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Abstract

Background: Negative feedback in combination with time delay can bring about both sustained oscillations and
adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative
feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we
analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response
networks.

Results: We investigate the influence of several design features on the stability of the model equilibrium, i.e.,
presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback.
We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and
decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our
theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period
and amplitude of an oscillatory response, whereas the delayed feedback can not.

Conclusions: Our theoretical framework provides insight into how time delay and design features of biochemical
networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing
synthetic networks and controlling their behaviour in response to external stimulation.
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Background
Negative feedback is one of fundamental mechanisms in
cellular networks [1–7], which fulfils a variety of functions
such as mediating adaptation [8–10], stabilizing the abun-
dance of biochemical components [1, 5, 11, 12], inducing
oscillations [7, 13–15] and decoupling signal and response
time [5]. Negative feedbacks are shown to be present in
many biochemical systems including bacterial adaptation
[9, 16], mammalian cell cycle [17, 18], stress response in
mammalian cells [19] and yeast [20, 21].
Negative feedbacks may involve a time delay, which is

needed for signal transduction and transcription, transla-
tion and formation of biochemical species [21–24]. The
combination of negative feedback and time delay may
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result in oscillatory dynamics of components of the cel-
lular network [25–27]. Oscillations induced by delayed
negative feedbacks (DNFs) were experimentally observed
in several biochemical systems as a response to external
stimuli and stress, e.g., mammalian Hes1 [24, 28], p53
[29–31] and NF-κB [23, 32, 33] systems.
It is conceivable that oscillatory behaviour might be

inappropriate in biological systems mediating adaptive
responses. For example, in the hyperthermia treatment
of cancer, large-amplitude temperature oscillation could
result in tissue damage or patient discomfort [34]. We
wondered, if there exist design features and mechanisms
of systems containing DNF, which may suppress oscil-
latory behaviour caused by external stimulation. Recent
studies [22, 35] demonstrated that nested negative feed-
backs may suppress oscillations of biochemical species
involved in DNF. However, these studies provided no
insight into how time delay influences the dynamics of
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DNF systems and interacts with nested negative feed-
backs.
In our previous study [36] we derived explicit thresh-

olds and boundaries showing how time delay determines
characteristic response patterns of biochemical networks
containing DNF. In this manuscript, we continued our
research and investigated how the combination of time
delay and certain design features influences the dynamics
of biochemical DNF systems. To this end, we constructed
a range of generic two-dimensional DNF models using
delay differential equations. Models differed in several
properties:

(i) presence of a nested negative (auto-inhibitory)
feedback,

(ii) presence of mass conservation for biochemical
compounds,

(iii) mechanism of DNF, i.e., input-inhibition or
output-activation.

Further, we subjected these models to computational
and analytical stability analyses with respect to time delay.
Our computational analyses demonstrate that

• the presence of auto-inhibition and mass
conservation have a stabilizing influence on the
model equilibrium independent of the DNF strength.

• increasing abruptness and decreasing DNF threshold
have a de-stabilizing effect on the model equilibrium.

Our theoretical analyses show that

• nested auto-inhibitory feedbacks may increase the
range of time delay, where the system is stable,
through the abruptness of the feedback function.

Applying our theoretical framework to the oscillating
p53 system in mammalian cells [37] indicates that

• both period and amplitude of p53 oscillations
increase with time delay, and

• a nested auto-inhibitory feedback can decouple
period and amplitude of oscillations, whereas the
delayed feedback can not.

Our analysis provides insight into how time delay and
specific design features act in concert to shape the systems
dose-response relationship. This knowledge can be used
for constructing synthetic networks with the fine-tuned
behaviour.

Methods
Data
The dataset used for the parametrization of the p53model
was digitized from the supplementary material of [30]

from Additional file 1: Figure S6 as described in [22]. It
represents an averaged oscillation pattern that was meant
to resemble an idealized undamped oscillation with peak
characteristics that correspond to the average peak char-
acteristics of oscillating cells.

Model simulation and analysis
All simulations of the delay differential equations were
carried out in Mathematica 9 (Wolfram Research,
Champaign, Illinois) using the functionNDSolve based on
the method of steps.
We used DDE-BIFTOOL v. 2.00 [38] and MATLAB

R2008b (The MathWorks, Natick, MA) to calculate
dependencies between the value of time delay τ and
amplitude and period of oscillations of the p53 model.
Monte-Carlo analysis was performed in Mathematica 9.
For the parameter estimation we used the least-squares

method minimizing the sum of squared residuals (SSR):

SSR(p) =
n∑

i=1
(x(ti, p) − xi)2 ,

where p = (p1, p2, . . . , pm) denotes a set of parameters to
be estimated, x(t, p) is a numerical solution depending on
parameters p, xi is a measured data point at the time ti, n
is a number of the data points.
For minimizing SSR(p) with respect to parameter val-

ues we utilized the numerical function NMinimize in
Mathematica 9, which, by default, uses the “Nelder-Mead”
method. In case “Nelder-Mead" performs poorly, it auto-
matically switches to the “Differential Evolution” method.
The parameter optimization process is assumed to have
converged to a local minimum if the difference between
the new best and the old best function value SSR(p), as
well as the distance between the new best and the old best
parameter values, are less than a tolerance of 10−8.

Robustness with respect to model parameters
We analysed the robustness of the parameter fit for the
p53 model with respect to noise. Parameter values were
randomly sampled within ±10 % of their respective fitted
values using a uniform distribution for 100 times. Then
the p53 model was simulated using perturbed parame-
ter sets. The relative variation of the integral of the first
transient response after the initial stimulus was calculated
(Additional file 1: Figure S6). Namely, we calculated the
integral of the simulated p53 model from the time point 0
until the time of the first minimum after stimulation. This
way, the robustness of both initial activation amplitude
and timing of the first transient response, two character-
istic measures of system dynamics, have been estimated
concomitantly.
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Results and discussion
Model formulation
We investigated four different two-dimensional models
containingDNF that describe generic signal-response net-
works (Fig. 1). Models differ in design of the DNF and
presence of mass conservation for a biochemical com-
pound. All models can have a nested negative (auto-
inhibitory) feedback.
Wemathematically formulated models from Fig. 1 using

deterministic delay differential equations:

Model 1: DNF with input-inhibition and without mass
conservation (Fig. 1a):

dC
dt

=I S1(R) F(C) − α C,

dR
dt

=C(t − τ) − β R.
(1)

a

c

b

d

Fig. 1 Generic signal-response models with DNF. Squares indicate
model variables, circles indicate model functions. Arrows between
and to components indicate biochemical reactions, arrows on arrows
indicate modifying influences and arrows to functions indicate the
respective influence on the function. The models differ in design of
the delayed negative feedback (DNF) as well as in presence of mass
conservation for the component C and auto-inhibitory feedback. a
Model with input-inhibition as DNF and without mass conservation.
bModel with input-inhibition as DNF and with mass conservation. c
Model with output-activation as DNF and without mass conservation.
dModel with output-activation as DNF and with mass conservation.
In all models the time delay τ is before activation of the response
variable R. Dashed lines indicate an alternative auto-inhibitory
feedback

Model 2: DNF with input-inhibition and with mass con-
servation (Fig. 1b):

dC
dt

=I S1(R) F(C) (1 − C) − α C,

dR
dt

=C(t − τ) − β R.
(2)

Model 3: DNF with output-activation and without mass
conservation (Fig. 1c):

dC
dt

=I F(C) − α C − δ C S2(R),

dR
dt

=C(t − τ) − β R.
(3)

Model 4: DNFwith output-activation andwithmass con-
servation (Fig. 1d):

dC
dt

=I F(C) (1 − C) − α C − δ C S2(R),

dR
dt

=C(t − τ) − β R.
(4)

The function S1 : [ 0,∞) → R+ is twice continu-
ously differentiable and monotonically decreasing with R.
The function S2 : [ 0,∞) → R+ is twice continuously
differentiable and monotonically increasing with R. The
twice continuously differentiable monotonically decreas-
ing function F : [ 0,∞) → (0, 1] mimics an optional
auto-inhibitory feedback.
Parameters of Models 1-4 have real positive constant

values. For convenience, we combined them into the vec-
tor p:

p = (I,α,β , δ) . (5)

Note that all model parameters represent lumped biolog-
ical processes and therefore have only limited physical
or biological meaning. For Models 1, 2 the parameter δ

equals to 0.
In all models the input I mimics some constant stimulus

(e.g., radiation, see below) that activates a gene transcrip-
tion network (Fig. 1a, c) or a signalling cascade (Fig. 1b, d)
starting with the component C. Further, the component
C activates the response variable R with a certain time
delay τ caused by processes like transport, transcription,
translation, etc. Further, the response R negatively feeds
back through S1 or S2 performing the DNF. Depending
on the model design the response R mediates DNF using
different mechanisms.
We refer to models from Fig. 1a, c as a transcription net-

work, because C is not reversibly converted into different
states, but rather produced and degraded. In the model
from Fig. 1a the response variable R has the inhibiting
influence on C by means of the function S1(R). Therefore,
we refer to this DNF mechanism as input-inhibition. In
the model from Fig. 1c the DNF mediated by the response
R acts through activating the degradation of C by means
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of the function S2(R). We refer to this DNF mechanism
as output-activation. We used this model to simulate p53
protein dynamics [30, 37].
We considered both input-inhibition and output-

activation architectures together with a so-called sig-
nalling component (see Fig. 1b, d, respectively). The com-
ponent C activating the response R originates from
another component C̆ to which it is constitutively con-
verted back. The sum of both components Ct = C + C̆ is
a constant and assumed to be unity (Ct = 1). We refer to
this model feature as mass conservation. This modelling
technique mimics a fast and reversible post-translational
protein modification, e.g., phosphorylation, leaving the
total protein content unchanged, as it is often described in
signalling cascades.
In the following sections we presented theoretical and

computational analyses of Models 1-4 with application to
p53 system in mammalian cells.

Stability analysis of systems with delayed negative
feedback
Presented in this section stability analysis can be applied
to all Models 1-4. Therefore, we do not make an explicit
distinction between models, unless necessary.
As the equilibria of Models 1-4 we considered the vec-

tor E = (Cs,Rs)
T . The equilibria E always exist (see

Additional file 1) and implicitly depend on the parameter
vector p (5). Model equilibria E also depend on the input
I and, therefore, Models 1-4 are not able to show a perfect
adaptation.
We linearisedModels 1-4 about their respective equilib-

ria E:
⎛
⎜⎝
dC
dt
dR
dt

⎞
⎟⎠ =

(−x −y

0 −β

) (
C

R

)
+

(
0 0

1 0

)(
C(t − τ)

R(t − τ)

)
, (6)

where for Model 1, we have

x = I S1(Rs)|F ′(Cs)| + α > 0,
y = I |S′

1(Rs)| F (Cs) > 0
(7)

for Model 2, we have

x = I S1 (Rs)
[
F(Cs) + (1 − Cs) |F ′(Cs)|

] + α > 0,
y = I |S′

1 (Rs) | (1 − Cs) F (Cs) > 0
(8)

for Model 3, we have

x = I
∣∣F ′ (Cs)

∣∣ + α + δ S2 (Rs) > 0,
y = δ Cs S′

2 (Rs) > 0.
(9)

for Model 4, we have

x = I
[
F(Cs) + (1 − Cs) |F ′(Cs)|

] + α + δS2 (Rs) > 0,
y = δ Cs S′

2 (Rs) > 0.
(10)

The analysis of the model (6) revealed the following sta-
bility properties of the equilibrium E with respect to x, y,
β , τ (for details refer to Additional file 1):

• If xβ ≥ y holds, then the equilibrium E is absolutely
stable, i.e., stable for any τ ≥ 0.

• If xβ < y holds, then there exists a marginal time
delay τm (the Hopf bifurcation point) such that the
equilibrium of the model (6) is stable for any
0 < τ < τm and unstable for any τ ≥ τm. The
marginal time delay τm is calculated as a product of
functions f and g that depend on β and x, y
from (7)–(10), respectively:

τm(x, y,β) = f (x, y,β) × g(x, y,β), (11)

where

f (x, y,β)

=
√
2√

−x2 − β2 + √
(x2 + β2)2 + 4(y2 − x2β2)

> 0,

g(x, y,β)

= arccos
−(x + β)2 + √

(x2 + β2)2 + 4(y2 − x2β2)

2y
> 0.

(12)

The derivation of functions f and g is represented in
Additional file 1.

In the next section, we considered features and mecha-
nisms of systems with DNF that may stabilize the system
equilibrium after stimulation.

Design features stabilizing biochemical delayed negative
feedback systems
Recently, two research articles indicated that nested auto-
inhibitory feedbacks repress oscillatory dynamics of sim-
ple biochemical networks involving a non-linear DNF [21,
35]. We wondered how other design features of systems
with DNF influence the stability of the model equilibrium.
Thus, in addition to auto-inhibition we investigated the
influence of the following designs on the stability of the
model equilibrium:

• Mechanism of DNF: input-inhibition or
output-activation,

• Strength of DNF: strong or weak,
• Presence of mass conservation for a chemical

compound.
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We also considered how different combinations of
delayed and auto-inhibitory negative feedbacks affect the
stability of the equilibrium:

• Weak DNF with and without auto-inhibition,
• Strong DNF with and without auto-inhibition.

For analysing the influence of these design features on
the stability of the equilibrium we performed a Monte-
Carlo analysis of Models 1-4. First, we defined concrete
DNF functions S1 and S2 and an auto-inhibitory feedback
function F.
We defined a reverse Hill function as the input-

inhibition DNF function S1(R). As the output-activation
function S2(R) we defined a Hill function. Thus, functions
S1 and S2 have the following form:

S1(R) = Km
n

Km
n + Rn , (13)

S2(R) = Rn

Km
n + Rn (14)

with Km > 0 being the half-saturation constant, charac-
terizing the activation threshold beyond which the feed-
back takes effect, and n ≥ 1 being the Hill coefficient,
characterizing how abrupt the feedback takes effect after
having passed the activation threshold. Thus, parameters
Km and n specify the strength of the DNF: the lower the
activation threshold Km and the higher the abruptness
n, the stronger the DNF is. Note that applying the same
parameters make functions S1 and S2 symmetric, allowing
a fair comparison of the influence of input-inhibition and
output-activation on the model stability.
As the auto-inhibitory feedback we employed a reverse

Hill function F(C):

F(C) = 1
1 + (κ C)ν

, ν ≥ 1, κ ≥ 0. (15)

Then, we randomly generated parameter values I =
0.87, α = 0.11, β = 0.17, δ = 58.2, n = 12.77, Km = 0.23
in the way that Models 1-4 without auto-inhibition, i.e.,
κ = 0, have similar values of τm. They correspond to τm =
1.23, τm = 1.27, τm = 1.22, τm = 1.24 for Models 1-4,
respectively. Thus, applying this parameter set we guaran-
tee that any value of the time delay τ has a similar distance
to the Hopf bifurcation point τm for all considered mod-
els. Simulations of Models 1-4 with these parameters and
τ = 2.5 are depicted in Fig. 2a.
Further, using these parameter values we performed a

Monte-Carlo analysis for Models 1-4 with the constant
input I = 0.87. Namely, the rate constants α, β , δ have
been sampled in the range from 0.1 to 10 times of their
respective values for 10000 times. The parameter val-
ues defining the system design, i.e., n, Km, ν and κ , were
sampled in the following way:

a

b

c

Fig. 2 Results of Monte-Carlo analysis of Models 1-4. a Simulation of
Models 1-4 with parameter values I = 0.87, α = 0.11, β = 0.17,
δ = 58.2, n = 12.77, Km = 0.23, τ = 2.5 without auto-inhibition
(κ = 0). b,c Stability analysis of Monte-Carlo simulations of Models
1-4. Model parameters were randomly sampled 10000 times in the
certain range. The range was defined according to assumptions
about model characteristics: strength of DNF (strong or weak) and
presence of auto-inhibition. The percentage of parameter sets (see
Fig. b), which induced absolute stability, and the mean value of
marginal time delay τm (see Fig. c) were quantified

(i) in the case of weak DNF without auto-inhibition
(κ = 0) we sampled n in the range from 0.1 to 1 time
of its value and Km in the range from 10 to 20 times
of its value 10000 times.

(ii) in the case of strong DNF without auto-inhibition
(κ = 0) we sampled n in the range from 1 to 2 times
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of its value and Km in the range from 0.1 to 10 times
of its value 10000 times.

(iii) in the case of weak DNF with auto-inhibition we
sampled n and Km as in (i), κ in the interval [ 0.1, 10],
ν in the interval [ 1, 20] 10000 times.

(iv) in the case of strong DNF with auto-inhibition we
sampled n and Km as in (ii), κ in the interval
[ 0.1, 10], ν in the interval [ 1, 20] 10000 times.

Thus, for eachModel 1-4 and each combination of DNF
and auto-inhibition we obtained 10000 parameter sets.
For each parameter set we calculated x and y according
to (7)–(10) for Models 1-4, respectively. Then, we defined
the percentage of parameter sets for which xβ ≥ y holds
indicating absolute stability of the model equilibrium (see
Fig. 2b). For all other parameter sets, we calculated the
mean value of the marginal time delay τm (11), i.e., the
Hopf-bifurcation point (see Fig. 2c).
Figure 2b, c shows that considered models with auto-

inhibition have a higher percentage of parameter sets
leading to absolute stability and higher mean value of
τm than the same models without auto-inhibition. This
observation confirms previous results [21, 35] showing
that nested auto-inhibitory feedbacks repress oscillatory
dynamics in networks containing DNF.
Additionally, for models with weak DNF there are more

parameter sets, which induce absolute stability of the
model equilibrium, than for models with the strong DNF.
Accordingly, models with weak DNF have higher mean
value of τm, i.e., are less prone to oscillations, than mod-
els with the strong one. Thus, the nested auto-inhibitory
feedback and the DNF have opposing effects on the sys-
tem’s stability. The stronger the auto-inhibitory feedback
and the weaker the DNF, the less probable an oscillatory
response of the system is.
Moreover, Models 2 and 4 with mass conservation have

a higher percentage of parameter sets leading to absolute
stability of the model equilibrium and higher mean value
of τm than respective Models 1 and 3 without mass con-
servation. In order to explain this effect, for eachmodel we
quantified the dependence between τm and each param-
eter value in the range from 0.1 to 10 times of its default
value leaving the other parameters fixed (see Additional
file 1: Figure S11a–d). This sensitivity analysis shows that
the presence of mass conservation influences the sensi-
tivity of τm only with respect to the half-saturation rate
Km leaving all other parameter sensitivities unchanged
(compare Additional file 1: Figure S11a to b and S11c to
d for models without and with mass activation, respec-
tively, and Additional file 1: Figure S11e). In the presence
of mass conservation τm increases much stronger with
increasing feedback activation threshold Km and, there-
fore, stabilizes the equilibrium. Moreover, in the presence
of mass conservation the value of Km beyond which τm

does not exist any more, i.e., the system’s equilibrium
becomes absolutely stable, also decreases (Additional file
1: Figure S11e).
Concerning the design of the DNF, Monte-Carlo anal-

ysis shows that Models 1, 2 with input-inhibition have a
higher percentage of parameter sets leading to absolute
stability and a higher mean value of τm than Models 3,
4 with output-activation (see Fig. 2b, c). However, we
were not able to support these results with an alternative
parameter set I = 0.48, α = 0.14, β = 0.44, δ = 83.71,
n = 10, Km = 0.9. Refer to Additional file 1: Figure S12a
for simulations of Models 1-4 using the alternative param-
eter set and τ = 10. In comparison, for the alternative
parameter set Models 1, 2 with input-inhibition have
higher values of τm, i.e., τm = 1.27 and τm = 1.86, than
Models 3, 4 with output-activation, i.e., τm = 0.36 and
τm = 0.52. Thus, the distance of τ to τm is smaller for
Models 1, 2, and one may expect a higher percentage of
parameter sets inducing absolute stability. Nevertheless,
for the alternative parameter set the Monte-Carlo analysis
showed that models with input-inhibition have approxi-
mately the same percentage of parameter sets leading to
absolute stability as corresponding models with output-
activation. In comparison, all other conclusions presented
above were confirmed for model simulations with the
alternative parameter set (Additional file 1: Figure S12b).
Taken together, we conclude that auto-inhibition as well

as mass conservation have a stabilizing influence on the
model equilibrium independent of the strength of DNF
and allow systems with DNF to adapt to an external stim-
ulus without producing sustained oscillations. Moreover,
the higher the activation threshold and the less abrupt
the DNF, the less prone the system is to an oscillatory
behaviour.

Auto-inhibition increases τm

Computational analysis presented in the above section
demonstrated the opposing behaviour of auto-inhibitory
and delayed negative feedbacks with respect to stability
(Fig. 2). In this section, we analytically investigated how
the auto-inhibitory feedback stabilizes the equilibrium of
the system.
We proved that τm (12) increases with x and decreases

with y (see Additional file 1):

∂ τm(x, y,β)/∂ x > 0, ∂ τm(x, y,β)/∂ y < 0 for x, y > 0.
(16)

Further, we derived upper and lower bounds for x and y
from (7)–(10) for Models 1-4, respectively (see Additional
file 1):

0 < εlb(|F ′ (Cs) |) < x < εub(|F ′ (Cs) |),
0 ≤ σlb < y < σub.

(17)
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Both the lower and upper bound of x, i.e., εlb and εub,
are increasing with |F ′(Cs)| for Models 1-4. Therefore, we
can always increase a given x by choosing an appropri-
ate value of |F ′(Cs)|. The lower and upper bound of y, i.e.,
σlb and σub, have non-negative constant values. Conse-
quently, according to (16), we can always increase τm by
increasing |F ′(Cs)|.
Taken together, we showed that auto-inhibitory feed-

back can increase the range of the interval [ 0, τm) and
stabilise the model equilibrium.

Application to the p53 system
In this section we applied Model 3 to the p53 system to
gain novel insights into the functioning of this system.
The tumour suppressor protein p53 is activated in

response to many stress signals and activates vari-
ous stress-response programs including cell-cycle arrest,
senescence and apoptosis [39]. It is also well established
that p53 acts within a negative feedback loop, including
Mdm2 as the negative regulator of p53: p53 transcrip-
tionally activates Mdm2, which in turn targets p53 for
degradation [29, 40].
Several mathematical models of p53-Mdm2 feedback

loop have been published [22, 28, 30, 37]. One of these
models (model III from Table 1 in [30]) is a particu-
lar case of the model from Fig. 1c corresponding to the
Model 3 with F(C) ≡ 1. Therefore, we wondered, whether
our framework would also be able to explain measured
p53 dynamics upon DNA damage. In our designations C
and R correspond to p53 and Mdm2, respectively. The
input I is defined here as a scaled DNA damage signal
and is measured in arbitrary units. The negative feed-
back by output-activation is modelled by a non-linear Hill
function S2(R) (14).
We fitted parameters of the p53 model (3) to the

experimental data of an averaged oscillation pattern of

the p53-Mdm2 system after DNA damage from [30]
(Additional file 1: Fig. S6 therein). The results of the fit are
presented in Additional file 1: Table S1. Figure 3a shows
the simulation of the p53 model (3) with fitted parame-
ters. Themodel well recapitulatesmeasured p53 dynamics
after DNA damage. Moreover, the fitted optimal solution
is also robust with respect to noise in the fitted param-
eters (see Additional file 1). Indeed, the integrated first
transient response varies only by 8.7 % assuming a param-
eter noise of ±10 % (see Methods Section and Additional
file 1).
The model analysis shows that the fitted time delay τ =

1.37 h is almost two times larger than the corresponding
τm = 0.76 h that was calculated for the fitted DNA dam-
age signal I = 0.23 (Fig. 3b). Therefore, the p53 model (3)
with fitted parameters from Table S1 (see Additional file
1) produces sustained oscillatory response.
It was earlier reported that distinct p53 dynamics such

as oscillations or sustained activation may lead to differ-
ent cell fate decisions [31, 39]. Recent study [41] showed
that the system’s response is modulated by DNA damage
strength. Namely, after high DNA damage p53 level was
monotonically increased and cells activated apoptosis,
whereas after low DNA damage p53 level underwent peri-
odic pulsing resulting in a cell-cycle arrest. We checked if
our generic p53 model (3) is able to reproduce this tran-
sition with respect to the DNA damage level. Figure 3b
shows that τm is decreasing with respect to the DNA dam-
age signal I. Hence the fitted value of time delay τ is
greater than τm for any I > 0.23 (fitted value). Therefore,
the p53 model (3) produces sustained oscillations for any
I greater than the fitted value and is not able to perform
the transition from oscillatory to adaptive behaviour with
respect to increased DNA damage signal I. This conclu-
sion is also applicable to other model alternatives (1)–(4)
used in our previous study presenting models of HOG

a b

Fig. 3 Simulation and response analysis of the p53 model. a Simulation of the p53 model (3) with fitted parameters from Table S1 (see Additional
file 1), dots – experimental data from [30], Fig. S6 therein. b Dependence between the stimulus value I and τm for the p53 model (3) with fitted
parameters from Table S1 (see Additional file 1) without and with synthetically activated auto-inhibitory feedback F(C) (with ν = 2, κ = 1.23 and
ν = 3, κ = 1.73). Dots designate values of τm calculated for the fitted value of I = 0.23 for the p53 model (3) with and without auto-inhibitory
feedback
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pathway in yeast and NF-κB signalling in mammalian
cells (see Figs. 3b and 6b in [36]). However, according
to [41] the switch from sustained oscillations to mono-
tonic increase of p53 level is regulated by a mechanism
attenuating Mdm2 expression that is not present in the
current p53model. Studies [39, 41] considered DNA dam-
age kinases ATMandATR as negative regulators ofMdm2
expression. Using this knowledge, we extended the p53
model (3) by including the additional component ATM
activating p53 and attenuating Mdm2 (see Additional file
1: Figure S7). As a result, the extended p53 model was
able to qualitatively reproduce the switch from oscilla-
tions to monotonic increase of p53 level (see Additional
file 1: Figure S8). Simulations of the extended p53 model
suggest that this transition between response types origi-
nates from the competition between ATM and p53 for the
inhibition and activation of Mdm2, respectively. In case
of high DNA damage, ATM level is high and suppresses
Mdm2 giving a monotone increase of p53 level. In case of
low DNA damage, Mdm2 activity is not effectively sup-
pressed by ATM resulting in sustained oscillations of both
p53 and Mdm2.
Further, we applied our theoretical analysis to explore

under what conditions sustained oscillations of p53
model (3) can be suppressed by the activation of a nested
auto-inhibitory feedback to the model component C pre-
serving all values of fitted parameters. Our theoretical
analysis suggested that themarginal time delay τm, beyond
which any time delay leads to sustained oscillations, can
be increased by increasing the slope of the auto-inhibitory
feedback function at the equilibrium |F ′(Cs)|. As in the
previous section, as the auto-inhibitory feedback function
we utilized a reverse Hill-function F(C) (15). Further, we
adjusted parameters ν and κ of F(C) and calculated τm
(see Additional file 1). For ν = 3 the marginal value of
time delay τm is larger than the fitted time delay τ = 1.37 h
(Fig. 3b). As a result, p53 model (3) with parameters from
Table S1 in Additional file 1 produced damped oscillatory
response (Additional file 1: Figure S4).
In a similar DNF system it was shown that the period

of oscillations increases with the Hill coefficient n of
the DNF function for a given time delay [24]. We won-
dered how parameters of the delayed negative and auto-
inhibitory feedbacks influence the amplitude and period
of oscillations in our system. Figure 4 demonstrates that
the auto-inhibitory feedback (with parameters ν = 3, κ =
1.73) decreases and stabilizes the amplitude of oscilla-
tions, whereas the amplitude of oscillations increases with
respect to the Hill coefficient n of the DNF function
S2. Moreover, increasing the abruptness of the DNF has
no substantial influence on the increase of period with
respect to time delay τ . The period of oscillations is a lin-
ear function of the time delay τ irrespective of values of
ν, κ and n. Thus, opposed to the delayed feedback, the

Fig. 4 Amplitude/period curves of the p53 model under variation of
τ . The analysis is performed for the p53 model (3) without and with
synthetically activated (ν = 2, κ = 1.23; ν = 3, κ = 1.73)
auto-inhibitory feedback using values of the Hill coefficient n = 3 and
n = 5 (fitted value) of the DNF function S2. Period and amplitude
were quantified for the time delay τ varied in the range from 1 to 8
hours with the step 0.2 hour. Both amplitude and period of
oscillations increase with τ

auto-inhibitory feedback has the potential to de-couple
the increase of amplitude and period of oscillations with
respect to τ . Moreover, auto-inhibitory and delayed neg-
ative feedbacks have an opposing influence on the ampli-
tude of oscillations.
Thus, our analysis showed that for the p53 model (3)

an auto-inhibitory feedback can be a potential mecha-
nism increasing the marginal time delay τm, decreasing
the amplitude of oscillations and turning sustained oscil-
lations into damped oscillations.
The experimental study of p53 oscillations [29] con-

cluded that the mean number of p53 pulses in individual
cells increased with DNA damage. Moreover, the authors
suggest that the p53-Mdm2 feedback loop generates a
“digital” clock making the number of p53 pulses relevant
for the cell fate, and not their amplitude and duration.
However, this hypothesis has not been proven yet. There-
fore, we wondered which parameters of p53 model (3)
play a prominent role in controlling the length of p53
pulses. Using p53 model (3) we split the p53 simulation
curve on “On” and “Off” states (see Additional file 1:
Figure S9). Then we checked how different model param-
eters control the duration of p53 pulses (see Additional
file 1: Figure S10). The analysis showed that time delay
τ is the only parameter that significantly changed the
duration of “On” and “Off” states of the model response
(see Additional file 1: Figure S10b). Namely, time delay τ

increases the duration of “Off” states and decreases the
duration of “On" states. In addition, τ increases the ampli-
tude and period of pulses (see Fig. 4). Note that the same
conclusion can be applied to the relation between time
delay τ and marginal time delay τm: the higher τ/τm, the
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higher the amplitude and period of pulses are. It would
be interesting to validate these predictions experimentally
and check the physiological effect of changing time delay
between p53 and Mdm2 activation after DNA damage.

Conclusions
Negative feedback in combination with time delay can
induce oscillations in cellular networks [25–27]. However,
oscillations might be inappropriate in biological systems
with adaptive behaviour [34].
Here, we systematically study how design features in

combination with time delay tune the response patterns
of biochemical networks. To this end, we create a range
of models containing an explicit time delay and a DNF
differing in several aspects: presence of a nested neg-
ative (auto-inhibitory) feedback, presence of mass con-
servation for a system component and mechanism of
DNF, i.e., input-inhibition or output-activation (Fig. 1).
The obtained models (Models 1-4) are mathematically
described by two-dimensional delay differential Eqs. 1–(4)
and subjected to computational and theoretical stabil-
ity analyses with respect to time delay. The general idea
to specifically address the interaction of time delay and
design features was that all these design features act on
the system stability and response pattern bymodifying the
time delay threshold, i.e., the bifurcation point, beyond
which the system’s stability properties change.
We show that
• nested auto-inhibitory feedbacks and overall delayed

negative feedbacks have opposing roles with respect
to the characteristic response pattern. Indeed, nested
auto-inhibitory feedbacks have the potential to
suppress oscillatory behaviour, whereas the increasing
strength of the DNF promotes oscillations. Moreover,
in oscillatory systems auto-inhibitory feedbacks
de-couple amplitude and period of oscillations.

• mass conservation has a stabilizing effect on the
system’s equilibrium.

• depending on the parameter set, the type of DNF can
also influence the response pattern. We found that
input-inhibition can be more stabilizing compared to
output-activation.

Thus, biochemical networks have a range of design
possibilities shaping both their dynamic as well as their
equilibrium properties. Our systematic analysis of dif-
ferent design features allows predicting what kind of
biochemical network underlies a certain characteristic
response. For example, in oscillatory systems with a
long time delay, it is reasonable to assume a limited
number of post-translational modifications (mass conser-
vation), no nested feedbacks and a strong overall nega-
tive feedback. Whereas adaptive systems with long time
delay are likely to harbour nested negative feedbacks and

post-translational modifications. Systems with low num-
ber of components and short time delay that are meant to
oscillate, will need an abrupt negative feedback with low
activation threshold, whereas short time delay and a weak
negative feedback are good designs principles for adaptive
systems.
Our framework of delayed and non-delayed feedbacks

can serve to support a design process for novel synthetic
gene-regulatory networks. Indeed, our study allows to
approximate the value of time delay and the structure of
the DNF system for obtaining a certain type of the system
dynamics. As an example, we considered p53 system in
mammalian cells that contains DNF and is able to produce
both oscillatory and adaptive responses depending on the
source and strength of DNA damage [37, 41]. Although
many studies are dedicated to studying DNA damage
response in cells, the purpose of oscillations in p53 sys-
tem remains unclear [29, 37, 39, 41]. The earlier study
[37] suggested that oscillatory behaviour can be advanta-
geous for the p53 system to achieve a trade-off between
irreversible biological outcome, e.g., irreversible cell cycle
arrest or apoptosis, and insufficiently low levels of p53.
Thus, oscillations have been viewed as repetitive repair
efforts allowing the system to check after every p53 pulse
whether the damage has been properly repaired. Our anal-
ysis showed that time delay increases the duration of “Off”
states and decreases the duration of “On” states. Addition-
ally, time delay may increase the amplitude and period of
oscillations. According to our analysis the auto-inhibitory
feedback is able to decouple the amplitude and period of
oscillations with respect to time delay. Thus, our study
suggests that auto-inhibition and time delay may control
oscillations in p53 system. The experimental validation of
these predictions may help to better understand the role
of p53 oscillations and indicate more efficient treatment
of diseases caused by violation of p53 regulation.

Additional file

Additional file 1: Supporting material. The file contains detailed stability
analysis of Models 1-4; theoretical analysis showing how auto-inhibition
increases τm ; demonstration how τm can be increased by auto-inhibition
for the p53 model; details of robustness analysis of the optimal solution for
the p53 model; modelling the switch from oscillatory to adaptive response
of the p53 system; calculating the duration of “On” and “Off” states of p53
pulses; figure demonstrating the dependence between parameter values
of Models 1-4 and τm ; figure with results of Monte-Carlo analysis of Models
1-4 applied to the alternative parameter set; table with the best-fit
parameters for the p53 model. (PDF 1044 kb)
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