promoter activity ratio, kr , and promoter switching fre-
quency, kf , parameters. The pair yiiU and aceE display
a high ratio of protein variance to protein mean (Fano
factor) and are stiff with regard to the protein degra-
dation rate noise parameter ηd1 . cspE also has a high

sloppy

stiff

Fig. 7 Clustering of genes and inferred posteriors according to
parameter sloppiness. The clustergram shows a heat map of
parameter (columns) sloppiness for each gene (rows). Warmer hues
indicate more sloppy parameters. Dendograms above and to the left
of the heat map display the hierarchical tree obtained when
clustering either the model parameters or the genes using a
Euclidean distance metric
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Fano factor of the protein distribution while map has an
unusually low mRNA Fano factor. What these four genes
appear to have in common is that the variability in their
protein numbers is difficult to explain based solely on
the mRNA variability. Thus, a higher level of extrinsic
noise is inferred to account for the observed variability.
Since these genes comprise a small minority, it may be
that their expression is subject to regulatory mechanisms
that are not well approximated by the two state model.
The remaining majority of genes are broadly divided into
two similar groups which differ mostly in the sloppiness
of k0.
The noise and rate parameters segregate into two clus-

ters with the noise parameters generally being sloppier
than the rate parameters (Fig. 7). The least sloppy parame-
ter is the mRNA degradation rate (d1). This is not surpris-
ing since it was used, together with the molecule number
summary statistics, to infer the posterior distribution. Of
the rate parameters, the basal transcription rate (k0) is the
sloppiest and often approaches the noise parameters in its
sloppiness. Since this parameter is defined as a fraction
of the active transcription rate (k1), its relative sloppiness
should not be equated to a lack of importance. For most
genes the marginal posterior of k0 is largely constrained to
the lower half of its prior distribution, U(0, 1). The only
exception being the gene map for which the measured
mRNA Fano factor was close to one and the marginal pos-
terior of k0 is in the top half of the prior range. The mean
of themarginal posterior of k0 is negatively correlated with
the mRNA Fano factor across all genes (Fig. 6). The two
other parameters that influence the mRNA Fano factor, kr
and kf , are the next sloppiest rate parameters.

Conclusions
Cell-to-cell variability in genetically homogeneous pop-
ulations of cells is a ubiquitous phenomenon [26–28].
Attempts to quantify it are complicated by the difficulty
of assigning it to a single cellular process or any one
experimentally measurable variable. It can also be dif-
ficult, for example, to distinguish between the intrinsic
stochasticity of biochemical processes in the short term
and longer term variations whichmay have been inherited
from previous cell generations.
By including a representation of extrinsic noise in our

model of gene expression we infer the extent to which
the rates of biochemical processes can vary between cells
while still producing the experimentally measured mRNA
and protein variability. We demonstrate the usefulness
of an efficient method for exact stochastic simulation of
the two-state model of gene expression. The two-state
model is necessary to explain the experimentally mea-
sured mRNA variation (Fano factor), and is capable of
describing the majority of the observed data. The cor-
responding single-state model, with constant promoter

activity and extrinsic noise, does not produce mRNA
Fano factors as high as those measured experimentally
without leading to unacceptably high variability in the
protein numbers. We show that the amount of extrin-
sic noise affecting most genes appears to be limited, but
non-negligible.
The exact simulation method described here occupies

a niche between those cases when only samples from the
steady state mRNA distribution of the two-state model
[3, 29, 30] are required, and cases when an approxi-
mation to the protein distribution [15, 31] is sufficient.
The computational advantages of the simulation method
described here are limited to specific conditions, such as,
low numbers of mRNA molecules and higher numbers
of protein molecules. The most limiting factor of this
simulation method is that it is not applicable to models
in which the protein products affect upstream processes
such as promoter activity, transcription or translation.
The addition of such interactions would mean that the
assumptions used in deriving the Poissonian relation-
ship between the number of surviving protein molecules
produced form a given mRNA molecule and mRNA’s
lifetime would no longer be satisfied. Perhaps an approx-
imate algorithm could be developed on the basis of
Algorithm (1) to handle such situations. Alternatively,
the tau-leaping algorithm [32], or moment expansion
[33, 34], may be more appropriate for models involv-
ing these kinds of feedback interactions. Algorithm (1)
could, however, be naturally extended to models involv-
ing regulatory interactions between non-coding RNAs
as the simulation of that part of the model is equiva-
lent to Gillespie’s exact algorithm. Although here we use
summary statistics of mRNA and protein number mea-
surements, the simulation method is also applicable to
cases where a direct comparison between sample dis-
tributions, for example using the Hellinger distance, is
required.
Here we have worked under the assumption that

experimental measurement error associated with individ-
ual mRNA or protein counts obtained by fluorescence
microscopy are small relative to the combined effects of
extrinsic and intrinsic noise. We deem this to be justifi-
able given the experimental method used by Tanaguchi
et al. [7] and the results presented in their publication.
More generally, such measurement errors would inflate
estimates of the variances in molecule numbers and may
skew the inferred extrinsic noise parameters. Other stud-
ies, which look directly at the interplay between intrinsic
and extrinsic noise in single cells [35] — using time-
resolved proteomics data — do also bear this out.
The inferred extrinsic noise parameters will also include

the effects of regulatory mechanisms that are not well
described by the two-state model. In this sense, our defi-
nition of noise becomes blurred with our ignorance about
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the regulatory interactions involved in the expression
of each gene. Nonetheless, the biochemical mechanisms
governing gene expression in a given species are shared
betweenmany genes. This is in agreement with our obser-
vation that, for most genes, inferred model parameters
show similar patterns of sloppiness. If we are able to refine
our understanding of the shared aspects of gene expres-
sion, we may be able to improve our understanding of
both the nature of the noise affecting it, and the regulatory
mechanisms controlling it. In practice this maymean find-
ing a mechanistic explanation for the two-state model or
further refining it to achieve a better agreement between
simulations and experimental results.
The in silico approach used here not only relied on,

but was inspired by the experimental work of Tanaguchi
et al. [7]. As the resolution of high throughput experimen-
tal techniques and the quantity of data they generate con-
tinues to increase, more complete observations of cellular
processes may begin to yield data amenable to statisti-
cal analysis and inference of extrinsic noise. These may in
turn require other modelling, computational and theoret-
ical approaches which would not rely on the assumptions
and simplifications that we make in this work [36].

Methods
Modelling gene expression
A simple model of gene expression may represent the pro-
cesses of transcription and translation using mass-action
kinetics to describe production and degradation of vari-
ous species as pseudo-first order reactions. Such a model
may be simulated stochastically to take into account the
intrinsic variability of processes involving low numbers of
molecules. In the simplest version of this model, mRNA is
produced from the promoter at a constant rate. However,
such Poissonian mRNA production is often not sufficient
to account for the variability in mRNA numbers measured
experimentally in both prokaryotic and eukaryotic cells.
In addition to this, for many genes, transcription appears
to occur in bursts rather than at a constant rate. These
characteristics of gene expression have been observed in
organisms as diverse as bacteria [7], yeast [4], amoeba
[2] and mammals [3]. One model of gene expression
that takes this into account is the, so called, two-state
model.

The two-state promoter model
In the two-state model of gene expression, a gene’s pro-
moter is represented as either active or inactive [5, 19].
Here we use a variant of the two-state model with the
inactive state corresponding to a lower transcription rate
rather than no transcription at all. For each state of the
promoter, transcription events at that promoter are rep-
resented by a Poisson process with rate parameter corre-
sponding to the transcription rate. Biochemical processes

such as transcription factor binding or reorganisation
of chromatin structure may account for the existence
of several distinct levels of promoter activity. However,
which factors play a dominant role in the apparent switch-
ing, remains an unanswered question.
The Gillespie algorithm [37] may be used to simulate

all the reactions represented by this model and obtain
a complete trajectory of the system through time. How-
ever, in this case we are only interested in the number of
molecules present at the time of measurement. We use a
model-specific stochastic algorithm (Algorithm 1) which
allows us to reduce the number of computational steps
required to obtain a single realisation from the model.
The following reactions, represented using mass-action

kinetics, comprise the two-state model:

inactive-promoter
kon−→ active-promoter

active-promoter
koff−→ inactive-promoter

inactive-promoter
k0−→ inactive-promoter + mRNA

active-promoter
k1−→ active-promoter + mRNA

mRNA
k2−→ mRNA + Protein

mRNA
d1−→ ø

Protein
d2−→ ø

The propensity functions (hazards) for each of the above
reactions are listed below:

h0 = kon[inactive-promoter]
h1 = koff[active-promoter]
h2 = k0[inactive-promoter]
h3 = k1[active-promoter]
h4 = k2[mRNA]
h5 = d1[mRNA]
h6 = d2[Protein]

Here the square brackets refer to the number of molecules
of a species rather than its concentration.
The model presented here relies on a number of

assumptions about the process of gene expression. Firstly,
that the production of mRNA and protein can be
described sufficiently well by pseudo-first order reactions.
Secondly, that degradation of mRNA and protein can be
described as an exponential decay. In a bacterial cell,
mRNA molecules are degraded enzymatically and typi-
cally have a half-life on the scale of several minutes. The



Lenive et al. BMC Systems Biology  (2016) 10:81 Page 10 of 17

half-life of protein molecules usually exceeds the time
required for cell growth and division during the expo-
nential growth phase. Thus, dilution due to partitioning
of protein molecules between daughter cells tends to be
the dominant factor in decreasing the number of pro-
tein molecules. Here we do not build an explicit model
of cell division, instead the decrease in protein numbers
is approximated by an exponential decay. Finally, it is
assumed that there is no feedback mechanism by which
the number of mRNA or protein molecules produced by
the gene affects its promoter switching, transcription or
translation rates.

Representing extrinsic noise
We model extrinsic noise by perturbing the reaction
rate parameters, using a Gaussian kernel, before each
simulation of the model [35, 38]. The effect of extrinsic
noise on each reaction is assumed to be independent. The
reaction rates associated with a particular gene are termed
nominal parameters (θn).

θn =[ kon, koff, k0, k1, k2, d1, d2]

The values determining the magnitude of the perturba-
tion are termed the noise parameters (η).

η =[ ηkon , ηkoff , ηk0 , ηk2 , ηd1 , ηd2 ]

Together they comprise the full parameter set for the
model θ =[ θn, η].
In the case of the two-state model of a single gene, each

θn has a corresponding extrinsic noise parameter with the
exception that the basal transcription rate (k′

0) is defined
as a fraction of the active transcription rate (k′

1) so the
two reaction rates are subject to the same perturbation
(ηk0 ) before each simulation. This is motivated by the idea
that extrinsic factors affecting the transcription rate do
not depend on the state of the promoter. The parameters
used to generate a single realisation from the two-state
model are obtained by sampling from f (μ, σ). Where f is a
truncated normal distribution, restricted to non-negative
values by rejection sampling, with μ and σ being the
mean and standard deviation of the corresponding normal
distribution.

k′
on ∼ f

(
kon, konηkon

)
k′
off ∼ f

(
koff, koffηkoff

)
k′
1 ∼ f

(
k1, k1ηk1

)
k′
0 = k0k′

1
k′
2 ∼ f

(
k2, k2ηk2

)
d′
1 ∼ f

(
d1, k1ηd1

)
d′
2 ∼ f

(
d2, k2ηd2

)

The final time point of each simulation represents the
number of mRNA and protein molecules in a single cell at
the time of measurement.

Simulation procedure
In order to reduce the computational cost of each sim-
ulation, rather than using Gillespie’s direct method to
simulate the entire trajectory of mRNA and protein num-
bers, we employed Algorithm 1 to obtain samples of the
numbers of mRNA and protein molecules at the time
of measurement (tm). First, a realisation of the telegraph
process is used to obtain the birth and decay times of
mRNA molecules. These are then used to sample the
number of protein molecules that were produced from
each mRNA molecule and survived until tm. This proce-
dure makes use of the Poisson relationship between the
life time of an individual mRNAmolecule and the number
of surviving protein molecules that were produced from
it. This relationship is derived in Additional file 1 and its
use is illustrated in Fig. 8. The final result is the number of
both mRNA (M) and protein (P) molecules present in the
system at tm.

Use of experimental data
Using an automated fluorescent imaging assay, Taniguchi
et al. [7] were able to quantify the abundances of 1018
proteins from a yellow fluorescent protein fusion library.
We focus on a subset of 87 genes from the published
data set from [7]. These are all the genes for which,
in addition to protein numbers, the experimental data
include both fluorescence in situ hybridization measure-
ments [39] of mRNA numbers and mRNA lifetimes mea-
surements obtained using RNAseq [40]. We note that
these genes are not a random sample from the set of
all genes and exhibit higher than average expression
levels.
To identify model parameters for which the two-state

model, with extrinsic noise, is able to reproduce the exper-
imental measurements, we carry out Bayesian inference
using an ABC sequential Monte Carlo (SMC) algorithm
that compares summary statistics from simulated and
experimental data [41]. Specifically we used the follow-
ing summary statistics: (1) the mean numbers of mRNA
molecules; (2) the Fano factors of mRNA molecule dis-
tributions; (3) the mean numbers of protein molecules;
(4) the variances of protein molecule numbers; and (5)
mRNA lifetimes converted to expontial decay rate param-
eters. The distributions of these summary statistics are
shown in Fig. 9. We assume that the summary statistics
correspond to steady state expression levels for each gene.
While there is no guarantee that this is the case for every
gene, the majority of genes are unlikely to be undergoing
major changes in their expression level given that the cells
are in a relatively constant environment.
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The number of 
surviving protein 
molecules which 
originated from a 
given mRNA 
molecule, follows 
a  Poisson 
distribution until 
the mRNA is 
degraded.

Once translation ceases, the remaining 
protein is assumed to decay exponentially.  
The number of molecules remaining at a 
given time point may be obtained by 
sampling from a binomial distribution.

mRNA birth mRNA death

translation & degradation degradation only

Fig. 8 Illustration of the principle behind Algorithm 1. An illustration of how the birth and death times of an mRNA molecule are used to obtain the
number of proteins that were produced from it and then survived until the time at which mRNA and protein numbers were measured. According to
the two-state model used here, the number of protein molecules that were translated using a given mRNA template and have not yet been
degraded can be found by sampling from the corresponding Poisson distribution with a parameter which depends on the lifetime of the mRNA
template. If the mRNA is degraded before the measurement time point, the remaining protein molecules are assumed to decay exponentially. Thus
the number of protein molecules can be obtained by first sampling the number present at the point of mRNA decay and then sampling from the
corresponding binomial distribution to determine the number of surviving molecules at the measurement time point

Taniguchi et al. [7] used images of about a thousand cells
to obtain estimates of meanmRNAnumbers, mRNA Fano
factors, mean protein numbers and protein number vari-
ances. For this reason, we use 103 simulation runs when
calculating summary statistics. The experimental mea-
surements ofmRNA lifetimes are compared directly to the
mRNA degradation rate parameter (d1) in the model by
assuming that lifetimes correspond to the inverse of the
decay rate.

Inference procedure
We use an ABC-SMC algorithm to infer plausible
parameter sets for the two-state model based on the
experimental data. The inference procedure is simi-

lar to that employed by [24, 41, 42], as described in
Algorithm 2.
For the distance metric, d, we take the Euclidean dis-

tance between the logarithms of each type of experimental
measurement (Di) and the corresponding simulation
results (xi):

d(D, x) =
√√√√ i=5∑

i=1

(
logDi − log xi

)2

D =
[
μmRNA,

σ 2
mRNA

μmRNA
,μprot , σ 2

prot , τ
−1
mRNA

]
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Fig. 9 Experimentally measured summary statistics. Each point on the scatter plots is an estimate of the corresponding summary statistic or mRNA
degradation rate from experimental measurements. These data are taken from [7]. The mRNA degradation rates were taken to be the inverse of the
mRNA lifetimes

Where μmRNA is the mean number of mRNA
molecules; σ 2

mRNA/μmRNA is the Fano factor of the
mRNA distribution; μprot is the mean number of protein
molecules; σ 2

prot is the variance of the protein distribution
and τ−1

mRNA gives the exponential decay rate constant
for mRNA degradation based on the measured mRNA
lifetime (τmRNA).

x =
[
μM,

σ 2
M

μM
,μP , σ 2

P , d1

]

Where μM is the mean number of mRNA molecules;
σ 2
M/μM is the Fano factor of the mRNA distribution; μP is

the mean number of protein molecules; σ 2
P is the variance

of the protein distribution and d1 corresponds to the nom-
inalmRNAdegradation rate. The first sampled population
of particles (population zero in Algorithm 2), provides a
benchmark for the choice of ε values in the next pop-
ulation. Since we have no knowledge of the distribution
of distances until a set of particles is sampled, all parti-
cles are accepted in the first population. For subsequent

populations, ε values are chosen such that the probabil-
ity of acceptance with the new ε value is equal to qt . The
vector q is chosen prior to the simulation. This allows for
larger decreases in ε in the first few populations while
keeping the actual epsilon values used, a function of the
distances (g) in the previous population. New populations
are sampled until the final epsilon value is reached εf =
0.1. To obtain θ∗ from θ we use a uniform perturbation
kernel:

θ∗ ∼ U(θ − μt−1, θ + μt−1)

where μt−1 is the vector of standard deviations of each
parameter in the previous population.

Parameter prior
The telegraph process may be parametrized in terms of
the ratio of probabilities of switching events (kr) and the
overall frequency with which events occur (kf ):

kr = kon
kon + koff
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Algorithm 1 Simulation of the two-state model
Inputs: θn, η, tm
Outputs:M, P

1: Obtain perturbed parameters using the nominal (θn) and noise (η) parameters.
Stage one: simulate mRNA production subject to an underlying telegraph process.

2: S ← 1 with probability k′
on/(k′

on + k′
off)), otherwise S ← −1

� Select the initial state of the telegraph process.
3: t ← 0 � Initialise simulation time.
4: Mb ← 0 � Initialise the number of mRNA molecules produced.
5: i ← 1 � Initialise index of mRNA molecules.
6: while t < tm do
7: if S = -1 then
8: kS ← k′

on
9: km ← k′

0
10: else
11: kS ← k′

off
12: km ← k′

1
13: end if
14: τ ∼ Exp(kS) � Sample the time until the next switching event.
15: if t + τ > tm then � Ensure that t + τ does not exceed the final time point.
16: τ ← tm − t
17: end if
18: Mτ ∼ Poisson(τkm) � Sample the number of mRNA molecules produced.
19: Mb ← Mb + Mτ

20: while i ≤ Mb do
21: ui ∼ Uniform(t, t + τ) � Sample birth times for each mRNA.
22: i ← i + 1
23: end while
24: t ← t + τ

25: S ← −S
26: end while

Stage two: simulate mRNA degradation; protein production and degradation.
27: M ← 0 � Initialise the number of mRNA molecules at tm.
28: P ← 0 � Initialise the number of protein molecules at tm.
29: i ← 1
30: while i ≤ Mb do � For each mRNA molecule that was produced:
31: v ∼ Exp(d′

1) � Sample the time until mRNA decay.
32: Tl ← min(ui + v; tm) − ui � Calculate mRNA lifetime.
33: Pl ∼ Poisson

(
k′
2

d′
2
(1 − e−d′

2Tl )
)

� Sample the number of surviving proteins at time point ui + v.
34: Td ← tm − min(ui + v; tm) � Time since mRNA decay.
35: if Td = 0 then
36: M ← M + 1 � mRNA survived until tm.
37: P ← P + Pl
38: else
39: Ps ∼ Binomial(Pl, e−d′

2Td )

� Sample the number of surviving proteins at time tm.
40: P ← P + Ps
41: end if
42: i ← i + 1
43: end while



Lenive et al. BMC Systems Biology  (2016) 10:81 Page 14 of 17

Algorithm 2 ABC-SMC with summary statistics
Inputs: π , N , εf
Outputs: Set of populations of N accepted particles

1: i ← 1
2: t ← 0
3: q ←[ 0.01, 0.05, 0.25, 0.75, ..., 0.75]
4: Initialise ε vector.
5: while ε > εf do
6: if t = 0 then
7: while i ≤ N do
8: Sample a new θ from π .
9: Simulate from the model 103 times accord-

ing to Algorithm 1.
10: Calculate summary statistics, x, from the

simulation outputs.
11: if d(D, x) < ε then
12: Accept particle.
13: ω(i,t) ← 1
14: i ← i + 1
15: end if
16: end while
17: else
18: while i ≤ N do
19: Sample θ from {θ(j,t−1)}1≤j≤N with proba-

bility {ω(j,t−1)}1≤j≤N .
20: Perturb θ to obtain θ∗.
21: Simulate from the model 103 times accord-

ing to Algorithm 1.
22: Calculate summary statistics, x, from the

simulation outputs.
23: if d(D, x) < ε then
24: Accept particle
25:

ω(i,t) ← π(θ(i,t))∑n
j=1 ω(j,t)Kt(θ i,t|θ(j,t−1))

26: i ← i + 1
27: end if
28: end while
29: end if
30: Normalise weights.
31: t ← t + 1
32: Set ε such that Pr(gi ≤ εi) = qt
33: end while

kf = 2
konkoff

kon + koff

To obtain θ , the vector of parameters used in the
ABC-SMC inference procedure (Algorithm 2), rate and
noise parameters are sampled from the following uniform
priors,

kr ∼ U(0, 1)
kf ∼ U(0, 0.1)
k0 ∼ U(0, 1)
k1 ∼ U(0, 1)
k2 ∼ U(0, 10)
d1 ∼ U(0.01, 0.6)
d2 ∼ U(0.0005, 0.05)

ηkon ∼ U(0, 0.5)
ηkoff ∼ U(0, 0.5)
ηk1 ∼ U(0, 0.4)
ηk2 ∼ U(0, 0.4)
ηd1 ∼ U(0, 0.4)
ηd2 ∼ U(0, 0.4).

The parameters for the telegraph process, sampled from
the prior as kr and kf , are converted to kon and koff before
being passed to the simulation algorithm (Algorithm 1) as
follows,

koff = kf
2kr

kon = koffkr
1 − kr

.

Rate parameters kr and k0 as well as the noise parame-
ters (η) are unit-less. The remaining parameters have units
1s−1.
To ensure that M and P are from a distribution close

to equilibrium, simulation duration is set depending on
the nominal degradation rates for mRNA (d1) and protein
(d2),

tm = L
(
d−1
1 + d−1

2

)
where tm is the final time point and L is a constant chosen
arbitrarily to indicate the desired proximity to the steady
state distribution. Here we use L = 5.
To confirm that our inference procedure is able to con-

verge to the appropriate region of parameter space in an
idealised case, we generate synthetic data by simulating
1000 times from the two-state model. We then calcu-
late summary statistics from these data and carry out
the inference procedure in the same manner as for the
experimental data. Figures 10 and 11 show the resulting
distributions of summary statistics and model parameters
respectively.
To provide a comparison of the compute times required

to simulate the two-state model using the Gillespie algo-
rithm or our model-specific algorithm we take the final
population of parameters obtained for the gene dnaK and
run simulations on the same CPU using both methods.
The extent of the improvement depends on the model
parameters. In this case, the mean improvement is 26



Lenive et al. BMC Systems Biology  (2016) 10:81 Page 15 of 17

mean mRNA Fano mRNA mean protein variance 
protein 

mRNA 
degradation rate 

m
ea

n 
m

R
N

A
 

F
an

o 
m

R
N

A
 

m
ea

n 
pr

ot
ei

n 
va

ria
nc

e 
pr

ot
ei

n 
m

R
N

A
 

de
gr

ad
at

io
n 

ra
te

 

Fig. 10 Posterior distribution of summary statistics and the mRNA degradation rate for a test case where synthetic data were generated by
simulating from a model with known parameters. Contour plots indicating the density of points with the corresponding summary statistic for each
particle in the final population. The summary statistics for each particle are calculated from 1000 simulation runs. The posterior distribution consists
of 1000 particles

Fig. 11 Posterior distribution of model parameters for a test case where synthetic data were generated by simulating from a model with known
parameters. Contour plots indicating the density of points with the corresponding parameter values for each particle in the final population. The
posterior distribution consists of 1000 particles
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fold with a variance of 12. The total times taken to simu-
late 1000 perturbed parameter samples from each of 1000
particles were 147 and 3786 s.
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