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The Arabidopsis phytohormone crosstalk
network involves a consecutive metabolic
route and circular control units of
transcription factors that regulate
enzyme-encoding genes
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Abstract

Background: Phytohormone synergies and signaling interdependency are important topics in plant developmental
biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating
and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been
published. However, an integrated molecular characterization of phytohormone crosstalk is still not available.

Results: A novel modeling methodology and advanced computational approaches were used to construct
an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN
provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a
surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route.
Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in
the consecutive metabolic route formed structures, which we describe as circular control units operating at
the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways
were found to be involved in the circular control units that included the TFs regulating enzyme-encoding
genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH
homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly
available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were
used as a case study to validate the proposed framework.

Conclusions: Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks
that play a central role in coordinating internal developmental processes with environmental signals, and give
a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can
be further analyzed in future studies.
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Background
Phytohormone (plant hormone) crosstalk refers to phy-
tohormone synergy and signaling interdependency. It is
the main mechanism for regulating plant growth and
development in combination with cell type, develop-
mental stage and environmental conditions [1, 2]. Elu-
cidating the components, architecture, and mechanisms
of phytohormone crosstalk and how it helps coordinate
plant growth are important in understanding plant
developmental biology.
Many molecular and physiological studies have revealed

information on major phytohormones at the molecular
level, including abscisic acid, auxin, brassinosteroid, cyto-
kinin, ethylene, gibberellin, jasmonic acid, and salicylic
acid [2, 3]. It is now clear that phytohormone crosstalk
comprises multiple levels of coupled mechanisms, includ-
ing transcriptional regulation, signal transduction, biosyn-
thesis, degradation, sequestration, transport, and complex
metabolic conversion [4]. Much physiological and genetic
experimental evidence for phytohormone crosstalk at the
biosynthetic and transcriptional levels has been reported.
For example, ethylene and auxin can reciprocally regulate
each other [5–7]. JA-responsive ethylene response factor
109 (ERF109) binds directly to GCC-boxes in the pro-
moters of ASA1 and YUC2, and mediates crosstalk be-
tween JA signaling and auxin biosynthesis to regulate
lateral root formation in Arabidopsis [8]. Hormone profil-
ing and the expression data for genes that encode key en-
zymes in abscisic acid and jasmonate biosynthesis showed
that, in desiccated Arabidopsis roots, some hormonal
regulation took place at the biosynthesis level [9]. Analyses
of biosynthetic and signaling mutants, and studies of the
roles of exogenous phytohormones have revealed extensive
crosstalk and signal integration among growth-regulating
hormones [2–4]. However, although physiological and
genetic experimental evidences for phytohormone cross-
talk has accumulated, until now, no integrated molecular
characterization of phytohormone crosstalk in plant devel-
opmental biology has been published.
Because of the complexity of the relationships involved,

a global perspective of the framework and mechanisms of
phytohormone crosstalk cannot be gained based on the
action of only one or a few molecules. Therefore, novel
modeling methodologies and advanced computational
approaches are required to determine the connections
among phytohormones. Metabolic pathways and net-
works are emerging as powerful resources for identifying
crucial biomarkers responsible for metabolic character-
istics. The internal structure of a metabolic network
can help elucidate the global activation status between
mRNAs and proteins, and the metabolic mechanisms
in a plant [10–12]. A major characteristic of metabolic
pathways and networks is regulatory flexibility, where
enzymes that regulate metabolic synthesis in one

pathway can also catalyze metabolic reactions in other
metabolic pathways. A comprehensive analysis of the
enzymes involved in phytohormone metabolic pathways
may help provide insights into the functional implica-
tions of phytohormone crosstalk.
In a previous study, we used the Arabidopsis meta-

bolic pathway database (AraCyc 10.0) [13], which contains
540 pathways, 7127 enzymes, 3418 reactions, 3323 com-
pounds, and 4225 citations, to construct a genome-scale
enzyme correlation (GECN) model [14]. In this study,
we used the GECN model to construct an Arabidopsis
phytohormone crosstalk network model (named EAPCN)
based on the phytohormone biosynthesis pathways in
the Arabidopsis Hormone Database AHD2.0 [15]. The
aim of this study was to use the EAPCN model to
reveal the global mechanisms of phytohormone syn-
ergy and signaling interdependency at multiple levels
in Arabidopsis.

Methods
Publicly available databases used in this study
The Arabidopsis metabolic pathway database AraCyc
10.0 (http://www.Arabidopsis.org/biocyc/) contains bio-
chemical pathways that represent Arabidopsis metabolism
(Additional file 1) [13]. AHD2.0 (http://ahd.cbi.pku.edu.cn/)
is an updated version of the Arabidopsis Hormone
Database containing information on eight major phytohor-
mones in Arabidopsis: abscisic acid, auxin, brassinosteroids,
cytokinin, ethylene, gibberellin, jasmonic acid, and salicylic
acid [15]. The Arabidopsis interactome map contains ap-
proximately 6200 highly reliable interactions between ap-
proximately 2700 proteins [16]. The Plant Transcription
Factor Database PlnTFDB (http://plntfdb.bio.uni-potsdam.
de/v3.0/) contains approximately 2000 Arabidopsis genes
that encode transcription factors (TFs).
The gene expression profile of the stele cells (three

cells collected immediately after removing the stem cell
niche) from Arabidopsis root tips was obtained from the
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/) [GEO:GSE46226] [17]. The protein expression map
of the Arabidopsis root (vasculature) came from Petricka
et al. [18], and provided the identities and cell type-
specific localization of nearly 2000 proteins from GeLC-
MS/MS proteomic analysis.

Genome-scale enzyme correlation network (GECN) model
for Arabidopsis
The previously constructed GECN model [14] contains
active information (enzymes, reactions, compounds, and
citations) for individual metabolic pathways (Additional
file 1). The nodes represent enzymes and edges repre-
sent two enzymes that interact with the same substrate.
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Construction of the Arabidopsis phytohormone crosstalk
network (EAPCN) model
The EAPCN model was constructed based on the GECN
model as follows (Details are provided in Additional file 1):

Step 1: Source files (TXT files) were downloaded from
AraCyc 10.0 [13] and AHD2.0 [15].
Step 2: The TXT file of information on eight major
phytohormones in Arabidopsis, including pathways,
enzymes, genes, reactions, compounds, and citations,
was imported into an Oracle database platform.
Step 3: The enzymes in AraCyc were mapped to the
GECN model, and a sub-interaction network was
constructed on an Oracle database platform using
structured query language (SQL).
Step 4: To infer antagonistic crosstalk between
phytohormones, we included structural connectivity
architecture at the biosynthesis level as another feature
in the EAPCN model (Fig. 1). The EAPCN model
provides a new platform for analyzing how
collaborative mechanisms on multiple scales work from
a global perspective.

Step 5: Network analysis and community analyses were
used to investigate the characteristics of the systemic
structure of the sub-interaction network (XML and
XGMML format in Additional file 2).

Arabidopsis TFs interactome network
To characterize the TFs that regulate the enzyme-encoding
genes in the EAPCN model, we constructed a TF interac-
tome network using the Arabidopsis TF data in PlnTFDB
[19]. In the TFs interactome network, nodes represent TFs
and edges indicate two TFs that have the same target gene.
The interactome network was constructed on an Oracle
database platform using SQL and visualized using the
Cytoscape software [20] (XGMML, GML, SIF and NNF
format in Additional file 2).

Network topology analysis
NetworkAnalyzer is a Java plugin for Cytoscape, that
compute specific parameters that describe the network
topology [21]. We used NetworkAnalyzer to determine
the number of connected pairs of nodes to examine the
overall structure of the EAPCN model.

Fig. 1 Structural connectivity of the enzyme-based Arabidopsis phytohormones crosstalk network (EAPCN) at the biosynthesis level. Green nodes
represent eight phytohormones (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, and salicylic acid). The other
nodes represent enzymes involved in synergistic or antagonistic crosstalk between the phytohormones. Red nodes represent enzymes for which
there are experimental data (see Additional file 3, section I for details). Yellow nodes represent enzymes that are inferred to be involved in synergistic or
antagonistic crosstalk. Edges represent nodes that exhibit either synergistic or antagonistic interactions
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The centrality score of a node within a network crucially
depends on the entire pattern of connections. A score
indicates that the node may play key roles in controlling
cellular functions. Centrality analysis was carried out on
the EAPCN model using the cytoHubba plugin in Cytos-
cape [22]. We used 12 centrality parameters: Maximal
Clique Centrality, Density of Maximum Neighborhood
Component, Maximum Neighborhood Component, De-
gree, Edge Percolated Component, Bottleneck, Eccentricity,
Closeness, Radiability, Betweenness, Stress, and Clustering
Coefficient. All enzymes were sorted according to the 12
centrality parameters to identify highly connected nodes.
We used the graph clustering algorithm ClusterONE

(clustering with overlapping neighborhood expansion),
which is available as a plugin to Cytoscape [23], for the
association analysis.

Results and discussion
Analysis of the EAPCN model revealed that enzymes
localized at the highly connected nodes form consecutive
metabolic pathways
In the EAPCN model (Fig. 1), besides the nodes that
represent the eight phytohormones (abscisic acid, auxin,
brassinosteroids, cytokinin, ethylene, gibberellin, jasmonic
acid and salicylic acid), other nodes represent enzymes that
are involved in crosstalk between these phytohormones.
For example, ACC SYNTHASE 10 (AT1G62960) encodes
an aromatic amino acid transaminase (EC 2.6.1.57) that
catalyzes the conversion of S-adenosylmethionine to 1-
aminocyclopropane-1- carboxylic acid (ACC), which is
the first committed and, in most instances, the rate-
limiting step in ethylene biosynthesis [24]. Enzymes that
regulate metabolic synthesis can be involved in other
metabolic conversion pathways, and our analysis of the
EAPCN showed that aromatic amino acid transaminase
(EC 2.6.1.57) also catalyzed the conversion of keto-
phenylpyruvate and L-glutamate to L-phenylalanine in
the phenylalanine degradation III pathway [25]. The
analysis also showed that Ligases (EC 6.3.-.-) could
catalyze the conversion of L-phenylalanine to indole-3-
acetyl- phenylalanine in the indole-3-acetic acid (IAA)
degradation V pathway [26]. Because these enzymes
(EC 2.6.1.57 and EC 6.3.-.-) form consecutive steps in a
metabolic route to L-phenylalanine, it can be inferred
that auxin and ethylene may be associated with inter-
promotion or inter-restraint by EC 2.6.1.57 and EC 6.3.-.-
at the biosynthesis level. As another example, mutation of
BUSHY AND DWARF 2 (AT5G18930) has been shown
to result in the loss-of-function of S-adenosylmethionine
decarboxylase 4 (EC 4.1.1.50), which causes hyposensitiv-
ity to auxin and hypersensitivity to cytokinin [27]. This
suggests that S-adenosylmethionine decarboxylase 4 may
play a role in regulating synergistic or antagonistic cross-
talk between auxin and cytokinin. Detailed information

related to various phytohormones and their crosstalk with
other phytohormones is shown in Fig. 2. Furthermore,
some of the enzymes in the EAPCN model have been
checked for consistency based on physiological and gen-
etic experimental studies (see Additional file 3, section I
for details).
It should be noted that the highly interconnected web

of enzymes in the EAPCN model can be defined as a
multimodal optimization problem in combination with cell
type, developmental stage, and environmental conditions
[28]. Nevertheless, the internal structure of the EAPCN
model can be used to elucidate potential hubs of inter-
action and functional roles among phytohormones. To
obtain detailed insights into the intrinsic properties of
the network topology in the EAPCN model, we used
the cytoHubba plugin of Cytoscape [22] for centrality
analysis to determine the global properties of the EAPCN
model. CytoHubba ranks connected enzymes according to
their importance in a network. The data in Table 1 list the
enzymes that were localized at the highly connected nodes
in the EAPCN ranked according to 12 different centrality
parameters.
Importantly, when ClusterONE was used for association

analysis [23], we detected particular subsets of controlling
sets in which enzymes localized at the highly connected
nodes in the EAPCN made up a consecutive metabolic
route (Fig. 3) with the following steps:

(1) Oxidoreductases (EC 1.3.1.-) catalyze the
conversion to (22α)-hydroxy-campest-4-en-3-one
in the brassinosteroid biosynthesis II pathway.

(2) (22α)-hydroxy-campest-4-en-3-one is catalyzed by
oxidoreductases (EC 1.14.13.-) in the same pathway.
Oxidoreductases (EC 1.14.13.-) were also found to
catalyze the conversion of castasterone to brassinolide
in the brassinosteroid biosynthesis I pathway.

(3) Brassinolide is catalyzed by hexosyltransferases
(EC 2.4.1.-) in the brassinosteroid inactivation
pathway. Hexosyltransferases (EC 2.4.1.-) are
multifunctional enzymes that may be involved
in various phytohormone biosynthesis pathways.
Our analysis of the EAPCN showed that
hexosyltransferases (EC 2.4.1.-) can also catalyze
the conversion of trans-zeatin-O-glucoside in the
cytokinin 7-N-glucoside biosynthesis pathway, the
conversion of kaempferol in the kaempferol gluco-
side biosynthesis pathway, and the conversion of
quercetin in the quercetin glucoside biosynthesis
pathway.

(4) Trans-zeatin O-β-D-glucosyltransferase
(EC 2.4.1.203) catalyzes the conversion of
UDP-D-glucose and trans-zeatin to trans-zeatin-O-
glucoside in the cytokinin-O-glucoside biosynthesis
pathway.
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(5) Flavonol synthase (EC 1.14.11.23) catalyzes the
conversion of dihydrokaempferol to kaempferol
and the conversion of trans-dihydroquercetin to
quercetin in the flavonol biosynthesis pathway.

(6) Methyltransferases (EC 2.1.1.-) are also
multifunctional enzymes. Our analysis showed
that quercetin was catalyzed by methyltransferases
(EC 2.1.1.-) in the quercetin sulfate biosynthesis
pathway. Methyltransferases (EC 2.1.1.-) were also
shown to catalyze the conversion of gibberellin
A20 and S-adenosyl-L-methionine to gibberellin
A20 methyl ester in the gibberellin inactivation II
(methylation) pathway, the conversion of kaempferol
in the kaempferol glucoside biosynthesis pathway,
and the conversion of indole-3-acetate and
S-adenosyl-L-methionine to methyl indole-3-acetate
in the S-adenosyl-L-methionine cycle II pathway.

(7) Oxidoreductases (EC 1.14.11.-) catalyze the
conversion to gibberellin A20 in the gibberellin
biosynthesis III (early C-13 hydroxylation)
pathway.

(8) Indole-3-acetaldehyde oxidase (EC 1.2.3.7)
catalyzes the conversion of indole acetaldehyde to
indole-3-acetate in the IAA biosynthesis I pathway.

(9) Indole-3-acetate β-glucosyltransferase (EC 2.4.1.121)
catalyzes the conversion of UDP-D-glucose and

indole-3-acetate to indole-3-acetyl-beta-1-D-glucose
in the superpathway of IAA conjugate biosynthesis.

(10) Ligases (EC 6.3.-.-) catalyze the conversion of
indole-3-acetate and L-phenylalanine to indole-3-
acetyl-phenylalanine in the IAA degradation V
pathway. Our analysis also found that ligases
(EC 6.3.-.-) converted ACCin the jasmonoyl-amino
acid conjugates biosynthesis I pathway.

(11) Aromatic-amino-acid transaminase (EC 2.6.1.57)
catalyzes the conversion of keto-phenylpyruvate
and L-glutamate to L-phenylalanine in the
phenylalanine degradation III pathway.

(12) 1-aminocyclopropane-1-carboxylate synthase
(EC 4.4.1.14) catalyzes S-adenosyl-L-methionine to
ACC in the ethylene biosynthesis I pathway.

(13) Aminocyclopropanecarboxylate oxidase (ACO;
EC 1.14.17.4) catalyzes L-ascorbate and ACC to
ethylene in the ethylene biosynthesis I pathway.

The subsets of controlling sets containing enzymes lo-
calized at highly connected nodes in the EAPCN can form
a consecutive metabolic route, indicating that intracellular
hormone homeostasis and concentrations depend largely
on the interaction of specific phytohormone combinations
rather than on the independent activities of individual
hormones. In particular, the consecutive metabolic route
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Fig. 2 Detailed information of phytohormones and their crosstalk with other phytohormones in the EAPCN model. Green nodes represent eight
phytohormones (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, and salicylic acid). The other nodes represent
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Table 1 Centrality analysis to determine the global properties of the EAPCN model using CytoHubba plug-in in Cytoscape

MCC DMNC MNC Degree EPC Bottleneck Eccentricity Closeness Radiability Betweenness Stress CC

6.3.-.- 1.2.3.7 6.3.-.- 6.3.-.- 6.3.-.- 2.4.1.- 2.4.1.237 6.3.-.- 2.4.1.- 2.4.1.- 2.4.1.- 1.14.17.4

1.2.3.7 2.8.1.9 1.2.3.7 2.4.1.- 2.4.1.- 1.13.11.51 2.4.1.203 2.4.1.- 2.4.1.237 4.4.1.14 2.4.1.237 2.8.1.9

2.4.1.- 2.4.1.203 2.4.1.- 4.4.1.14 4.4.1.14 1.14.13.- 6.3.-.- 2.4.1.237 6.3.-.- 2.4.1.237 4.4.1.14 1.14.11.13

1.14.11.- 1.14.11.13 1.14.11.- 2.4.1.237 2.4.1.237 1.14.11.- 1.14.11.23 4.4.1.14 4.4.1.14 6.3.-.- 6.3.-.- 2.3.1.74

1.14.13.- 2.1.1.- 1.14.13.- 1.2.3.7 1.2.3.7 1.1.-.- 1.14.13.- 1.2.3.7 1.13.11.51 1.14.11.- 1.13.11.51 6.2.1.-

4.4.1.14 2.4.1.121 2.6.1.5 2.1.1.- 2.6.1.5 1.13.11.- 4.4.1.14 1.13.11.51 1.2.3.7 1.14.11.23 2.4.1.121 1.2.3.7

2.1.1.- 4.4.1.14 2.8.1.9 1.14.11.- 1.13.11.51 4.4.1.14 1.13.11.12 2.6.1.5 2.4.1.121 2.1.1.- 1.14.13.93 2.6.1.5

2.6.1.5 2.3.1.74 2.4.1.203 1.14.11.23 2.4.1.121 1.13.11.12 2.5.1.18 2.4.1.121 2.6.1.5 1.13.11.51 2.4.1.263 6.3.-.-

2.4.1.237 6.2.1.- 1.14.11.13 1.14.13.- 1.14.11.23 2.5.1.18 1.2.4.1 3.1.4.4 2.4.1.263 1.14.13.- 4.1.3.27 2.4.1.203

2.4.1.203 1.13.11.51 2.1.1.- 2.4.1.203 2.1.1.- 1.2.4.1 1.14.99.- 1.14.99.- 3.1.4.4 1.14.13.93 2.6.1.5 2.4.1.121

2.4.1.121 1.14.11.23 2.4.1.121 1.13.11.51 3.1.4.4 1.14.99.- 1.2.3.7 2.4.1.12 1.14.99.- 2.4.1.121 3.1.4.4 1.1.1.288

1.14.11.23 1.1.1.288 4.4.1.14 2.4.1.121 1.14.13.- 2.4.1.237 2.8.1.9 1.14.13.93 2.4.1.12 1.2.3.7 1.14.99.- 2.6.1.57

2.8.1.9 2.6.1.57 2.3.1.74 2.6.1.5 2.8.1.9 1.2.3.7 2.4.1.12 2.4.1.263 1.14.13.93 3.2.1.1 2.4.1.12 1.1.1.-

1.14.11.13 1.1.1.- 6.2.1.- 2.5.1.18 1.14.11.- 2.8.1.9 1.14.11.13 1.14.13.- 4.1.3.27 2.4.1.263 1.14.11.- 1.3.1.-

1.13.11.51 1.3.1.- 1.13.11.51 1.14.99.- 4.1.3.27 2.4.1.203 1.14.13.93 4.1.3.27 1.14.13.- 2.4.1.203 1.13.11.- 2.1.1.-

2.3.1.74 1.14.17.4 1.14.11.23 2.8.1.9 2.4.1.12 2.4.1.12 1.13.11.51 1.14.11.- 1.14.11.- 4.1.3.27 2.5.1.18 1.14.11.-

6.2.1.- 6.3.-.- 1.1.1.288 2.4.1.12 1.14.99.- 1.14.11.13 2.3.1.16 1.14.11.23 1.14.11.23 1.14.99.- 1.14.13.- 1.14.13.-

2.5.1.18 2.4.1.- 2.6.1.57 1.14.11.13 2.6.1.57 1.14.13.93 2.4.1.- 2.1.1.- 2.6.1.57 2.4.1.12 1.2.3.7 4.4.1.14

1.14.99.- 1.14.11.- 1.1.1.- 1.14.13.93 1.14.13.93 2.3.1.16 2.4.1.195 1.13.11.- 2.8.1.9 2.5.1.18 2.1.1.- 1.13.11.51

2.4.1.12 1.14.13.- 1.3.1.- 2.4.1.263 1.13.11.- 2.4.1.195 1.11.1.9 2.8.1.9 1.13.11.- 1.13.11.- 1.14.11.23 2.4.1.-

1.14.13.93 2.6.1.5 1.14.17.4 1.1.1.288 2.4.1.263 1.11.1.9 2.1.1.- 2.6.1.57 2.1.1.- 2.6.1.5 2.6.1.57 1.14.11.23

2.4.1.263 1.13.11.12 1.13.11.12 2.6.1.57 2.4.1.203 2.1.1.- 1.14.11.- 1.1.1.288 1.1.1.288 3.1.4.4 1.11.1.9 1.13.11.12

1.1.1.288 2.5.1.18 2.5.1.18 4.1.3.27 2.3.1.74 2.4.1.121 2.4.1.121 2.5.1.18 2.5.1.18 1.1.1.288 2.8.1.9 2.5.1.18

2.6.1.57 1.2.4.1 1.2.4.1 1.13.11.- 2.5.1.18 6.3.-.- 1.1.-.- 2.3.1.74 3.1.3.57 1.1.1.- 3.1.3.57 1.2.4.1

4.1.3.27 1.14.99.- 1.14.99.- 1.1.1.- 1.1.1.- 1.14.11.23 2.4.1.215 6.2.1.- 1.11.1.9 1.3.1.- 1.2.4.1 1.14.99.-

1.13.11.- 2.4.1.237 2.4.1.237 2.3.1.74 6.2.1.- 2.4.1.215 4.1.1.19 3.1.3.57 1.13.11.12 2.6.1.57 1.1.1.- 2.4.1.237

1.1.1.- 2.4.1.12 2.4.1.12 3.1.4.4 1.3.1.- 4.1.1.19 2.4.1.263 1.11.1.9 2.3.1.16 1.14.11.13 1.3.1.- 2.4.1.12

3.1.4.4 1.14.13.93 1.14.13.93 6.2.1.- 1.1.1.288 2.4.1.263 3.2.1.1 1.1.1.- 4.1.1.19 1.11.1.9 1.1.1.288 1.14.13.93

1.3.1.- 2.3.1.16 2.3.1.16 1.3.1.- 3.1.3.57 3.2.1.1 1.1.1.288 1.3.1.- 2.3.1.74 4.1.1.50 2.4.1.195 2.3.1.16

1.13.11.12 2.4.1.195 2.4.1.195 1.13.11.12 4.1.1.19 1.1.1.288 2.6.1.57 1.13.11.12 6.2.1.- 1.2.4.1 2.3.1.74 2.4.1.195

1.2.4.1 1.11.1.9 1.11.1.9 1.2.4.1 1.11.1.9 2.6.1.57 4.1.3.27 2.3.1.16 1.1.1.- 1.1.-.- 6.2.1.- 1.11.1.9

2.3.1.16 1.1.-.- 1.1.-.- 2.3.1.16 1.13.11.12 4.1.3.27 1.1.1.1 4.1.1.19 1.3.1.- 3.1.4.3 1.1.-.- 1.1.-.-

2.4.1.195 2.4.1.215 2.4.1.215 2.4.1.195 1.14.11.13 1.1.1.1 2.6.1.5 1.2.4.1 2.4.1.203 2.4.1.195 3.1.4.3 2.4.1.215

1.11.1.9 4.1.1.19 4.1.1.19 1.11.1.9 2.3.1.16 2.6.1.5 1.13.11.- 2.4.1.203 1.2.4.1 1.1.1.1 1.14.19.2 4.1.1.19

1.1.-.- 2.4.1.263 2.4.1.263 1.1.-.- 3.1.4.3 1.1.1.- 1.1.1.- 2.4.1.195 2.4.1.195 5.4.4.2 2.4.1.203 2.4.1.263

2.4.1.215 3.2.1.1 3.2.1.1 2.4.1.215 1.14.19.2 5.4.4.2 5.4.4.2 3.2.1.1 3.2.1.1 2.8.1.9 1.13.11.12 3.2.1.1

4.1.1.19 4.1.3.27 4.1.3.27 4.1.1.19 1.1.-.- 2.3.1.74 2.3.1.74 1.1.-.- 1.1.-.- 3.1.3.57 2.3.1.16 4.1.3.27

3.2.1.1 1.1.1.1 1.1.1.1 3.2.1.1 1.2.4.1 4.1.1.50 4.1.1.50 3.1.4.3 3.1.4.3 1.14.19.2 4.1.1.19 1.1.1.1

1.1.1.1 1.13.11.- 1.13.11.- 1.1.1.1 1.14.17.4 3.1.4.3 3.1.4.3 1.14.19.2 1.14.19.2 2.3.1.74 3.2.1.1 1.13.11.-

5.4.4.2 5.4.4.2 5.4.4.2 5.4.4.2 2.4.1.195 3.1.4.4 3.1.4.4 1.14.11.13 1.14.17.4 6.2.1.- 1.1.1.1 5.4.4.2

4.1.1.50 4.1.1.50 4.1.1.50 4.1.1.50 5.4.4.2 3.1.3.57 3.1.3.57 1.14.17.4 1.14.11.13 2.4.1.215 5.4.4.2 4.1.1.50

3.1.4.3 3.1.4.3 3.1.4.3 3.1.4.3 3.2.1.1 6.2.1.- 6.2.1.- 4.1.1.50 1.1.1.1 1.13.11.12 4.1.1.50 3.1.4.3
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of various phytohormone biosynthesis pathways in the
EAPCN model may be interlinked to mediate phytohor-
mone synergy and signaling interdependency. These results
will help to increase our understanding of phytohormone
crosstalk at a global level and provide insights into how
homeostasis and concentration levels of phytohormones
influence plant growth and development.

The homeostasis between auxin and cytokinin plays key
roles in controlling cellular functions of phytohormone
crosstalk
Literature evidence has shown that the phytohormone
homeostasis between auxin and cytokinin has a strong

impact on plant growth and development [2, 3]. In the
AEEPBCN model, we detected 11 enzymes involved in
the interaction between auxin and cytokinin, including,
EC 2.4.1.-, EC 2.4.1.12, EC 2.4.1.121, EC 2.4.1.203, EC
2.1.1.-, EC 2.6.1.57, EC 2.6.1.5, EC 1.2.3.7, EC 4.4.1.14, EC
4.1.1.50, EC 2.8.1.9 and EC 6.3.-.- (Fig. 4). Importantly,
most of the enzymes that regulate the interaction between
auxin and cytokinin are in the consecutive metabolic
route in the EAPCN model. In particular, hexosyltransfer-
ase (EC 2.4.1.-), which is multifunctional enzymes that are
involved in the homeostasis of various phytohormone bio-
synthesis pathways, was located in step 3 of the consecu-
tive metabolic route. A trans-zeatin-glucosyl-transferase

Table 1 Centrality analysis to determine the global properties of the EAPCN model using CytoHubba plug-in in Cytoscape
(Continued)

3.1.3.57 3.1.4.4 3.1.4.4 3.1.3.57 1.1.1.1 1.14.19.2 1.14.19.2 1.1.1.1 5.4.4.2 2.3.1.16 1.14.11.13 3.1.4.4

1.14.19.2 3.1.3.57 3.1.3.57 1.14.19.2 4.1.1.50 1.3.1.- 1.3.1.- 5.4.4.2 4.1.1.50 4.1.1.19 2.4.1.215 3.1.3.57

1.14.17.4 1.14.19.2 1.14.19.2 1.14.17.4 2.4.1.215 1.14.17.4 1.14.17.4 2.4.1.215 2.4.1.215 1.14.17.4 1.14.17.4 1.14.19.2

We have used twelve centrality indices: Maximal Clique Centrality (MCC), Density of Maximum Neighborhood Component (DMNC), Maximum Neighborhood
Component (MNC), Degree, Edge Percolated Component (EPC), Bottleneck, Eccentricity, Closeness, Radiability, Betweenness, Stress and Clustering Coefficient (CC)
to check which one appears as highly connected nodes. All enzymes have been sorted by default parameters according to 12 different centrality parameters,
EC numbers of the enzymes are listed

Fig. 3 Consecutive metabolic route of phytohormone biosynthesis pathways in the EAPCN model. Red circle nodes represent the enzymes, green
nodes represent the metabolites between the interactions among enzymes
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(EC 2.4.1.203), which catalyzes the conjugation of glucose
to cytokinin (UDP-glucose + trans-zeatin→UDP + O-
glucosyl-trans-zeatin) and therefore regulates cytokinin
activity, was located in step 4. Indole-3-acetaldehyde oxi-
dase (EC 1.2.3.7), which catalyzes the last step of auxin
biosynthesis (Indole-3-acetaldehyde→ Indole-3-acetic acid),
was located in step 8. An UDP-glycosyltransferase (EC
2.4.1.121), which conjugates glucose to IAA (UDP-glu-
cose + (indol-3-yl)acetate→UDP +O-(indol-3-yl) acetyl-
beta-D-glucose), was located in step 9. Additionally, meth-
yltransferases (EC 2.1.1.-) were located in step 6, ligases
(EC 6.3.-.-) were located in step 10, aromatic-amino -acid
transaminase (EC 2.6.1.57) was located in step 11, and 1-
aminocyclopropane-1 -carboxylate synthase (EC 4.4.1.14)
was located in step 12. A detailed molecular and physio-
logical study revealed that the loss-of-function of S-
adenosylmethionine decarboxylase 4 (EC 4.1.1.50) causes
hyposensitivity to auxin and hypersensitivity to cytokinin
[27]. It is conceivable that the homeostasis between auxin
and cytokinin plays key roles in controlling the cellular
functions of phytohormone crosstalk.

Subsets of TFs regulating enzyme-encoding genes in the
EAPCN form circular control units that integrate consecutive
metabolic pathways of phytohormone crosstalk
Transcriptional regulation is a common mechanism for
integrating diverse phytohormone signals to regulate plant
development. Phytohormones mostly influence the devel-
opmental process by modifying TF activity, which dynam-
ically alters the transcriptome and leads to enzyme and
metabolic changes. We constructed a TF interactome net-
work using the Arabidopsis TF data in PlnTFDB [19] to
characterize the TFs that regulate enzyme-encoding genes
in the EAPCN model.
As shown in Fig. 5, the network of TFs that regulate

enzyme-encoding genes in the EAPCN has internal loop

structures that may act as circular control units as fol-
lows (see Additional file 3, section II for details):

(a)A circular control unit, including PIL5
(AT2G20180), FUS3 (AT3G26790), RGA1
(AT2G01570), KNAT1 (AT4G08150), BUM1
(AT1G62360), AG (AT4G18960), DAG1
(AT3G61850), CBF1 (AT4G25490), SPT
(AT4G36930), LEC2 (AT1G28300), AGL15
(AT4G36930), ATHB-12 (AT3G61890), and GAI
(AT1G14920), regulates genes encoding the gibberellin
oxidases (EC 1.14.11.-) GA3OX2 (AT1G80340),
GA20OX1 (AT4G25420, EC 1.14.11.23), GA2OX4
(AT1G47990), and GA3OX1 (AT1G15550), and the
epoxycarotenoid dioxygenase (EC 1.13.11.51) NCED9
(AT1G78390). A circular control unit, including
PIL5 (AT2G20180), ARF8 (AT5G37020), STY1
(AT3G51060), ARF17 (AT1G77850), and ARF7
(AT5G20730), regulates genes encoding the IAA-
amido synthetases (EC 6.3.-.-) GH3.5 (AT4G27260)
and GH3.17 (AT1G28130), and NCED9 (EC
1.13.11.51) (AT1G78390). A circular control unit,
including TCP1 (AT1G67260), PIL5 (AT2G20180),
and BZR1 (AT1G75080), regulates genes encoding
DWF4 (EC 1.14.13.-) (AT3G50660) and NCED9
(EC 1.13.11.51) (AT1G78390). A circular control unit,
including MP (AT1G19850), PIL6 (AT3G59060),
ARF2 (AT5G62000), and LEC2 (AT1G28300),
regulates genes encoding the 1-aminocyclopropane-
1-carboxylate synthase (EC 4.4.1.14) ACS8
(AT4G37770) and GA3OX2 (EC 1.14.11.-)
(AT1G80340). In the EAPCN model, the enzymes
that were found to be regulated by circular control
units (i.e., EC 1.14.11.-, EC 1.13.11.51, EC
1.14.11.23, EC 6.3.-.-, EC 1.14.13.-, and EC 4.4.1.14)
were all localized at hubs of interaction between
phytohormones. In particular, PIL5 (AT2G20180)

AUXIN 
2.1.1.−

2.4.1.121 

2.6.1.5 

2.8.1.9 

2.6.1.57 

2.4.1.203 

2.4.1.−

6.3.−.−

4.1.1.50 

4.4.1.14 

1.2.3.7 
CYTOKININ 

Fig. 4 Eleven enzymes in the interaction between auxin and cytokinin of the AEEPBCN model
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and LEC2 (AT1G28300) most likely act as hubs in
the circular control unit structure. Previous physio-
logical and genetic experimental studies have dem-
onstrated that PIL5 inhibits seed germination not
just through gibberellic acid and abscisic acid, but
also by coordinating hormone signals and modulat-
ing cell wall properties in imbibed seeds [29].
ERF022–LEC2 interaction has been shown to be in-
volved in the auxin–ethylene crosstalk that operates
in somatic embryogenesis induction [30].

(b)A circular control unit, including WRKY62
(AT5G01900), WRKY17 (AT2G24570), ANAC019

(AT1G52890), MYC2 (AT1G32640), ANAC055
(AT3G15500), and WRKY11 (AT4G31550),
regulates genes encoding (EC 1.13.11.12) LOX2
(AT3G45140) and TAT3 (EC 2.6.1.5) (AT2G24850).
A circular control unit, including STZ
(AT1G27730), ORA47 (AT1G74930), MYC2
(AT1G32640), WRKY6 (AT1G62300), and WRKY3
(AT2G03340), regulates a gene encoding LOX3 (EC
1.13.11.12) (AT1G17420). A circular control unit,
including ABF2 (AT1G45249), HOS10
(AT1G35515), MYB2 (AT2G47190), CBF2
(AT4G25470), RAP2.12 (AT1G53910), and MYC2

Fig. 5 Circular control units of transcription factors (TFs) that regulate genes encoding enzymes in the EAPCN. Nodes represent the TFs, edges
indicate two TFs that have the same target gene. a–e Circular control units of TFs that regulate genes that encode enzymes in EAPCN (see
Additional file 3, section II for details), f Consecutive protein–protein interaction route in circular control unit C
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(AT1G32640), regulates a gene encoding ADH1
(EC 1.1.1.1) (AT1G77120). MYC2 (AT1G32640)
most likely acts as a hub in the circular control
structure.

(c)A circular control unit, including TT2 (AT5G35550),
TT4 (AT5G13930), MYB4 (AT4G38620), MYB12
(AT2G47460), MYB32 (AT4G34990), HFR1
AT1G02340), HY5(AT5G11260), PIF3 (AT5G13930),
PIF4 (AT2G43010), HYH(AT3G17609), EGL3
(AT1G63650), GL3 (AT5G41315), and MYB75
(AT1G56650), regulates genes encoding the flavonol
synthase (EC 1.14.11.23) LDOX (AT4G22880),
naringenin-chalcone synthase (EC 2.3.1.74) TT4
(AT5G13930), and hexosyltransferase (EC 2.4.1.-)
UGT78D2 (AT5G17050). In the EAPCN model,
the enzymes regulated by circular control units
(i.e., EC 1 .14.11.23, EC 2.3.1.74 and EC 2.4.1.-)
were all localized at hubs of interaction between
phytohormones.

(d)A circular control unit, including MYB30
(AT3G28910), EIN3 (AT3G20770), EIL1
(AT2G27050), ATNFXL1 (AT1G10170), and
ATHB-1 (AT3G01470), regulates genes encoding
EDS16 (EC 5.4.4.2) (AT1G74710) and ATACO1
(EC 1.14.17.4) (AT2G19590). A circular control
unit, including OBP1 (AT3G50410), RAP2.3
(AT3G16770), and AP1 (AT1G69120), regulates a
gene encoding GSTF8 (EC 2.5.1.18) (AT2G47730).

(e)MYB34 (AT5G60890) and MYB28 (AT5G61420)
regulate a gene encoding SUR1 (EC 2.6.1.5)
(AT2G20610). MYB26 (AT3G13890) and VND7
(AT1G71930) regulate a gene encoding IRX3
(EC 2.4.1.12) (AT5G17420). MYB29 (AT5G07690)
and EIL3 (AT1G73730) regulate a gene encoding
CYP79F2 (EC 1.14.13.-) (AT1G16400). MYB58
(AT1G16490) and MYB63 (AT1G79180) regulate a
gene encoding ATOMT1 (EC 2.1.1.-) (AT5G54160).

Importantly, the enzymes regulated by these internal
circular control units were all localized in the consecutive
metabolic route in the EAPCN model. For example, oxi-
doreductases (EC 1.14.13.-) in step 2, hexosyltransferases
(EC 2.4.1.-) in step 3, flavonol synthase (EC 1.14.11.23) in
step 5, methyltransferases (EC 2.1.1.-) in step 6, oxido-
reductases (EC 1.14.11.-) in step 7, ligases (EC 6.3.-.-)
in step 10, 1-aminocyclopropane-1-carboxylate synthase
(EC 4.4.1.14) in step 12, and ACO (EC 1.14.17.4) in step
13 (Fig. 3). These findings suggest that transcriptional co-
repressors and adaptors assemble in a modular way to
integrate simultaneous inputs from several phytohormone
pathways, implying that they play central roles in this
process. The circular control units of TFs that regulate
enzyme-encoding genes in the EAPCN may act as the
integrating mechanism to modulate consecutive metabolic

pathways. It has been shown that the TFs, ARF2 [31],
EIN3 [32], DWF4 [33], MYC2 [34], EGL3 and GL3
(bHLH factors), GL1 (MYB factor) [35], and HY5 [36] are
activated by the cooperative action of phytohormone
signaling pathways in the regulation of cellular activities
including elongation, cell division and differentiation,
organogenesis, pattern formation, reproduction, and re-
sponses to abiotic and biotic stresses. Based on the
interaction information from a proteome-wide binary
protein–protein interaction map of Arabidopsis [16],
we investigated the specific protein interactions in the
circular control units of EAPCN. We found that a par-
ticular consecutive protein–protein interaction route
was present in circular control unit C (Fig. 5f ), HYH
(AT3G17609), HY5 (AT5G11260), MYB75 (AT1G56650),
GL3 (AT5G41315), EGL3 (AT1G63650), and TT2
(AT5G35550), that regulates the genes encoding the
flavonol synthase (EC 1.14.11.23) LDOX (AT4G22880),
the naringenin-chalcone synthase (EC 2.3.1.74) TT4
(AT5G13930), and the hexosyltransferase (EC 2.4.1.-)
UGT78D2 (AT5G17050). We also found that distinct
TFs target multiple genes that encode enzymes in-
volved in phytohormone biosynthesis, including EIN3
(AT3G20770), PIF3 (AT1G09530), PIL5 (AT2G20180),
LEC2 (AT1G28300), MYC2 (AT1G32640), GL3 (AT5G
41315), ARF8 (AT5G37020), ARF7 (AT5G20730), HY5
(AT5G11260), EGL3 (AT1G63650), and STY1 (AT3G
51060) (see Additional file 3, section III for details).

Downstream TFs in phytohormone signal transduction
pathways are involved in the circular control units that
regulate enzyme-encoding genes in the EAPCN
Homeostasis and concentrations of phytohormones are
both influenced by local phytohormone biosynthesis and
transport from production sites to recipient tissues that
require phytohormones for growth [3, 4]. Extracellular
phytohormones may need before they can be converted
to regulate genes encoding the enzymes required for
endogenous phytohormone biosynthesis. Previous stud-
ies have elucidated signal transduction pathways from
hormone biosynthesis to responses, and unique cellular
components for the phytohormone-sensing and -response
machinery of cells have been described [37]. For example,
the SCF (Skp/Cullin/F-box) complex, an E3 ubiquitin
ligase complex, plays a crucial role in regulating auxin,
gibberellin, and jasmonic acid responses because it tar-
gets transcriptional repressor proteins for degradation
upon perception of biologically active phytohormones
[38–40]. In Fig. 6, a simplified model was used to de-
scribe extracellular phytohormones that are converted
to regulate enzyme-encoding genes or TFs in phytohor-
mone biosynthesis by signal transduction pathways. The
auxin: SCFTIR1/AFB complex, which consists of four sub-
units (TIR1/AFB, ASK1, CUL1, and RBX), regulates the
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Aux/IAA transcriptional repressors, and the ARF TFs [40]
(Fig. 6a). The gibberellin: SCFSLY1 complex regulates
DELLA, MYB (GL1), and bHLH (EGL3, GL3, PIF3, and
PIF4) TFs, which are members of the WD-repeat/bHLH/
MYB complex [35, 38] (Fig. 6b). The jasmonates: SCFCOL1

ubiquitin-ligase complex, which associates with AtCUL1,
AtRbx1, and the Skp1-like proteins ASK1 and ASK2, reg-
ulates the JA ZIM-domain (JAZ) repressors, the bHLH
subgroup IIIe factors MYC and EIN3/EIL1, bHLH sub-
group IIId factors, APETALA2/ETHYLENE RESPONSE
FACTOR (AP2/ERF), R2R3-MYB TFs, MYB, and the WD-
repeat/bHLH/MYB transcription complex [35] (Fig. 6c).
In the EAPCN model, the auxin response factors ARF7

(AT5G20730) and ARF17 (AT1G77850) regulate a gene
encoding IAA-amido synthetase GH3.5 (AT4G27260),
and ARF8 (AT5G37020) regulates a gene encoding the
GH3 enzyme (EC 6.3.-.-) GH3.17 (AT1G28130), which
act in the crosstalk of abscisic acid, auxin, and jasmonic
acid. ARF2 (AT5G62000) regulates a gene encoding the
1-aminocyclopropane-1-carboxylate synthase (EC 4.4.1.14)
ACS8 (AT4G37770), which acts in the crosstalk of auxin,
cytokinin, ethylene, and jasmonic acid. The downstream
TFs in the gibberellin signal transduction pathway (i.e.,
EGL3, GL3, PIF3, and PIF4) regulate genes encoding
the flavonol synthase (EC 1.14.11.23) LDOX (AT4G22880),
the naringenin-chalcone synthase (EC 2.3.1.74) TT4
(AT5G13930), and the hexosyltransferase (EC 2.4.1.-)

UGT78D2 (AT5G17050), which act in the crosstalk
of abscisic acid, auxin, gibberellin, brassinosteroids,
salicylic acid, cytokinin, and jasmonic acid. Similarly,
the downstream TFs in the jasmonate signal transduction
pathway, including MYC2, EIN3, EIL1, MYB2, MYB4,
MYB12, MYB26, MYB28, MYB29, MYB30, MYB32,
MYB34, MYB58, MYB63, and MYB75, regulate genes en-
coding various phytohormone biosynthetic pathways in
the EAPCN model. Importantly, the downstream TFs in
the phytohormone signal transduction pathway are all in-
volved in the circular control units that regulate enzyme-
encoding genes in the EAPCN (Fig. 6d). Thus, it can be
inferred that extracellular phytohormones are controlled
by signal transduction pathways to activate genes that
encode enzymes involved in phytohormone biosyn-
thesis, thereby regulating endogenous interconnected
phytohormone homeostasis. These results will help in
understanding the phytohormone-sensing and -response
machinery, which serve as regulatory hubs to mediate
crosstalk among the phytohormone signaling pathways.
The mediator complex is a multi-protein transcriptional

co-activator complex that serves as a bridge between
gene-specific TFs and the RNA polymerase machinery to
regulate transcription. Chen et al. [41] reported that
MED25 physically associates with MYC2 and exerts a
positive effect on MYC2-regulated gene transcription in
Arabidopsis. Recently, Wang et al. [42] showed that the

Fig. 6 Simplified model for extracellular phytohormones that regulate enzyme-encoding genes or TFs in phytohormone biosynthesis by signal
transduction pathways. a Auxin: SCFTIR1/AFB complex. b Gibberellin: SCFSLY1 complex. c Jasmonates: SCFCOL1 complex. d The downstream TFs
in the phytohormone signal transduction pathway are involved in the TF circular control units that regulate enzyme-encoding genes in EAPCN.
e Mediator complex regulates a wide range of signaling pathways by selectively interacting with specific TFs in phytohormone signal
transduction pathways

Yue et al. BMC Systems Biology  (2016) 10:87 Page 11 of 18



mediator complex subunit MED16 regulated resistance to
Sclerotinia sclerotiorum by governing both jasmonic acid/
ethylene-mediated and WRKY33-activated defense signal-
ing in Arabidopsis. These results suggest that the mediator
complex regulates a wide range of signaling pathways by
selectively interacting with specific TFs associated with
phytohormone signal transduction pathways (Fig. 6e),
and may play central roles from hormone perception to
responses.

Multiple functional redundancies in enzyme-based
regulatory processes revealed in the EAPCN model
A major characteristic of metabolic pathways and net-
works is regulatory flexibility, which means that enzymes
that regulate metabolic synthesis can also catalyze other
metabolic conversion pathways and metabolism can pro-
gress through multiple metabolic pathways. We analyzed
functional redundancy in enzyme-based regulatory pro-
cesses to identify co-regulated biological processes in the
EAPCN model and obtain a better understanding of
how homeostasis and variable concentrations of phyto-
hormones influence plant growth and development.
The first significant result was phospholipase D (EC

3.1.4.4), phospholipase C (EC 3.1.4.3), and inositol-1. 4-
bisphosphate 1-phosphatase (EC 3.1.3.57) in the EAPCN
model. It has been reported that phospholipase C pro-
duces two important secondary messenger molecules,
inositol 1, 4, 5-trisphosphate and diacylglycerol, and that
phospholipase D hydrolyzes phospholipids at the terminal
phosphodiester bond and generates phosphatidic acid
[43]. It has been shown that inositol 1, 4, 5-trisphosphate
and phosphatidic acid together play vital roles in regulat-
ing a feedback loop from the cytosol to the plasma mem-
brane toregulate Ca2+ levels [44, 45]. Recently, it was
reported that calcium mediates the formation of stable
CIPK–CBL complexes, which regulate the phosphoryl-
ation state and activity of various ion transporters involved
in the maintenance of cell ion homeostasis in plants
[46, 47]. The maintenance of organelle-specific ion and
pH homeostasis has been shown to be a cell-intrinsic
phenomenon [48]. It can be speculated that the cell
microenvironment is governed by ion and pH homeo-
stasis, which is regulated by intracellular phytohormone
crosstalk and therefore closely linked to rapid changes
in gene expression, metabolic regulation, signaling, and
cell behaviors.
Cellular redox homeostasis plays an important role in

every aspect of plant biology. Accumulating evidence
suggests that the redox signaling hub interfaces with the
phytohormone network in response to environmental
stress [49, 50]. Our second significant result was that, in
the EAPCN model, major distinct enzymes are involved
in glutathione redox reactions. For example, glutathione
peroxidase (EC 1.11.1.9) regulates the crosstalk of ABA

and ethylene, and glutathione transferase (EC 2.5.1.18) reg-
ulates the crosstalk of ethylene, jasmonic acid, and salicylic
acid. Glutathione peroxidases (EC 1.11.1.9) are a major
family of reactive oxygen species scavenging enzymes
[51, 52]. Glutathione S-transferases (GSTs; EC 2.5.1.18)
catalyze the nucleophilic conjugation of reduced tripep-
tide glutathione (GSH; g-Glu-Cys-Gly). This result sug-
gests that redox changes in the glutathione pool can
affect growth through phytohormone crosstalk.
Circadian clocks coordinate numerous biological events

with the environment [53]. Recent studies in Arabidopsis
have identified many clock components that regulate tran-
scription in hormone signaling pathways. For example,
the clock-controlled expression of the GA biosynthetic en-
zyme GA20ox1 and GA-INSENSITIVE DWARF1 (GID1,
which encodes a GA receptor) contribute to a higher
abundance of a GA–GID1 complex around dawn, which
promotes degradation of DELLA TFs. DELLA TFs are
crucial repressors of the GA signaling pathway and block
PHYTOCHROME INTERACTING FACTOR4 (PIF4)
activity by binding to the PIF4 DNA-binding domain [54].
In addition, PIF4 has been shown to influence auxin pro-
duction, and PIF4 and PIF5 both affect auxin signaling
downstream of biosynthesis [55]. Our third significant
result was that, in the EAPCN, PIF3 and PIF4 are part
of the circular control unit that regulates the genes en-
coding the flavonol synthase (EC 1.14.11.23) LDOX
(AT4G22880), the naringenin-chalcone synthase (EC
2.3.1.74) TT4 (AT5G13930), and the hexosyltransfer-
ase (EC 2.4.1.-) UGT78D2 (AT5G17050), and PIF3
(AT1G09530) mediates multiple target genes of various
phytohormone biosynthesis enzymes (see Additional file
3, section III for details). Thus, it seems likely that phyto-
hormone crosstalk is coordinated with the circadian
system.
Compartmentation of phytohormone biosynthesis path-

ways is the basis of metabolic complexity [56]. The
fourth significant result of our study was that many of
the enzymes (e.g., EC 1.3.1.-, EC 1.1.1.-, and EC 6.2.1.-)
in the EAPCN model are localized in chloroplasts or
mitochondria. Retrograde signaling of chloroplasts and
mitochondria affects the transcriptional and transla-
tional machinery to influence nuclear gene expression
[57]. Nuclear genes encoding chloroplast and mitochon-
dria proteins also regulate the metabolic adjustment in
response to changing environmental conditions [58].
Therefore, it seems that the spatial scale of the struc-
tural connectivity of the EAPCN model could be im-
portant for enzyme activities, phytohormone storage
and transport, and different phytohormone metabolites
related to the growth environment. Furthermore, phy-
tohormone crosstalk may play a central role in coordinat-
ing internal developmental processes with environmental
signals.
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An integrated model showing multiple levels of
components, structural connectivity architecture, and the
mechanism of phytohormone crosstalk from a global
perspective
Based on our results, we built an integrated model to
demonstrate the multiple levels of collaborative mecha-
nisms of phytohormone crosstalk from a global perspec-
tive (Fig. 7). The inferred model defines the multiple
levels of components, structural connectivity architecture,
and biological mechanisms. At the biosynthesis level,
phytohormone crosstalk is controlled by sophisticated
synergistic or antagonistic relationships between enzyme-
based phytohormone biosynthesis pathways (Fig. 7a). The
EAPCN, which was constructed to investigate the struc-
tural connectivity architecture of the various phytohor-
mone biosynthesis pathways, revealed that the enzymes
localized at highly connected nodes in the EAPCN formed
a consecutive metabolic route. At the transcriptional level,
hormone homeostasis isregulated by transcriptional and
post-translational regulation of genes that encode enzymes
involved in the phytohormone biosynthetic pathways

(Fig. 7b). We found that the TFs that regulate genes en-
coding enzymes of the consecutive metabolic route formed
circular control units, and extracellular phytohormones
were converted by signal transduction pathways to regulate
enzyme-encoding genes or TFs in various phytohormone
biosynthesis pathways. Downstream TFs associated with
the phytohormone signal transduction pathways were in-
volved in the circular control units that regulate enzyme-
encoding genes in the EAPCN (Fig. 7c). In addition,
multiple functional redundancy in enzyme-based pro-
cesses that regulate conversion complexities in the
EAPCN model were involved in ion and pH homeosta-
sis, environmental signals, cellular redox homeostasis,
and circadian clocks (Fig. 7d).

Transcriptional profiles and a protein expression map of
the Arabidopsis root apical meristem support the
proposed framework of phytohormone crosstalk
Phytohormone crosstalk is tightly constituted by the mul-
tiple scales of coupled mechanisms (i.e. transcriptional
regulation, protein abundance over post-translational

Fig. 7 Integrated model showing multiple levels of collaborative mechanisms in the EAPCN from a global perspective. a Endogenous enzyme-based
phytohormones biosynthesis crosstalk network. b Transcriptional regulatory module (i.e., TFs) that regulates enzyme-encoding genes related
to phytohormones crosstalk. c Extracellular phytohormones regulate genes that encode enzymes involved in phytohormone biosynthesis
through phytohormone signal transduction pathways. d Co-regulated biological processes in the phytohormone crosstalk network
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modifications, signal transduction, synthesis, degrad-
ation and metabolic conversion complexities et al.). It is
now widely recognized that gene expression at the tran-
scriptional level need not equate to protein expression
at the protein level and certainly not at the enzyme ac-
tivity level. Thus, to validate the proposed framework
of phytohormone crosstalk, transcriptional profiles and
a protein expression map of Arabidopsis root stele cells
(vasculature) were used to analyze the expressed enzyme-
encoding genes, TFs, and TFs target genes in the EAPCN
model. As shown in Table 2, except for trans-zeatin O-β-
D- glucosyltransferase (EC 2.4.1.203), enzyme-encoding
genes in the consecutive metabolic route of the control-
ling sets in the EAPCN model were involved in Arabi-
dopsis root vasculature. In particular, oxidoreductases
(EC 1.3.1.-, EC 1.14.13.-), hexosyltransferases (EC 2.4.1.-),
methyltransferases (EC 2.1.1.-), glutathione transferase
(EC 2.5.1.18), alcohol dehydrogenase (EC 1.1.1.1), abscisic
acid 8′-hydroxylase (EC 1.14.13.93), TT4 (EC 2.3.1.74),
acyl-[acyl-carrier-protein] desaturase (EC 1.14.19.2) and
cellulose synthase (EC 2.4.1.12) showed correlations be-
tween proteome and transcriptional profiles. In addition,
we found that the gene expression profiles in the Arabi-
dopsis root apical meristem (vasculature) had specific
characteristics in the EAPCN model. For example, the
genes encoding DWF4 (AT3G50660), EIL3 (AT1G73730),
and BZR1 (AT1G75080) regulate genes encoding oxi-
doreductases (EC 1.14.13.-) in step 2 of the consecutive
metabolic route. Genes encoding FT1 (AT2G03220),
VRN1 (AT3G18990), and UGT78D2 (AT5G17050) regu-
late genes encoding hexosyltransferases (EC 2.4.1.-) in
step 3. Genes encoding MYB32 (AT4G34990), HY5
(AT5G11260), FLS1 (AT5G08640), MYB12 (AT2G47460),
RGA1 (AT2G01570), and GAI (AT1G14920) regulate
genes encoding flavonol synthase (EC 1.14.11.23) in
step 5. Genes encoding SPT (AT4G36930), MYB32
(AT4G34990), GA2OX6 (AT1G02400), CBF1 (AT4G
25490), GAI (AT1G14920), DAG1 (AT3G61850), RGA1
(AT2G01570), DDF1 (AT1G12610), and HY5 (AT5G
11260) regulate genes encoding oxidoreductases (EC
1.14.11.-) in step 7. Genes encoding AAO1 (AT5G
20960) regulate genes encoding Indole-3-acetaldehyde
oxidase (EC 1.2.3.7) in step 8. Genes encoding the auxin
response factor ARF7 (AT5G20730), DFL1 (AT5G54510),
and WES1 (AT4G27260) regulate genes encoding GH3
(EC 6.3.-.-) in step 10. Genes encoding the auxin response
factor ACS6 (AT4G11280), MP (AT1G19850), ARF2
(AT5G62000), ACS2 (AT1G01480), and ACS8 (AT4G
37770) regulate genes encoding 1-aminocyclopropane-1-
carboxylate synthase (EC 4.4.1.14) in step 12. Finally,
genes encoding EIN3 (AT3G20770), ATHB-1 (AT3G
01470), and ATACO2 (AT1G62380) regulate genes encod-
ing ACO (EC 1.14.17.4) in step 13 of the consecutive
metabolic route. These results support the proposed

framework of phytohormone crosstalk, and indicate
that the consecutive metabolic route of controlling sets
in the EAPCN model is involved in Arabidopsis root
vasculature (except trans-zeatin O-β-D-glucosyltransferase
(EC 2.4.1.203)). Further support for the core control struc-
tural and functional processes in phytohormone crosstalk
could be provided using reverse genetic approaches to elu-
cidate the biological functions of phytohormones, espe-
cially their roles in regulating cellular activities such as
elongation, cell division and differentiation, organogenesis,
pattern formation, reproduction, and responses to abiotic
and biotic stress conditions.

Conclusions
Plant growth and development is influenced both by
local phytohormone biosynthesis and the transport from
production sites to recipient tissues that require phyto-
hormones for growth. The final effect of an individual
hormone is established by hormonal pathways that are
interconnected through a complex network of interac-
tions and feedback regulations. Representing the com-
plexity of the relationships involved in phytohormone
crosstalk is difficult. The EAPCN model presented here
revealed that several phytohormone pathways are inter-
linked at the hormone biosynthesis level. Our results
revealed multiple scales of coupled mechanisms in hormo-
nal crosstalk networks that play a central role in coordinat-
ing internal developmental processes with environmental
signals. Our main observations were: (i) enzymes localized
at highly connected nodes of the EAPCN form a consecu-
tive metabolic route; (ii) TFs regulating genes that encode
enzymes in the consecutive metabolic route form circular
control units that act at the transcriptional level; (iii) down-
stream TFs of phytohormone signal transduction pathways
are also involved in the circular control units of TFs that
regulate enzyme-encoding genes; and (iv) multi-functional
enzymes in the EAPCN are involved in maintaining ion
and pH homeostasis, coordinating internal develop-
mental processes with environmental signals, cellular
redox homeostasis, and circadian clocks. In this study,
the multiple scales of coupled mechanisms provided a
system-level understanding of several modules and net-
work communities that are interlinked by hub regions
mediating phytohormones synergy and signaling inter-
dependency. Some of the enzymes and enzyme-coding
genes or regulating TFs in the EAPCN model have been
validated by physiological and genetic experimental stud-
ies (Additional file 3). From the view of modules and net-
work communities, the highly interconnected enzymes
in the EAPCN model and their enzyme-coding genes or
regulating TFs would be the starting point for future
experimental analysis. Such as, oxidoreductases (EC
1.14.13.-) and their enzyme-coding genes DWF4 (AT3G
50660) and CYP79F2 (AT1G16400) or regulating TFs
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Table 2 Transcriptional profiles and a protein expression map of enzyme-encoding genes, TFs, and TF target genes and enzymes in
Arabidopsis root apical meristem (vasculature)

Enzyme Expressed TFs, TF target genes Expressed genes encoding enzymes Protein expression Crosstalk

(EC 1.3.1.-)
(Step 1)a

AT3G55360 AT3G55360 Abscisic acid
Brassinosteroid

EC 1.14.13.-
(Step 2)a

DWF4(AT3G50660)
EIL3(AT1G73730)
BZR1(AT1G75080)

AT2G27690
AT5G04660
AT4G36380
AT5G38970

AT5G48000 Brassinosteroid
Jasmonic acid

EC 2.4.1.-
(Step 3)a

FT1(AT2G03220)
VRN1(AT3G18990)
UGT78D2(AT5G17050)

AT3G53160 AT3G21750
AT4G34138 AT1G73880
AT4G34135 AT1G78270
AT1G06000 AT2G30140
AT5G40390 AT2G28080

AT1G06000 Abscisic acid
Auxin
Brassinosteroid
Cytokinin
Salicylic acid

EC 1.14.11.23
(Step 5)a

MYB32(AT4G34990)
HY5(AT5G11260)
FLS1(AT5G08640)
MYB12(AT2G47460)
RGA1(AT2G01570)
GAI(AT1G14920)

AT3G50210
AT3G49630
AT3G19010
AT4G16770

Gibberellin
Jasmonic acid

EC 2.1.1.-
(Step 6)a

AT3G63410 AT5G54160 AT3G63410 Auxin
Gibberellin

EC 1.14.11.-
(Step 7)a

SPT(AT4G36930)
MYB32(AT4G34990)
GA2OX6(AT1G02400)
CBF1(AT4G25490)
GAI(AT1G14920)
DAG1(AT3G61850)
RGA1(AT2G01570)
DDF1(AT1G12610)
HY5(AT5G11260)

AT1G14130 Ethylene
Gibberellin
Jasmonic acid

EC 1.2.3.7
(Step 8)a

AAO1(AT5G20960) AT2G27150 Abscisic acid
Auxin

EC 2.4.1.121
(Step 9) a

AT4G15550 Abscisic acid
Auxin
Salicylic acid

EC 6.3.-.-:
(Step 10)a

ARF7(AT5G20730)
DFL1(AT5G54510)
WES1(AT4G27260)

AT2G46370 Abscisic acid
Auxin
Jasmonic acid

EC 2.6.1.57
(Step 11)a

AT1G70560 AT1G62960
AT5G51690

Abscisic acid
Auxin
Jasmonic acid

EC 4.4.1.14
(Step 12)a

ACS6(AT4G11280)
MP(AT1G19850)
ARF2(AT5G62000)
ACS2(AT1G01480)
ACS8(AT4G37770)

AT5G51690 AT1G62960 Auxin
Cytokinin
Ethylene
Jasmonic acid

EC 1.14.17.4
(Step 13)a

EIN3(AT3G20770)
ATHB-1(AT3G01470)
ATACO2(AT1G62380)

AT1G05010 AT1G77330 Ethylene

EC 2.5.1.18 OBP1(AT3G50410)
GSTF8(AT2G47730)
ANAC019(AT1G52890)
AP2.3(AT3G16770)

AT2G30870 AT2G29440
AT2G29490 AT5G41210
AT1G75270 AT1G17170
AT1G27140 AT2G29480
AT2G30860 AT1G17190
AT4G19880 AT5G45020
AT5G41240 AT5G41220
AT5G44990 AT1G78340
AT2G29420 AT1G27130
AT2G29460 AT1G17180
AT2G29450 AT1G78380
AT2G29470 AT2G02390

AT2G30870
AT2G30860
AT2G47730
AT1G78380

Ethylene
Jasmonic acid
Salicylic acid
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TCP1 (AT1G67260), PIL5 (AT2G20180). GH3 enzymes
(EC: 6.3.-.-) and their enzymatic genes GH3.5 (AT4G
27260) and DFL1 (AT5G54510) by modification of STY1
(AT3G51060). Hexosyltransferases (EC: 2.4.1.-) and enzym-
atic genes UGT78D2 (AT5G17050). Our results provide a
broader view of phytohormone crosstalk in Arabidopsis
and uncover potential key regulators that can be further
analyzed in future studies.

Additional files

Additional file 1: The detailed description for the bioinformatic analyses
and methods. (DOCX 813 kb)

Additional file 2: XML, XGMML, GML, SIF and NNF format of the
identified models in the manuscript. (ZIP 164 kb)

Additional file 3: Supplementary Information, section I. Existing
physiological and genetic studies. Supplementary Information, section II.

Table 2 Transcriptional profiles and a protein expression map of enzyme-encoding genes, TFs, and TF target genes and enzymes in
Arabidopsis root apical meristem (vasculature) (Continued)

EC 1.1.1.1 MYC2(AT1G32640)
RAP2.12 (AT1G53910)
ADH1(AT1G77120)
ABF2(AT1G45249)
CBF2(AT4G25470)
MYB2(AT2G47190

AT5G43940 AT5G63620
AT5G19440 AT5G24760

AT5G43940
AT5G19440

Ethylene
Salicylic acid

EC 1.13.11.12 LOX3 (AT1G17420)
MYC2 (AT1G32640)
ORA47 (AT1G74930)
STZ(AT1G27730)
WRKY6(AT1G62300)
WRKY3(AT2G03340)
ANAC055(AT3G15500)
ANAC019(AT1G52890)
WRKY11(AT4G31550)

AT3G22400 AT1G67560 Abscisic acid
Jasmonic acid

EC 1.14.11.13 GA2OX6(AT1G02400)
DDF1(AT1G12610)
CBF1(AT4G25490)

AT1G14130 AT1G14120 Ethylene gibberellin

EC 1.14.13.93 BZR1(AT1G75080)
CPD(AT5G05690)
DWF4(AT3G50660)

AT4G19230
AT5G45340
AT5G38970
AT4G36380

AT5G48000
AT5G05690

Abscisic acid
Brassinosteroid
Ethylene

EC 2.3.1.74 TT4(AT5G13930)
MYB12(AT2G47460)
HYH(AT3G17609)

AT5G13930 Auxin
Jasmonic acid

EC 1.14.19.2 AT5G16240
AT2G43710
AT3G02630

AT3G02630
AT2G43710

Jasmonic acid
Salicylic acid

EC 1.1.1.288 AT1G52340 Abscisic acid
Brassinosteroid

EC 2.4.1.12 VND7(AT1G71930) AT5G16910 AT3G03050
AT5G64740 AT5G09870
AT4G32410 AT4G39350
AT5G05170 AT2G21770
AT1G55850 AT2G33100
AT1G71930

AT4G32410
AT5G64740
AT5G05170

Abscisic acid
Ethylene
Jasmonic acid

EC 2.4.1.215 AT3G53160 AT1G78270
AT2G28080 AT2G30140

Brassinosteroid
Cytokinin

EC 2.4.1.237 AT1G73880 AT4G34138
AT2G15490 AT4G34135
AT5G59580 AT5G59590
AT1G07250

Abscisic acid
Auxin
Brassinosteroid
Salicylic acid

EC 2.4.1.263 AT4G34138 AT4G15550
AT4G34135 AT1G07260
AT2G30150 AT2G31750
AT1G07250

Abscisic acid
Auxin
Salicylic acid

EC: 2.4.1.195 AT1G05680 AT2G30150
AT2G31750 AT1G24100

Abscisic acid
Salicylic acid

aIndicates consecutive metabolic route of controlling sets in the EAPCN model (see Fig. 3).
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