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Abstract

Background: Many problems in biomedicine and other areas of the life sciences can be characterized as control
problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system
into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The
identification of such strategies is typically based on a mathematical model of the process to be altered through
targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an
individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean
networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to
produce a desired effect on the system.

Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular
network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks
to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials
equations, and then uses computational algebra techniques to find such controllers. The control methods in this
paper are validated through the identification of combinatorial interventions in the signaling pathways of previously
reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular
leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab
are available via http://www.ms.uky.edu/~dmu228/ControlAlg.

Conclusions: This paper presents a novel method for the identification of intervention targets in Boolean network
models. The results in this paper show that the proposed methods are useful and efficient for moderately large
networks.
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Background
The dynamics of gene regulatory networks (GRNs) have
been studied using different modeling frameworks, with
the goal of building computational models of GRNs to
get new insights into important cellular processes, e.g.,
the cell cycle, [1, 2], oscillations in the p53-mdm2 system,
[3–5], the phage-lambda system, [6–8], or the T cell large
granular lymphocyte (T-LGL) leukemia network, [9, 10].
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A generally difficult problem is to design control policies
to achieve desired dynamics in GRNs. This is particularly
important in the control of cancer cells, [5, 11–14] and
cell fate reprogramming, [15, 16]. Thus, developing tools
to control mathematical models of GRNs are key to the
design of experimental control policies.
There is a rich theory for the control of continuous

models such as systems of differential equations, [17–20].
Discrete models such as Boolean networks (BN) have
been proposed to study GRNs. In a BN, the genes of a
GRN are represented by a set of nodes that can take on
only two possible states (ON or OFF). Time is discrete,
and the state of a gene at the next time step is determined
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by a Boolean function over a subset of nodes of the BN.
The dependence of a gene on the state of another gene
is graphically represented by a directed edge. BN mod-
els are widely used in molecular and systems biology to
capture coarse-grained dynamics of a variety of regula-
tory networks and have been shown to provide a good
approximation of the dynamics of continuous processes
[8, 10, 21–28]. However, control methods for discrete
models are still in their infancy, compared to the theory
for continuous models.
In this work, we propose a framework to study the con-

trol of BNs. Therapeutic interventions are modeled by
manipulating the wiring diagram of a BN accordingly. For
example, a gene knockout is modeled by fixing the value
of one node of the BN to OFF. Similarly, deleting directed
edges of a BN models the action of a drug that inactivates
the interaction between two gene products. The control
problem consists of finding the sequence of actions (node
and edge deletions) to get the BN out of an undesirable
state, and drive it towards a desirable state. Undesirable
states may represent a disease condition of a cell such as,
for example, a highly proliferative state of a cancer cell,
and a desirable state may represent cell death. Thus, a
therapeutic intervention could aim at inducing the death
of aberrant tumor cells.
Several approaches to address this problem have been

used in recent years. For example, the optimal control
techniques developed in [29–32] assume a set of con-
trol nodes to derive a control policy that minimizes the
likelihood of transitioning into an undesirable state in a
stochastic context. Other approaches for the identifica-
tion of intervention targets include the use of stable motifs
in the network to induce the system into a desirable state
[33]. In [34], integer programming was used to find a set of
nodes to control the states of BNs representing tumor and
normal cells. Optimization techniques were used in [35]
to determine possible node manipulations for BNs. There
are also search algorithms based on genetic and greedy
algorithms described in [36–38]. For continuous models,
a related control approach is given in [19].
The idea behind our approach is to encode the prob-

lem of finding control candidates as a problem of solv-
ing a system of polynomial equations. Then we can
use computational algebra techniques to solve the sys-
tem. This approach takes advantage of the rich algo-
rithmic theory of computer algebra (e.g. Gröbner basis
techniques) and the theoretical foundations of algebraic
geometry with software available for computations (e.g.,
Macaulay2 [39]). The output of our method is a set of
candidate actions with the capacity to induce the GRN
towards desirable states. The method also has the ability
of identifying combinatorial interventions in the network
which are sometimes more effective as will be shown
in the “Results” section. The algebraic view of discrete

models has been previously used for the development of
computational tools to determine the attractors of BNs
[40–43], and also for inferring network structure from
dynamics [44–47].

Methods
Boolean networks
A Boolean network is a dynamical system that is discrete
in time as well as in variable states. More formally, con-
sider a collection x1, . . . , xn of variables that take values
in the binary set {0, 1}. Then a Boolean network in the
variables x1, . . . , xn is a function

F = (f1, . . . , fn) : {0, 1}n → {0, 1}n

where each coordinate function fi : {0, 1}n → {0, 1} is a
Boolean function on a subset of {x1, . . . , xn} which repre-
sents how the future value of the i-th variable depends on
the present values of the other variables.

Example 2.1 For concreteness, we illustrate the defini-
tions using the following toy network

f1 = ¬x3 ∧ ¬x5, f2 = ¬x1 ∨ x4, f3 = ¬x2,
f4 = x3, f5 = ¬x4,

where∧,∨, and¬ are the AND, OR, andNOT logical oper-
ators, respectively. In the context of modeling biological
systems, ∧ corresponds to activation by the combination of
regulators (all regulators are necessary), ∨ corresponds to
independent activation (one regulator is sufficient), and ¬
corresponds to negative regulation.

Given a Boolean network F = (f1, . . . , fn), a directed
graph W with n nodes x1, . . . , xn is associated with F.
There is a directed edge in W from xj to xi if xj appears
in fi. Notice that the presence of the interaction xj →
xi implies that the regulatory function fi depends on xj,
say fi(xk1 , . . . , xj, . . . , xkm) with xj ∈ {xk1 , . . . , xkm}. In the
context of a molecular network model, W represents the
wiring diagram of the network.
Example 2.1 (cont.) The wiring diagram of the toy

network is shown in Fig. 1a.
If the set {0, 1} is given the structure of a finite field with

standard addition andmultiplication, F2 = {0, 1}, then the
functions fi : Fn

2 → F2 can be represented as polynomi-
als over F2, and the dynamical system F = (f1, . . . , fn) :
F
n
2 → F

n
2 becomes a polynomial dynamical system, see

[41], which gives access to a range of mathematical tools
for the analysis of F.
Example 2.1 (cont.) The rules to transform Boolean

functions into polynomials in F2[ x1, . . . , xn] are given by
a∧ b = ab, a∨ b = a+ b+ab, and ¬a = 1+a, where the
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Fig. 1 Description of the algebraic approach of identification of
control targets. a. A BN model of a molecular network. The control
variables are the entries of u. b. In the absence of control policies
(u = 0), the attractor landscape (LF ) can have undesirable attractors.
c. The goal is to choose control values that give a desired attractor
landscape, L∗ . d. To use the algebraic approach we first find the
polynomial representation of the BN (see Section Control Actions:
edge and node manipulations). e. The next step is to set up the
desired attractor landscape as a system of equations that the BN has
to satisfy, LF(x,u) = L∗ (see Section Control targets in Boolean
networks). f. Solving the equation LF(x,u) = L∗ for u will provide the
control values to achieve the desired landscape (see Section
Identifying control targets). This approach not only finds individual
control policies (u = A, single node; u = B, single edge), but also
combinatorial control policies (u = C, two nodes; u = D, two edges).
In a combinatorial control policy, the desired attractor landscape is
achieved by the combination of two or more entries of u

operations are computed modulo 2. For the toy network
we obtain

f1 = (1 + x3)(1 + x5) = 1 + x3 + x5 + x3x5,
f2 = (1 + x1) + x4 + (1 + x1)x4 = 1 + x1 + x1x4,
f3 = 1 + x2,
f4 = x3,
f5 = 1 + x4.

The dynamical properties of a Boolean network are
given by the difference equation x(t + 1) = F(x(t)); that
is, the dynamics is generated by iteration of F. More pre-
cisely, the dynamics of F is given by the state space graph
S, defined as the graph with vertices in F

n
2 = {0, 1}n, which

has an edge from x ∈ F
n
2 to y ∈ F

n
2 if and only if y = F(x).

The states x ∈ F
n
2 where the system will get stabilized are

of particular importance. These special points of the state
space are called attractors of a Boolean network and these
may include steady states (fixed points), where F(x) = x,
and cycles, where Fk(x) = x for some integer k > 1.
Attractors in Boolean network modeling might represent
cell types [48] or cellular states such as apoptosis, prolifer-
ation, or cell senescence [49, 50]. Identifying the attractors
of a system is an important step towards the control of that
system and can be done using tools from computational
algebra [40, 41].
Example 2.1 (cont.) The steady states of the toy network

are found by solving the system of equations fi = xi, i =
1, . . . , 5. This means we want to find the roots of gi = 0,
where gi = fi − xi. This gives the system of equations

g1 = 1 + x3 + x5 + x3x5 + x1 = 0,
g2 = 1 + x1 + x1x4 + x2 = 0,
g3 = 1 + x2 + x3 = 0,
g4 = x3 + x4 = 0,
g5 = 1 + x4 + x5 = 0.

(1)

Note that, since the system is not linear, we cannot
make use of tools such as Gaussian elimination. Computa-
tional algebra allows us to solve such systems by encoding
the solutions as an algebraic object called an ideal of
polynomials, I = 〈g1, g2, g3, g4, g5〉, and then finding an
equivalent, but simpler representation. More precisely, for
the system in Eq. 1 we can find its Gröbner basis [51] and
obtain

I = 〈 g1, g2, g3, g4, g5 〉 = 〈x5 + 1, x4, x3, x2 + 1, x1〉.
This means that the original system has the same solu-

tions as the simpler system

x1 = 0, x2 + 1 = 0, x3 = 0, x4 = 0, x5 + 1 = 0,

which is easily solved to obtain x = 01001 as a steady state
of the toy network (parentheses omitted for brevity).

Control Actions: edge and nodemanipulations
This paper considers two types of control actions: 1. Dele-
tion of edges and 2. Deletion (or constant expression) of
nodes. The motivation for considering these actions is
that they represent the common interventions that pre-
vent a regulation from happening. For instance, an edge
deletion can be achieved by the use of therapeutic drugs
that target specific gene interactions and node deletions
represent the blocking of effects of products of genes
associated to these nodes; see [5].
A schematic of our approach is given in Fig. 1 where the

dynamics of a Boolean network can be manipulated by a
set of controls consisting of deletion or constant expres-
sions of edges and nodes. Below we define and explain all
the steps in more detail.



Murrugarra et al. BMC Systems Biology  (2016) 10:94 Page 4 of 11

A Boolean network with control is given by a function
F : Fn

2 × U → F
n
2, where U is a set that denotes all pos-

sible control inputs (Fig. 1a). Given a control u in U, the
dynamics are given by x(t + 1) = F(x(t),u).
We consider a BN F = (f1, . . . , fn) : Fn

2 → F
n
2 and show

how to encode edge and node controls by F : Fn
2 × U →

F
n
2, such that F(x, 0) = F(x). That is, the case of no con-

trol coincides with the original BN. We remark that these
control types can be combined, but for clarity we present
them separately.

Definition 2.2 (Edge Control) Consider the edge xi →
xj in the wiring diagramW . The function

Fj(x,ui,j) := fj(x1, . . . , (ui,j + 1)xi, . . . , xn) (2)

encodes the control of the edge xi → xj, since for each
possible value of ui,j ∈ F2 we have the following control
settings:

• If ui,j = 0,Fj(x, 0) = fj(x1, . . . , xi, . . . , xn). That is, the
control is not active.

• If ui,j = 1,Fj(x, 1) = fj(x1, . . . , xi = 0, . . . , xn). In this
case, the control is active, and the action represents
the removal of the edge xi → xj.

Definition 2.2 can easily be extended for the control of
many edges, so that we obtain F : Fn

2 × F
e
2 → F

n
2 , where

e is the number of edges in the wiring diagram. Each coor-
dinate, ui,j, of u in F(x,u) encodes the control of an edge
xi → xj.

Example 2.1 (cont.) Incorporating edge control in the
toy network results in

F1 = 1 + (u3,1 + 1)x3 + (u5,1 + 1)x5+
(u3,1 + 1)x3(u5,1 + 1)x5,

F2 = 1 + (u1,2 + 1)x1 + (u1,2 + 1)x1(u4,2 + 1)x4,
F3 = 1 + (u2,3 + 1)x2,
F4 = (u3,4 + 1)x3,
F5 = 1 + (u4,5 + 1)x4.

Definition 2.3 (Node Control) Consider the node xi in
the wiring diagramW . The function

Fj(x,u−
i ,u

+
i ) := (u−

i + u+
i + 1)fj(x) + u+

i (3)

encodes the control (knock-out or constant expression) of
the node xi, since for each possible value of

(
u−
i ,u

+
i
) ∈ F

2
2

we have the following control settings:

• For u−
i = 0,u+

i = 0,Fj(x, 0, 0) = fj(x). That is, the
control is not active.

• For u−
i = 1,u+

i = 0,Fj(x, 1, 0) = 0. This action
represents the knock out of the node xj.

• For u−
i = 0,u+

i = 1,Fj(x, 0, 1) = 1. This action
represents the constant expression of the node xj.

• For u−
i = 1,u+

i = 1,Fj(x, 1, 1) = fj
(
xt1 , . . . , xtm

) + 1.
This action changes the Boolean function to its
negative value and might not be a relevant case of
control.

Example 2.1 (cont.) Incorporating node control in the
toy network results in

F1 = (u−
1 + u+

1 + 1)(1 + x3 + x5 + x3x5) + u+
1 ,

F2 = (u−
2 + u+

2 + 1)(1 + x1 + x1x4) + u+
2 ,

F3 = (u−
3 + u+

3 + 1)(1 + x2) + u+
3 ,

F4 = (u−
4 + u+

4 + 1)x3 + u+
4 ,

F5 = (u−
5 + u+

5 + 1)(1 + x4) + u+
5 .

Control targets in Boolean networks
We consider a BN with control F : Fn

2 × U → F
n
2, and

denote by F the BN with no control (F(x, 0) = F(x)). We
remark that in each case of interest, both edge and node
control could be analyzed simultaneously.

Generating new steady states
Suppose that y0 = (y01, . . . , y0n) ∈ F

n
2 is a desirable

cell state (for instance, it could represent the state of cell
senescence) but is not a fixed point, i.e., F(y0) 	= y0.
The problem is then to choose a control u such that
F(y0,u) = y0. We now show how this can be achieved in
our framework.
After encoding our BNwith control as a polynomial sys-

tem Fj(x,u) ∈ F2[ x,u] (see Section “Control Actions:
edge and node manipulations”), we consider the system of
polynomial equations in the u parameters:

Fj(y0,u) − y0j = 0, j = 1, . . . ,m. (4)

Example 2.1 (cont.) Here we consider a toy network
and assume we are interested in controlling edges to make
y0 = 01111 a steady state. For simplicity we only consider
control using the edges x1 → x2, x4 → x2, x2 → x3, x4 →
x5. The network is

F1 = 1 + x3 + x5 + x3x5,
F2 = 1 + (u1,2 + 1)x1 + (u1,2 + 1)x1(u4,2 + 1)x4,
F3 = 1 + (u2,3 + 1)x2,
F4 = x3,
F5 = 1 + (u4,5 + 1)x4.

Evaluating at y0 = 01111 we obtain

F1 = 0, F2 = 1, F3 = u2,3, F4 = 1, F5 = u4,5.

Then, 01111 will be a steady state if and only if Fi = y0i
for i = 1, . . . , 5. This gives the following solution u2,3 =
1,u4,5 = 1. Thus, in this case there is a unique control,
u2,3 = u4,5 = 1, that guarantees y0 = 01111 is a steady
state (this control policy is illustrated in Fig. 1f, u = D). In
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general, the equations can be more complex and nonlin-
ear, so computational algebra is needed. See the “Results”
section for applications to more complex models.
Example 2.1 (cont.) We now show how the problem of

creating new steady states can also be solved using node
controls. We again use the toy network, and assume that
we want to make y0 = 11110 a steady state. For simplicity
we only consider control of nodes x1 (constant expres-
sion), x3 (knock-out and constant expression), and node
x4 (constant expression). The network is

F1 = (u+
1 + 1)(1 + x3 + x5 + x3x5) + u+

1 ,
F2 = 1 + x1 + x1x4,
F3 = (u−

3 + u+
3 + 1)(1 + x2) + u+

3 ,
F4 = (u+

4 + 1)x3 + u+
4 ,

F5 = 1 + x4.
Evaluating at y0 = 11110 we obtain

F1 = u+
1 , F2 = 1, F3 = u+

3 , F4 = 1, F5 = 0.

Then, 11110 will be a steady state if and only if u+
1 = 1

and u+
3 = 1. That is, neither control by itself is suffi-

cient, but together they create the steady state (this control
policy is illustrated in Fig. 1f, u = C).

Destroying existing steady states, or, in general, blocking
transitions
Suppose that x0 ∈ F

n
2 is an undesirable steady state of F(x),

that is, F(x0) = x0 (for instance, it could represent a tumor
proliferative cell state that needs to be avoided). The goal
here is to find a set of controls such that F(x0,u) 	= x0.
More generally, wemay want to avoid a transition between
two states x0 and z0. That is, we want to find controls such
that F(x0,u) 	= z0. To solve this problem consider the
following equation,

(F1(x0,u)− z01 + 1) . . . (Fn(x0,u) − z0n + 1) = 0. (5)

Equation 5 defines a polynomial equation in the u
parameters. It can be shown thatF(x0,u) 	= z0 if and only
if Eq. 5 is satisfied.
Example 2.1 (cont.) Here we focus on finding edges to

block the transition from x0 = 00101 to F(x0) = 01111.
For simplicity we only consider control using the edges
x3 → x1, x5 → x1, x2 → x3, x3 → x4. The network is

F1 = 1 + (u3,1 + 1)x3 + (u5,1 + 1)x5+
(u3,1 + 1)x3(u5,1 + 1)x5,

F2 = 1 + x1 + x1x4,
F3 = 1 + (u2,3 + 1)x2,
F4 = (u3,4 + 1)x3,
F5 = 1 + x4.

Evaluating at x0 = 00101 we obtain

F1 = u3,1u5,1,F2 = 1,F3 = 1,F4 = u3,4,F5 = 1.

Then, Eq. 5 becomes (u3,1u5,1 + 1)(u3,4 + 1) = 0 which
has two solutions: u3,4 = 1 and u3,1 = u5,1 = 1 (first

control policy illustrated in Fig. 1f, u = B). The second
solution is what we refer to as a combinatorial control
policy. Neither u3,1 = 1 or u5,1 = 1 is sufficient, but com-
bined they block the transition. In general, the equations
can be more complex and nonlinear, so computational
algebra is needed.

Blocking regions in the state space
We now consider the case where we want the dynamics to
avoid certain regions. For example, if a particular value of
a variable, xk = a ∈ F2 triggers an undesirable pathway,
or is the signature of an abnormal cell, then we want all
steady states of the system to satisfy xk 	= a. In this case,
we consider the systems of equations

Fj(x,u) − xj = 0, j = 1, . . . ,m,
xk − a = 0.

(6)

Note that, in contrast to Sections “Generating new
steady states and Destroying existing steady states, or, in
general, blocking transitions”, we are now using variables
for x instead of specific values. Since the steady states with
xk = a are to be avoided, we want to find controls u for
which Eq. 6 has no solution.
Example 2.1 (cont.) Here we consider the toy network

and focus on controlling nodes to avoid regions of the
form x3 = 0. For simplicity we only consider control
using the nodes x2 (knock-out), x3 (constant expression),
x4 (constant expression). The network is

F1 = 1 + x3 + x5 + x3x5,
F2 = (u−

2 + 1)(1 + x1 + x1x4),
F3 = (u+

3 + 1)(1 + x2) + u+
3 ,

F4 = (u+
4 + 1)x3 + u+

4 ,
F5 = 1 + x4.

Then, Eq. 6 becomes

1 + x3 + x5 + x3x5 + x1 = 0,
(u−

2 + 1)(1 + x1 + x1x4) + x2 = 0,
(u+

3 + 1)(1 + x2) + u+
3 + x3 = 0,

(u+
4 + 1)x3 + u+

4 + x4 = 0,
1 + x4 + x5 = 0,
x3 = 0.

In contrast with the previous examples, this system of
equations cannot be analyzed by hand. In Section “Iden-
tifying control targets” we will show how computa-
tional algebra gives an equivalent, but simpler, system of
equations.

Identifying control targets
In each case of Section “Control targets in Boolean net-
works” we obtained a system of equations (or a single
equation) that we need to solve to find the appropriate
controls. This can be done using computational algebra
tools. For instance, we can compute the Gröbner basis of
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the ideal associated to Eq. 4, see [51],

I = 〈
F1(y0,u) − y01, . . . ,Fn(y0,u) − y0n

〉
. (7)

Example 2.1 (cont.) Now we continue the previous
example where the goal was to avoid regions of the form
x3 = 0.We encode the system of equations as I = 〈1+x3+
x5+x3x5+x1, (u−

2 +1)(1+x1+x1x4)+x2, (u+
3 +1)(1+x2)+

u+
3 +x3, (u+

4 +1)x3 +u+
4 +x4, 1+x4 +x5, x3〉. Using com-

putational algebra we find a Gröbner basis of this ideal:
I = 〈u+

3 ,u
−
2 , x5 + u+

4 + 1, x4 + u+
4 , x3, x2 + 1, x1 + u+

4 〉.
Thus, the original system of equations has the same

solutions as the system

u+
3 = 0, u−

2 = 0, x5 + u+
4 +1=0, x4+u+

4 =0,
x3 = 0, x2 + 1 = 0, x1 + u+

4 =0.

In order to avoid regions of the form x3 = 0, we need
to find parameters for which the system has no solutions.
This is guaranteed if any of the polynomials is equal to 1.
Namely, we select the equations that only have the control
parameters u+

3 = 0,u−
2 = 0. If we use u+

3 = 1 or u−
2 = 1,

the system is guaranteed to have no solutions. Thus, u+
3 =

1 or u−
2 = 1 independently are sufficient to achieve the

control of the system (second control policy illustrated in
Fig. 1f, u = A).
As we will show in Examples 2.4–2.5, the computation

of a Gröbner basis allows us to read out all controls for
which the system of equations has a solution. Further-
more, our algebraic approach can detect combinatorial
control actions (control by the synergistic combination of
more than one action).

Results
We test our control methods using two published mod-
els where potential intervention targets were identified
along with experimental validations. In the first exam-
ple we focus on control with edge deletions while for the
second we use control with node deletions and constant
expressions.

Example 2.4 P53-mdm2 network. A Boolean network
model for the signaling response of DNA damage in a p53
network was developed in [5]; the wiring diagram of this
model is reproduced in Fig. 2. The tumor suppressor pro-
tein p53 can trigger either cell cycle arrest or apoptosis
in response to DNA damage in normal cells. The authors
of [5] extended their analysis to a breast cancer cell line,
MCF7, with the purpose of identifying potential therapeu-
tic interventions in the network for the cancer cell. Thus, in
this example we will focus on the cancer cell model where
PTEN and p14ARf are always inactive (fixed to zero) and
cyclinG is always active (fixed to 1), see Table 5 of [5]. This
system can be represented as a discrete dynamical system

Fig. 2 The p53-mdm2 network adapted from [5]. Arrows in green
represent activation while hammerhead arrows (in red) represent
inhibition. Self loops were omitted, see text in Example 2.4 for an
explanation. For the cancer cell model, PTEN and p14ARf are always
inactive (fixed to zero) and cyclinG is always active (fixed to 1)

F = (f1, . . . , f16) : F16
2 → F

16
2 with 16 nodes and 50 edges.

We represent the nodes by

x1 = ATM, x2 = p53,
x3 = Mdm2, x4 = MdmX,
x5 = Wip1, x6 = cyclinG,
x7 = PTEN , x8 = p21,
x9 = AKT , x10 = cyclinE,
x11 = Rb, x12 = E2F1,
x13 = p14ARf , x14 = Bcl2,
x15 = Bax, x16 = caspase.

(8)

The polynomial functions for this network are listed in the
Additional file 1. We remark that the original model in [5]
considers threshold functions for all the regulatory rules
and this type of functions might introduce self-loops in the
wiring diagram. That is, when we translated the threshold
rule for xi into a polynomial fi, the function fi might depend
on xi. Notice that the self-loops were omitted in Fig. 2 to be
consistent with the original model.
For this model, in the presence of DNA damage, the sys-

tem has a single limit cycle representing the state of cell
cycle arrest, where p53 and p21 are oscillating; see Fig. 3.
Suppose that we want to find out which set of edges one

can manipulate in order to destroy this limit cycle and to
lead the system into a different attractor, one that repre-
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Fig. 3 States of limit cycle representing cell cycle arrest in the p53
model. The order of the vector entries follows the indexing in Eq. 8.
The dashed edge represents the transition target to destroy the limit
cycle

sents a desirable cell state. Let us start by considering a
desirable state that represents cell death,

y0 = (1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1), (9)

where x16 = caspase is active. In order to make y0 a steady
state with the approach described in the “Methods” section,
we form the following system of polynomial equations,

Fi(y0,μ) = y0i, j = 1, . . . , 16. (10)

The solutions for the system of Eqs. 10 are given by the
nonzero generators of the ideal associated to the system 10,
given in Eq. 11,

{
u2,5 + 1,u16,11(u1,11+1),u8,8(u3,8+1),u2,2(u3,2+1),
u1,2(u3,2 + 1),u1,1u12,1,u12,16u16,16(u8,16 + 1)

}

(11)

There are 945 solutions for Eq. 11. Each solution gives
a controller that guarantees the desired steady state, but
each controller may have a different impact on the dynam-
ics of the network. Table 1 (middle row) shows one of the
controllers from Eq. 11. In Additional file 1: Table S1, we
list the top ten control combinations from Eq. 11, that is,
those that give the largest basin of y0 as well as the ten
sets that give the smallest basin for y0; see Additional file 1:
Table S2. For each solution in Additional file 1: Tables S1-
S2, we crossed-out the edges that become nonessential after
the other controllers in the set have been applied; see the
“Discussion” for more about nonessential edges.
Furthermore, we can aim to destroy the limit cycle

in Fig. 3. We target one of the transitions within this limit
cycle, let us take the transition x5 → x6, see dashed tran-
sition in Fig. 3. Blocking this transition gives additional
controllers that help to stabilize the system at the desired
fixed point; see the last row of Table 1.
The deletion of the edges mdm2 → p53 and p53 →

Wip1 were identified in [5] by deleting one edge at a time
and checking if the modified system had the desired attrac-
tor. Choi et al. [5] reported that the combinatorial action
of these controllers increased the basin of attraction of the

Table 1 Difference of impact in the combinatorial action of edge
deletions

Controllers applied Ref. Basin size of y0

mdm2 → p53 [5] 35581 (54.29 %)

p53 → Wip1

p53 → Wip1 A control set that 39856 (60.82 %)

Mdm2 → p21 forces y0 to be

Mdm2 → p53 a fixed point, from

p21 → Caspase Eq. 11.

mdm2 → p53 A control set to make 65536 (100 %)

p53 → Wip1 y0 a fixed point

mdm2 → p21 and for blocking

p21 → Caspase the transition in red

ATM → Rb at Fig. 3.

mdm2 → Rb

mdmx → p53

Rb → E2F1

Bcl2 → Bax

Control edges that increase the basin of attraction of cell death represented by y0
in Eq. 9. There are 216 = 65536 possible states. The number in parentheses is the
ratio between the basin size and the total number of states

desired fixed point to more than 50 %, which was vali-
dated experimentally. However, doing this type of search for
finding all possible combinations of controls is infeasible.
Since for each edge we have 2 possible actions (control or no
control), and there are 50 edges, then there are 250 networks
to be analyzed in total. In contrast, the computational
algebra approach of this paper allows to obtain all combi-
nations of edges that guarantee the desired steady state of
the system in one process.

Example 2.5 T-LGL network. A Boolean network
model for the blood cancer large granular lymphocyte (T-
LGL) leukemia was developed in [9] and further analyzed
in [10, 33]. T-LGL leukemia is characterized by escaping
cell death through abnormal mechanisms, which are insen-
sitive to Fas-induced apoptosis, [9]. This network has 60
nodes but was reduced to a subnetwork of 16 nodes for
steady state analysis, see Fig. 4. Here we use the 16-nodes
network to identify potential control targets.
We represent the nodes by

x1=CREB, x2= IFNG, x3=P2,
x4=GPCR, x5=SMAD, x6=Fas,
x7= sFas, x8=Ceramide, x9=DISC,
x10=Caspase, x11=FLIP, x12=BID,
x13= IAP, x14=MCL1, x15=S1P,
x16=Apoptosis.
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Fig. 4 Reduced T-LGL network adapted from [10]. Arrows in green
represent activation while hammerhead arrows (in red) represent
inhibition. All the negative edges from Apoptosis were omitted for
simplicity

The polynomial rules for this system are listed in Eq. 12,

f1 = x2(1 + x16), f2 = (x5 + 1)(x3 + 1)(1 + x16),
f3 = (x2x3 + x2 + x3)(1 + x16),
f4 = x15(1 + x16), f5 = x4(1 + x16),
f6 = (x7 + 1)(1 + x16), f7 = x15(1 + x16),
f8 = (x15 + 1)x6(1 + x16),
f9 = (x6x8x11 + x6x8 + x6x11 + x6 + x8)(1 + x16),
f10 = (x9x12x13+ x9x12 + x12x13 + x9 + x12)(1+ x16),
f11 = (x9 + 1)(1 + x16), f12 = (x14 + 1)(1 + x16),
f13 = (x12 + 1)(1 + x16), f14 = (x9 + 1)(1 + x16),
f15 = (x8 + 1)(1 + x16),
f16 = x10x16 + x16 + x10.

(12)

This system has three steady states, one that represents
the normal state, x0 = 0000000000000001, where Apopto-
sis is ON, and 0001101000101110,
0011101000101110, the disease states in which Caspase
and Apoptosis are OFF.
To find the potential node deletions (or constant expres-

sions) that will block the disease states we use Eq. 6,

(u−
1 + u+

1 + 1)f1(x) + u+
1 − x1 = 0

...
(u−

16 + u+
16 + 1)f16(x) + u+

16 − x16 = 0
x16 = 0, x10 = 0

(13)

Equation 13 encodes all parameters for which there is a
steady state where Caspase and Apoptosis are OFF. Thus,
we are interested in the parameters for which this sys-
tem of equations has no solution. Since for each node we
have 3 possible actions (no control, node deletion, con-
stant expression), there are 316 networks to be analyzed in
total. Thus, even for this small network, exhaustive search
is computationally challenging.
On the other hand, computational algebra allows us to

obtain the parameter combinations that guarantee that
the disease states are not fixed points of the system (see the
Additional file 1 for details). The parameter combinations
(enclosed in brackets, where entries not shown are equal to
zero) are

{u+
8 = 1}, {u+

9 = 1}, {u+
10 = 1}, {u+

12 = 1}, {u−
14 = 1},

{u−
15 = 1}, {u+

6 = 1,u−
11 = 1}, {u−

7 = 1,u−
11 = 1}.

(14)

Thus we obtain that the constant expression of
Ceramide, DISC, Caspase, or BID, or the deletion of MCL1
or S1P, will guarantee that the disease states are not steady
states of the system (Table 2). These controls could also
be found by trying one control at a time as was done
in [10]. Importantly, our computational algebra approach
shows that there are two additional control policies that
consist of a combination of different controls. It can be
shown that neither Fas, sFas, FLIP individually can elimi-
nate the disease states, but the deletion of FLIP combined
with the constant expression of Fas or the deletion of sFas
will work (Table 2). Furthermore, those are the only com-
binations that guarantee the disease states will not be
attractors.

Table 2 Control nodes for the reduced T-LGL network

Solution Control targets Attractor Basin size

u+
8 = 1 Ceramide=ON 0000000100000001 100 %

u+
9 = 1 DISC=ON 0000000010000001 100 %

u+
10 = 1 Caspase=ON 0000000001000001 100 %

u+
12 = 1 BID=ON 0000000000010001 100 %

u−
14 = 1 MCL1=OFF 0000000000000001 100 %

u−
15 = 1 S1P=OFF 0000000000000001 100 %

u+
6 = 1 Fas=ON

0000010000000001 100 %
u−
11 = 1 FLIP=OFF

u−
7 = 1 sFas=OFF

0000000000000001 100 %
u−
11 = 1 FLIP=OFF

The last two rows represent combinatorial actions of two nodes. All attractors are
steady states, and the basin sizes include the steady states themselves. Notice that
node x16 = Apoptosis is a conceptual node in this model, thus it is not a relevant
solution for network control
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We note that, in the worst case, computing the Gröbner
basis for a system of polynomial equations has doubly
exponential complexity in the number of solutions. How-
ever, for the type of networks discussed in this paper,
namely, biological networks where most of the nodes are
regulated by only a small subset of the other nodes, Gröbner
bases can be computed in a reasonable time, see [42].

Discussion
The design of control policies for gene regulatory net-
works is an important challenge in systems biology. The
method described here exploits the interplay between the
structure and the dynamics of the network to identify
potential control interventions that will drive the sys-
tem towards desired dynamics. The formulation of the
problem as that of finding all solutions to a system of
polynomial equations provides an alternative to exhaus-
tive search of all possible combinations of interventions,
which often is not feasible.
One shortcoming of the method is that, in its cur-

rent form, it requires the Boolean network model to
be updated synchronously, with deterministic dynamics.
While steady states of the network do not depend on
the update order used, general limit cycles and attractor
basins do, however. Thus, some of the methods described
here might not be applicable in a stochastic setting. For
instance, if the dynamics is generated using the asyn-
chronous update or more generally using the stochastic
settings in [8, 52–54], then encoding the controllers for
blocking transitions will need to have a different setup
than the one described here. However, the method for
producing a new steady state is still valid for all variants
of stochastic updates because the system will maintain
the steady state. Another shortcoming is that the con-
trol methods described in this paper were developed for
Boolean networks only. However, many published discrete
models of GRNs are multistate. These methods could
potentially be extended to a more general setting, where
the network variables might attain more than two states
[41, 54–57]. We remark that it is possible to map a mul-
tistate model into a Boolean model (see [58]) where our
methods can be applied and then it would be possible to
recover a control set for the multistate model.
An important challenge in the process of identification

of control targets in a network is to develop methods
that can identify controllers that can guarantee global
reachability of a desired steady state. This problem is
not addressed in this paper, and remains to be studied
in the future. For instance, the control strategies do not
give any information about the basin size of a fixed point
generated by the methods of this paper. However, we
remark that some algebraic methods allow to estimate the
change in the basin size after an edge deletion, see [59].
Nonetheless, the control targets identified by the algebraic

techniques described here could be used for further anal-
ysis of the system, such as for studying reachability [60],
or for designing optimal control policies in a stochastic
setting [29–32].
Finally, it is worth pointing out that the methods of this

paper might produce a large number of control strate-
gies, which all give the desired result, but many of these
might be biologically meaningless or infeasible as actual
interventions. Eliminating thosemight be challenging. For
instance, some solution sets might contain nonessential
[61] or nonfunctional [62] edges. That is, an edge could
become nonessential after the other controllers in the set
have been applied. In Additional file 1: Table S1, we list the
top ten control combinations for Example 2.4 where we
crossed-out the edges that become nonessential after the
other controllers have been applied. Moreover, one can
group the solution sets by considering only minimal sets
where all the control edges are functional. For instance,
we can group the first four solutions of Additional file 1:
Table S1 into one group with the minimal representative
set given in the middle row of Table 1.

Conclusions
This paper presents a novel approach to the identification
of potential interventions in Boolean molecular networks.
The methods use the theoretical foundations of algebraic
geometry to encode the structure of a network by a set
of polynomials and then, with the use of computer alge-
bra techniques, find a set of nodes and edges to perform
interventions in silico. The methods were validated using
two published models where dynamic network interven-
tions were identified, the p53-mdm2 system and the T-
LGL leukemia model. It was shown that the methods in
this paper can identify the controllers that were already
reported and also find new potential targets. Some of
these new control targets are combinatorial in nature and
might result in more efficient strategies as was shown in
the “Results” section using the change in the basin size of
the system as a measure of efficiency.

Additional file

Additional file 1: Supporting material for: Identification of control targets
in Boolean molecular network models via computational algebra.
(PDF 214 KB)
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