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Metabolic modeling of a chronic wound
biofilm consortium predicts spatial
partitioning of bacterial species
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Abstract

Background: Chronic wounds are often colonized by consortia comprised of different bacterial species growing as
biofilms on a complex mixture of wound exudate. Bacteria growing in biofilms exhibit phenotypes distinct from
planktonic growth, often rendering the application of antibacterial compounds ineffective. Computational modeling
represents a complementary tool to experimentation for generating fundamental knowledge and developing more
effective treatment strategies for chronic wound biofilm consortia.

Results: We developed spatiotemporal models to investigate the multispecies metabolism of a biofilm consortium
comprised of two common chronic wound isolates: the aerobe Pseudomonas aeruginosa and the facultative
anaerobe Staphylococcus aureus. By combining genome-scale metabolic reconstructions with partial differential
equations for metabolite diffusion, the models were able to provide both temporal and spatial predictions with
genome-scale resolution. The models were used to analyze the metabolic differences between single species and
two species biofilms and to demonstrate the tendency of the two bacteria to spatially partition in the multispecies
biofilm as observed experimentally. Nutrient gradients imposed by supplying glucose at the bottom and oxygen at
the top of the biofilm induced spatial partitioning of the two species, with S. aureus most concentrated in the
anaerobic region and P. aeruginosa present only in the aerobic region. The two species system was predicted to
support a maximum biofilm thickness much greater than P. aeruginosa alone but slightly less than S. aureus alone,
suggesting an antagonistic metabolic effect of P. aeruginosa on S. aureus. When each species was allowed to
enhance its growth through consumption of secreted metabolic byproducts assuming identical uptake kinetics, the
competitiveness of P. aeruginosa was further reduced due primarily to the more efficient lactate metabolism of S.
aureus. Lysis of S. aureus by a small molecule inhibitor secreted from P. aeruginosa and/or P. aeruginosa aerotaxis
were predicted to substantially increase P. aeruginosa competitiveness in the aerobic region, consistent with in vitro
experimental studies.

Conclusions: Our biofilm modeling approach allows the prediction of individual species metabolism and
interspecies interactions in both time and space with genome-scale resolution. This study yielded new insights into
the multispecies metabolism of a chronic wound biofilm, in particular metabolic factors that may lead to spatial
partitioning of the two bacterial species. We believe that P. aeruginosa lysis of S. aureus combined with nutrient
competition is a particularly relevant scenario for which model predictions could be tested experimentally.
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Background
In nature, the majority of bacteria grow as biofilms in
mixed consortia that use mutualistic, syntrophic, com-
mensal or antagonistic strategies to compete for and
efficiently utilize available nutrients [1–4]. Microbial bio-
films are critically important in medical, environmental
and engineered biological systems. For example, the hu-
man gut microbiome has emerged as a major focus for
biomedical research with mounting evidence suggesting
unhealthy gut flora biofilms are associated with illnesses
including autoimmune diseases, colorectal cancer and
inflammatory bowel disease [5–10]. Environmental mi-
crobial biofilm consortia form the basis of global nutrient
cycles from nitrogen fixation to carbon fluxes [11, 12].
Additionally, the study of natural biofilms has gained in
popularity recently due to their efficient organization and
ability, through synergistic interactions, to optimize mul-
tiple tasks simultaneously like the deconstruction of com-
plex, recalcitrant plant materials into simple sugars. A
major goal of current biofuels research is to engineer syn-
thetic microbial communities that mimic these naturally
occurring biofilms for biomass conversion to renewable li-
quid fuels [13]. While foundational to the vast majority of
microbial life on the planet, the basic design principles of
consortial biofilms are still poorly understood due largely
to the complexity of naturally occurring systems [3, 4].
Chronic wounds are defined as a host-pathogen envir-

onment that has failed to proceed through a timely heal-
ing process. An estimated 2 % of the U.S. population
(6 million people) have a non-healing chronic wound
with treatment costing more than $25 billion per year
[14–16]. Chronic wounds are often colonized by mi-
croorganisms growing as biofilms on a complex mix-
ture of wound exudate [17–24]. Microbes residing in
biofilms exhibit phenotypes distinct from planktonic
growth, making treatment a major challenge. For in-
stance, bacteria in biofilms can tolerate antimicrobial
agent concentrations 10,000 times higher than the
same microbes grown planktonically [25, 26]. Chronic
wounds are typically colonized by consortia comprised
of different microbial species [17–19, 27, 28]. Polymi-
crobial infections have been reported to have elevated
mortality rates relative to monocultures [29], and in
vivo rabbit model systems demonstrated that consor-
tia prevented wound healing compared to their re-
spective monocultures [24, 30].
The aerobe Pseudomonas aeruginosa and the faculta-

tive anaerobe Staphylococcus aureus are two bacteria
commonly isolated from chronic would biofilm infec-
tions [19, 23, 27]. The same two bacteria are often key
contributors to multispecies infections that occur in the
lung mucous of cystic fibrosis patients [31]. P. aerugi-
nosa is known to exhibit much lower growth rates than
S. aureus and other facultative anaerobes in anaerobic

environments common in chronic wound and mucoid
biofilms [32, 33]. Perhaps partially in response to this
metabolic disadvantage, P. aeruginosa has evolved a
number of mechanisms to enhance its competitiveness
in multispecies biofilm communities. The most widely
studied mechanism is growth inhibition and lysis of
competing bacteria through the secretion of an arsenal
of small molecule (e.g. pyocyanin [34]) and protein (e.g.
bacteriocins [35]) toxins. The consumption of metabolic
byproducts secreted by other bacteria through cross
feeding mechanisms also has been proposed to enhance
P. aeruginosa competitiveness [36]. Another putative
mechanism is P. aeruginosa chemotaxis towards high
oxygen niches (i.e. aerotaxis [37]) where it is metabolic-
ally competitive.
Multispecies biofilms are sufficiently complex to pre-

clude detailed understanding through traditional experi-
mental techniques developed for planktonic cultures. A
primary challenge is the complex interactions between
the biofilm species and the extracellular environment
[38]. Most naturally occurring microbial consortia exist
in spatially heterogeneous environments that also exhibit
temporal variations. The presence of spatial heterogen-
eity plays an essential role in the evolution and function
of microbial species [39–43] and has profound effects on
biofilm formation and development [3, 38, 44, 45]. Con-
centration gradients in key nutrients due to limited dif-
fusion establish metabolic niches within the biofilm that
can produce spatial variations in biomass density [46]
and additionally spatial partitioning of species in the
case of multispecies biofilms [45, 47]. Quantitative un-
derstanding of the relationships between spatial and
temporal variations in the extracellular environment and
community metabolism is critical to systematically analyze
and rationally manipulate biofilm consortia. While spatio-
temporal metabolic models that account for both spatial
and temporal variations in the extracellular environment
have been constructed, these models rely on table lookups
of precomputed flux balance solutions [48–50] or lattice
based descriptions of nutrient diffusion [51, 52].
We recently proposed a general methodology for spa-

tiotemporal metabolic modeling based on combining
genome-scale reconstructions with fundamental trans-
port equations that capture the relevant convective [53]
and/or diffusional [54] processes. In this paper, we ap-
plied this methodology to develop biofilm metabolic
models that predict the complex spatiotemporal behav-
ior of a P. aeruginosa/S. aureus two species system. The
biofilm models were formulated by combining genome-
scale reconstructions of P. aeruginosa and/or S. aureus
metabolism with uptake kinetics and reaction-diffusion
type equations for extracellular substrates and metabolic
byproducts. To avoid complications associated with
solving a moving boundary problem, the biofilm was
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assumed to have a fixed thickness over which metab-
olites diffused and cell growth occurred. Therefore,
the models were most appropriate for predicting the
metabolism of biofilms of a specified thickness. We
developed an effective computational method for
solving the biofilm models, which consisted of a set
of partial differential equations with mixed boundary
conditions constrained by embedded linear programs.
The models were used to analyze the metabolic
differences between single species and two species
chronic wound biofilms and to investigate putative
factors that could impact the physiology of the two
species biofilm, including nutrient diffusion, metabol-
ite cross-feeding, P. aeruginosa motility and P. aerugi-
nosa mediated lysis of S. aureus.

Methods
Model formulation
Biofilm models were formulated by combining genome-
scale reconstructions of P. aeruginosa and/or S. aureus
metabolism with uptake kinetics for available nutrients
and reaction-diffusion type equations for species bio-
mass, supplied substrates and synthesized metabolic
byproducts. Single species biofilm models were formu-
lated with either the P. aeruginosa or S. aureus recon-
struction, while the two species model used both
reconstructions. Diffusion was assumed to occur only in
the axial direction of the biofilm such that spatial varia-
tions could be captured with a single variable z (Fig. 1a).
For simplicity, the biofilm was assumed to have a fixed
thickness W over which the nutrients diffused and cell

a

b

Fig. 1 Formulation and solution of the multispecies biofilm metabolic model. a Schematic representation of the chronic wound biofilm model of
constant thickness W with glucose provided at the tissue-biofilm interface (z = 0), oxygen supplied at the biofilm-air interface (z =W) and the
metabolic byproducts acetate, succinate and lactate removed at the tissue-biofilm interface. b Schematic representation of the biofilm metabolic
model solution procedure. The multispecies biofilm with temporal and spatial variations is described by a spatiotemporal model that accounts for
the diffusion of nutrients and byproducts. PDEs are written with respect to the bacterial species concentration (Xi) and the metabolite concentrations
(Mj) assuming that spatial variations are limited to a single direction z. Lexicographic linear program solution of the genome-scale reconstruction
of each species is performed to predict the growth rate, nutrient uptake rates and byproduct secretion rates. The PDEs are spatially
discretized to yield a large-set of ODEs with embedded LPs that are integrated with the MATLAB code DFBAlab [78] to generate time
and spatially resolved predictions
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growth occurred. Therefore, the models were most
appropriate for predicting the metabolism of biofilms of
a specified thickness. Both strains were assumed to con-
sume glucose as the primary carbon source [55].
Glucose was supplied at the tissue-biofilm interface at
the assumed concentration of the wound exudate, while
oxygen was supplied at the biofilm-air interface at a con-
centration for an aqueous solution in equilibrium with
atmospheric oxygen.
The P. aeruginosa PA01 iMO1056 reconstruction ac-

counts for 1056 genes, 1030 enzymes, 833 intracellular
reactions and 277 exchange reactions [56]. This recon-
struction has been shown to provide good agreement
with experimentally determined biomass yields for aer-
obic growth on glucose and anaerobic growth on glucose
with nitrate as an electron acceptor. Our preliminary
flux balance calculations with a maximum growth ob-
jective showed the primary metabolic byproducts to be
acetate and L-alanine. The secretion fluxes of other
minor byproducts were approximately an order of mag-
nitude less than for acetate and L-alanine. P. aeruginosa
is known to secrete acetate, lactate and succinate [57],
while the secretion of L-alanine has not been reported.
To obtain byproduct distributions in better agreement
with [57], we constrained the L-alanine secretion flux to
zero. This modification resulted in a redirection of flux
from L-alanine to succinate with little effect on the se-
cretion fluxes of acetate and minor byproducts. Further-
more, we enforced a minimal non-growth associated
ATP maintenance flux of 5 mmol/gDW/h, the same
value as in the S. aureus reconstruction, to reduce the P.
aeruginosa anaerobic growth rate for consistency with
experimental studies [32]. The iMO1056 reconstruction
contained succinate, lactate and acetate uptake fluxes
that allowed the investigation of putative cross feeding
of metabolic byproducts. Secretion of the small molecule
inhibitor pycoyanin was included by adding an exchange
flux with an adjustable lower bound that forced pycoya-
nin synthesis, which was in opposition to growth rate
maximization.
The S. aureus N315 iMH551 reconstruction ac-

counts for 551 genes, 604 enzymes, 682 intracellular
reactions and 92 exchange reactions [58]. This model
correctly reproduces byproduct secretion patterns
under aerobic conditions with glucose limitation and
under anaerobic conditions with glucose excess [59–
63]. Our flux calculations showed that the primary
byproducts were acetate and lactate. The iMH551 re-
construction contained lactate and acetate uptake
fluxes that allowed reassimilation of secreted metabolic
byproducts. To explore the possibility of succinate
cross feeding, the S. aureus model was modified to
allow succinate uptake through a putative proton
dependent symport mechanism.

Uptake kinetics were specified for the supplied sub-
strates glucose and oxygen as well as for the possible
cross-fed metabolites lactate, succinate and acetate. Al-
though both P. aeruginosa and S. aureus are well known
for their ability to perform anaerobic respiration using
nitrate as an electron acceptor in place of oxygen, we
have neglected the possible role of denitrification in this
study. Uptake kinetics were assumed to follow standard
Monod expressions of the form,

vi ¼ vmax;iSi
—————
Km;i þ Si

ð1Þ

where vi is the uptake rate (mmol/gDW/h) of the i-th
substrate, Si is the extracellular concentration (mmol//L)
of the i-th substrate, vmax,i is the maximum uptake rate
and Km,i is the half saturation constant. Equation (1) was
used to establish transport bounds on the uptake rates
with the actual uptake rates being determined by solu-
tion of the intracellular flux balance problem. Both vmax,i

and Km,i were important parameters due to the large nu-
trient spatial gradients induced by diffusion through the
biofilm.
Mass balances on the two species had the form,
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where X and Y are the biomass concentrations (g/L) of
P. aeruginosa and S. aureus, respectively, Z = X + Y is the
total biomass concentration, and μX and μY are the cor-
responding growth rates (h−1) obtained from the flux
balance calculations. If local nutrient concentrations be-
came too small to meet the ATP maintenance demand
of a species, then the flux balance problem for the spe-
cies became infeasible at that location. Once an infeasi-
bility was detected, the death rate constant kdX or kdY
was rapidly increased exponentially from zero to a fixed,
non-zero value to simulate that the species would begin
to die at that location. This approach ensured that the
model equations remained smooth and could be inte-
grated. P. aeruginosa has flagella for motility and can
aerotaxis towards higher oxygen levels [37]. This cap-
ability was captured in the model by including a typical
chemotaxis term [64] where O is the oxygen concentra-
tion (mmol/L) and kA is the aerotaxis rate constant. Cell
growth was restricted to a maximum cell concentration
Zmax to account for cell crowding effects within the bio-
film. No flux boundary conditions were imposed at the
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tissue-biofilm (z = 0) and biofilm-air (z =W) interfaces
under the assumption that cells could not leave the bio-
film via mechanisms such as dispersal.
P. aeruginosa secretes pyocyanin and other small mol-

ecules that are known to inhibit and lyse of competing
bacteria such as S. aureus [65]. This lysis mechanism
was included in the model through a pyocyanin concen-
tration (P, mmol/L) dependent death term with rate
constant kL in the S. aureus mass balance in Eq. (2). Pyo-
cyanin synthesis by P. aeruginosa and diffusion through
the biofilm was captured with the mass balance,

∂P z; tð Þ
∂t

¼ vPX þ DP
∂2P
∂z2

; −DP
∂P 0; tð Þ

∂z
¼ kmP Pb−P 0; tð Þ½ �;

∂P W ; tð Þ
∂z

¼ 0

ð3Þ
where vP is the specific pyocyanin synthesis rate ob-
tained from the flux balance calculation and DP is the
pyocyanin diffusion coefficient. A no flux boundary con-
dition was imposed at the biofilm-air interface assuming
that the pyocyanin was non-volatile. By contrast, a Robin
type boundary condition was imposed at the tissue-
biofilm interface to describe possibly mass transfer lim-
ited removal of pyocyanin, where kmP is pyocyanin mass
transfer coefficient and Pb is the bulk pyocyanin concen-
tration in the tissue.
The glucose and oxygen mass balances were formu-

lated under the assumptions that oxygen gas-liquid mass
transfer was fast compared to oxygen uptake and that
metabolites had negligible volatilities:
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ð4Þ
where G is the glucose concentration (mmol/L), the P.
aeruginosa uptake fluxes vGX and vOX and the S. aureus
uptake fluxes vGY and vOY were obtained from the flux
balance calculations, and DG and DO are the glucose and
oxygen diffusion coefficients. For glucose, a no flux
boundary condition was imposed at the biofilm-air inter-
face assuming glucose was not volatile and a Robin type
boundary condition was imposed at the tissue-biofilm
interface to model possibly mass transfer limited trans-
port of glucose into the biofilm. Here kmG is the glucose
mass transfer coefficient and Gb is the bulk glucose con-
centration in the wound exudate. For oxygen, Robin type

boundary conditions were imposed at both interfaces
with oxygen mass transfer coefficient kmO, oxygen con-
centration Ob at the tissue-biofilm interface and oxygen
concentration Oa at the biofilm-air interface.
Mass balances on the three primary metabolic bypro-

ducts had the form,

∂Mj z; tð Þ
∂t

¼ vMjXX þ vMjY Y þ DMj
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where Mj is concentration (mmol/L) of the j-th bypro-
duct (A = acetate, S = succinate, L = lactate), the secretion
(or consumption) fluxes vMjX and vMjY were obtained
from the flux balance calculations, DMj is the diffusion
coefficient, kmMj is the mass transfer coefficient at the
tissue-biofilm interface, and Mj,b is the bulk concentra-
tion of the wound exudate. No flux boundary conditions
were imposed at the biofilm-air interface assuming the
byproducts were not volatile, while a Robin type bound-
ary condition was imposed at the tissue-biofilm interface
to allow removal of the byproducts from the biofilm.
The biofilm diffusion coefficients were assumed to

depend on the total biomass concentration Z such that
diffusion was reduced in more dense regions of the
biofilm [66],

DMk ¼ DWMk 1−
aMkZ

0:92

11:19þ 0:27Z0:99

� �
; ð6Þ

where DMk is the biofilm diffusion coefficient of the k-th
species (glucose, oxygen, acetate, succinate, lactate and
pyocyanin), DWMk is the aqueous diffusion coefficients at
37 °C and aMK is an adjustable parameter. These rela-
tions were obtained using a previously proposed empir-
ical equation [66] by adjusting aMK such that the biofilm
diffusion coefficient was equal to the aqueous value
when Z = 0 and equal to biofilm values reported else-
where [67] when Z = Zmax. Because pyocyanin has a
comparable molecular weight to glucose, the inhibitor
diffusion coefficient was chosen to follow the same
relation.

Model parameters
We found a dearth of literature for determining species
specific values for the 20 parameters needed to calculate
uptake rates with respect to the five possible nutrients
(glucose, oxygen, succinate, lactate, acetate). Conse-
quently, the two species were assumed to have the same
uptake parameter values. We used representative glucose
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[68, 69] and oxygen [69, 70] uptake parameter values re-
ported for the model bacterium Escherichia coli under
the assumption that P. aeruginosa and S. aureus should
have similar values. Because we were not able to find re-
liable uptake parameter values for succinate, lactate and
acetate, the associated vmax and Km values were assumed
to be equal to those for glucose (Table 1). Therefore re-
sults focused on differences in metabolic network struc-
ture of the two species and not on differences in uptake
properties.
Other parameter values for the biofilm model were ob-

tained from the literature to the extent possible (Table 2).
We utilized a typical biofilm thickness W and assumed
wound exudate concentrations consistent with published
values. The air oxygen concentration Oa was derived
from the oxygen content of atmospheric air. P. aerugi-
nosa and S. aureus cell death were implemented by ex-
ponentially increasing the death rate constants from
zero to the values listed in Table 2 when local nutrient
concentrations were not sufficient to meet ATP main-
tenance demands. The lower bound on the P. aeruginosa
pyocyanin synthesis flux vP,min was tuned such that the
average pyocyanin concentration within the biofilm was
the same order of magnitude as that observed experi-
mentally in [71]. The S. aureus inhibitor-mediated death
constant kL was tuned to achieve reasonable spatial dis-
tributions of the two species, which included P. aerugi-
nosa dominance in the aerobic region of the biofilm, S.
aureus dominance in the anaerobic region and a sharp
spatial division between the two species [47, 72–74].
The maximum achievable biomass concentration Zmax

was chosen to be within the large range of published
values [46]. We established reasonable metabolite con-
centrations within the biofilm by adjusting a single mass
transfer coefficient for glucose, acetate, succinate, lactate
and pyocyanin such that their average concentrations
were the same order of magnitude as those observed
experimentally in [71] and [75]. The P. aeruginosa aero-
taxis rate constant kA was chosen such that P. aerugi-
nosa was dominant in the aerobic region of the biofilm
and a sharp spatial division between the two species was
established as the biofilm matured towards a steady-
state condition [43, 47, 76]. Initial conditions for each
simulation were generated by first running a simulation

with each species biomass concentration constrained to
be 1 g/L and capturing the resulting steady-state solu-
tion. These initial conditions reflected a newly devel-
oped, nearly spatially homogeneous biofilm with small
cell densities, high nutrient levels and low byproduct
concentrations.

Model solution
The two species biofilm model consisted of a set of par-
tial differential equations (PDEs) with mixed boundary
conditions and embedded linear programs (LPs). The ef-
ficient and stable solution of such models is a challen-
ging problem at the forefront of microbial metabolic
modeling [77]. As described in our previous publications
[53, 54], we pursued a spatial discretization approach
based on converting the PDEs into a large set of ordin-
ary differential equations (ODEs) in time with embedded
LPs (Fig. 1b). The spatial domain [0, W] was discretized
using N = 50 node points at which the diffusion terms in
Eqs. (2) – (5) were discretized using central difference
approximations with second-order accuracy. The speci-
fied boundary conditions were incorporated into the
central difference approximations at the boundary node
points. This procedure yielded a set of 8 ODEs at each
node point for the local concentrations of P. aeruginosa
and S. aureus biomass, glucose, oxygen, acetate, succin-
ate, lactate and pyocyanin.
This ODE system was solved using DFBAlab [78], a

MATLAB tool that explicitly addresses problems associ-
ated with LP alternative optima and possible infeasibil-
ities [79]. DFBAlab employs a lexicographic optimization
strategy in which a series of LP problems are sequen-
tially solved to ensure the determination of unique ex-
change fluxes necessary for a well-defined dynamic
system. Each LP is solved subject to constraints that the
previous objectives are equal to their optimal values,
with the required number of LPs equal to the number of
exchange fluxes. We specified the lexicographic
optimization objectives to reflect known or anticipated
physiology of the two species biofilm community
(Table 3). We found that reordering these objectives had
no noticeable effect on simulation results. Each node
point was represented by 8 ODEs for the local species
and metabolite concentrations and 12 LPs for lexico-
graphic optimization. We employed 50 node points such
that the discretized biofilm model consisted of 400
ODEs and 600 LPs.
All simulations were performed with MATLAB 8.5

(R2015a) using DFAlab, the stiff MATLAB integrator
ode15s for dynamic flux balance model solution and
Gurobi 6.0 for linear program solution. A typical 1000-h
dynamic simulation for determining a steady-state solu-
tion required about 25 min running on an ASUS com-
puter with Intel Core i7-960 processor and 24 GB RAM.

Table 1 Nominal nutrient uptake parameters

Nutrient P. aeruginosa or S. aureus

vmax (mmol/gDW/h) Km (mmol/L)

Glucose 10 0.5

Oxygen 20 0.003

Succinate 10 0.5

Lactate 10 0.5

Acetate 10 0.5
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Table 2 Nominal model parameter values

Parameter Description Value Source

W Biofilm thickness 80 μm Specified

Gb Bulk glucose concentration 7.5 mmol/L [75]

Oa Oxygen concentration at the biofilm-air interface 0.21 mmol/L [103]

Ob Oxygen concentration at the tissue-biofilm interface 0 mmol/L Specified

Ab Bulk acetate concentration 0 mmol/L Specified

Sb Bulk succinate concentration 0 mmol/L Specified

Lb Bulk lactate concentration 1.0 mmol/L [75]

Pb Bulk pyocyanin concentration 0 mmol/L Specified

kdX , kdY Death rate constants 0–0.01 h−1 Calculated

kL Pyocyanin-associated death rate constant 0.4 mmol/gDW/h Specified

kdP Pyocyanin flux bound 0.1 L/mmol/h Specified

Zmax Maximum biomass concentration 200 g/L [46]

kmG, kmA, kmS, kmL, kmP Mass transfer coefficients for glucose, acetate, succinate,
lactate and pyocyanin

2.0 × 10−4 cm/s Specified

DWG Aqueous diffusion coefficient for glucose 9.4 × 10−6 cm2/s [67]

DWO Aqueous diffusion coefficient for oxygen 26.8 × 10−6 cm2/s [67]

DWA Aqueous diffusion coefficient for acetate 16.2 × 10−6 cm2/s [67]

DWS Aqueous diffusion coefficient for succinate 12.6 × 10−6 cm2/s [67]

DWL Aqueous diffusion coefficient for lactate 12.1 × 10−6 cm2/s [104]

DWP Aqueous diffusion coefficient for pyocyanin 7.2 × 10−6 cm2/s Specified

aG, aS, aL, aP Adjustable parameter for glucose, succinate, lactate and
pyocyanin in Eq. (6)

0.33 Fitted

aO Adjustable parameter for oxygen in Eq. (6) 0.19 Fitted

aA Adjustable parameter for acetate in Eq. (6) 0.36 Fitted

X0, Y0 Initial biomass concentrations 1 g/L Specified

kA Aerotaxis rate constant 5 × 10−8 cm2. L/mmol. s Specified

kmO Oxygen mass transfer coefficient 2.0 × 10−2 cm/s Specified

Table 3 Lexicographic objective functions

Number Species Direction Objective Reason

1 PA Maximize Growth rate Assumed primary objective

SA Growth rate

2 PA Minimize Acetate secretion flux Minimize byproduct synthesis

SA Acetate secretion flux

3 PA Minimize Succinate secretion flux Minimize byproduct synthesis

SA Lactate secretion flux

4 PA Maximize Glucose uptake flux Maximize nutrient consumption

SA

5 PA Maximize Oxygen uptake flux Maximize nutrient consumption

SA

6 PA Maximize Lactate uptake flux Maximize consumption of putative
cross-fed metabolite

SA Succinate uptake flux
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As compared to alternative computational methods for
spatiotemporal metabolic modeling based on table
lookups of precomputed FBA solutions combined with
integration of the PDEs on a coarse spatial grid [48–50]
and real-time FBA solution combined with lattice-based
descriptions of metabolite diffusion [51, 52], we believe
our approach offers several important advantages includ-
ing the use of DFBAlab, the ability to directly embed
LPs within the discretized ODEs, and the flexibility to
solve the ODE-LP system using stiff integrators with
variable step size and error control.

Results
Flux balance analysis of single species metabolism
Flux balance analysis (FBA) was performed on the single
species, genome-scale reconstructions to investigate P.
aeruginosa and S. aureus growth rates in different meta-
bolic niches consistent with the bottom, middle and top
of the biofilms. More specifically, FBA was used to pre-
dict growth rates at three different glucose and oxygen
uptake rates. We also performed FBA at three different
acetate and lactate uptake rates to investigate the effect
of byproduct uptake on growth rates. The growth rate of
S. aureus was predicted to equal or exceed that of P. aer-
uginosa for all combinations of glucose and oxygen up-
take rates, with the difference most pronounced under
anaerobic conditions expected at the bottom of the bio-
film (Table 4). No growth was predicted for either

species under anaerobic, low glucose conditions which
may prevail in mature biofilms of sufficient thickness.
When acetate was used as the carbon source, P. aerugi-
nosa was predicted to have low growth rates that
depended only on the acetate uptake rate until oxygen
became limiting. S. aureus was not able to grow on acet-
ate at any oxygenation level, as has been observed ex-
perimentally [80]. As compared to glucose, the absolute
growth rates and differences between species growth
rates was relatively small for growth on lactate. Collect-
ively, these results suggest that S. aureus has a distinct
growth rate advantage over P. aeruginosa for all condi-
tions anticipated in the simulated two species biofilm.

Metabolism of single species biofilms
Dynamic simulations were performed for single species
biofilms consisting of only P. aeruginosa or S. aureus
with glucose and oxygen as the only substrates. Simula-
tions were performed over a time window of 1000 h to
capture a steady-state solution, although near steady-
state behavior was typically established in <100 h. For
each species, biofilms of different thicknesses were simu-
lated to determine the maximum thickness Wmax that
could be sustained under the given environmental con-
ditions. If the biomass concentration dropped below
10 g/L (5 % of the maximum value Zmax = 200 g/L) any-
where in the mature biofilm obtained after 1000 h of

Table 4 Flux balance analysis of P. aeruginosa (PA) and S. aureus (SA) single species metabolism. Growth rates (h−1) are shown for
different combinations of substrate uptake rates (mmol/gDW/h)

Representative uptake rates at the top, middle and bottom of a typical simulated two species biofilm are colored coded

Phalak et al. BMC Systems Biology  (2016) 10:90 Page 8 of 20



simulation, the thickness was deemed too large and re-
duced. These simulations predicted that S. aureus could
grow much thicker biofilms with Wmax = 90 μm com-
pared to P. aeruginosa with Wmax = 30 μm.
Spatially resolved predictions obtained after 1000 h

showed that the P. aeruginosa biofilm (Fig. 2a) were
characterized by high biomass concentrations through-
out the biofilm, low oxygen concentrations near the
bottom of the biofilm furthest from the oxygen source,
low glucose concentrations near the top of the biofilm
furthest from the glucose source, and acetate and suc-
cinate as the primary metabolic byproducts. If the bio-
film thickness was chosen larger than Wmax = 30 μm, the
P. aeruginosa biomass concentration dropped below
10 g/L at the bottom of the biofilm due to the combin-
ation of low oxygen penetration and very small anaer-
obic growth rates (see glucose results in Table 4). The S.
aureus biofilm model predicted much deeper oxygen
penetration (~50 μm vs. ~25 μm) due to more efficient
use of oxygen for glucose oxidation (Fig. 2b). Superior
anaerobic growth allowed S. aureus to produce much
thicker biofilms under the same environmental condi-
tions. Otherwise, the predictions were similar to those
obtained with P. aeruginosa with lactate replacing suc-
cinate as a primary byproduct. If the S. aureus biofilm
thickness was chosen larger than Wmax = 90 μm, the bio-
mass concentration dropped below 10 g/L near the top
of the biofilm due to inadequate glucose penetration.
The effect of the metabolite mass transfer coefficients

on concentration gradients within the S. aureus biofilm
are shown in Additional file 1: Figure S1.

Metabolism of two species biofilms
Dynamic simulations were performed for two species
biofilms consisting of P. aeruginosa and S. aureus using
eight different hypothetical scenarios. Scenario 1 was the
base case where the two bacteria competed for glucose
and oxygen in the absence of byproduct crossfeeding, P.
aeruginosa aerotaxis or pyocyanin-mediated lysis of S.
aureus. We found the two species Wmax = 80 μm, which
was slightly less that the S. aureus Wmax = 90 μm but sub-
stantially larger than the P. aeruginosa Wmax = 30 μm. The
two species Wmax was a linear combination of the single
species Wmax values weighted by the average biomass con-
centrations in the two species biofilm:

Wmax ¼
90 μmð Þ 165 g

L

� 	þ 30 μmð Þ 35 g
L

� 	
165þ 35ð Þ g

L
¼ 79:5 μm ð7Þ

If the two species biofilm thickness was chosen larger
than Wmax = 80 μm, the biomass concentration dropped
below 10 g/L near the top of the biofilm due to inad-
equate glucose penetration. The relationship between
the two species was interpreted to be antagonistic with
the incorporation of P. aeruginosa into a S. aureus bio-
film reducing the achievable thickness for a given set of
conditions.

Fig. 2 Spatially resolved predictions for single species biofilms. a P. aeruginosa with a maximum biofilm of thickness W = 30 μm. b S. aureus with
a maximum biofilm of thickness W = 90 μm
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When the two species biofilm thickness was set equal
to Wmax = 80 μm, pseudo steady-state solutions were ob-
tained after only 50 h of simulation (Fig. 3a). Oxygen
was quickly depleted throughout most of the biofilm,
except near the biofilm-air interface where an aerobic
region was established as observed experimentally [81].
Similarly, glucose was rapidly depleted in all regions
except near the tissue-biofilm interface where a glucose
rich region was maintained. S. aureus was predicted to
quickly establish dominance throughout the biofilm due
to its higher local growth rates, especially in the anaer-
obic region. Initially acetate and succinate levels in-
creased but thereafter they were predicted to decrease
due to metabolite removal at the tissue-biofilm bound-
ary. Lactate levels were predicted to remain high
throughout the biofilm due to S. aureus synthesis in the
anaerobic region and diffusion into the aerobic region.
As in the single species biofilms, multispecies biofilm
spatial profiles obtained after 1000 h of simulation
(Fig. 3b) were characterized by the presence of a glucose
rich, anaerobic region near the tissue-biofilm interface
and a glucose depleted, aerobic region near the biofilm-
air interface. S. aureus was predicted to be dominant
throughout the biofilm, especially in the anaerobic re-
gion, while P. aeruginosa was predicted to be present
only in the aerobic region. Byproduct profiles were simi-
lar to those obtained for the S. aureus single species bio-
film (see Fig. 2b) with high lactate levels, low acetate
levels and no succinate production. We attributed this
behavior to partitioning of P. aeruginosa to the aerobic
region where the synthesis of byproducts was substan-
tially reduced.
To further analyze how multispecies metabolism

depended on position in the biofilm, local effective
growth rates and nutrient uptake rates were deter-
mined from the base case (BC) simulation data. For
species i, the local effective growth rate was calculated
as the difference between the biomass restricted
growth rate μi(1-Zi/Zmax) and the energy associated
death rate kdi at a given position z. Consequently, the
effective growth rate could be negative in nutrient lean
regions. The calculations were performed using data
collected at t = 10 h because these initial rates offered
insights into biofilm physiology. S. aureus growth rates
exceeded P. aeruginosa growth rates at all positions,
especially in the anaerobic region near the bottom of
the biofilm where P. aeruginosa death was predicted
(Fig. 3c). Both species were predicted to have constant
growth rates in the upper aerobic region. The P. aeru-
ginosa growth rate decreased rapidly in the lower half
due to decreasing oxygen availability such that death
occurred in the first 35 μm. By contrast, the S. aureus
growth rate increased rapidly in this region due to the
increasing availability of glucose to support anaerobic

growth. As time progressed, these local growth rates
resulted in S. aureus dominance throughout the bio-
film and P. aeruginosa presence only in the aerobic
region (Fig. 4a). The glucose uptake rate increased
monotonically from bottom to top of the biofilm,
while the oxygen uptake rate was predicted to exhibit
a maximum near the center because that location of-
fered the optimal combined availability of glucose and
oxygen to support consortium growth.
We also performed simulations assuming additional

oxygen was available at the biofilm-tissue interface at a
blood plasma concentration of 0.05 mmol/L [81]. This
oxygen source allowed P. aeruginosa growth near the
biofilm-tissue interface and therefore reduced spatial par-
titioning of the two species (Additional file 2: Figure S2).
However, S. aureus still dominated throughout the biofilm
due to it higher aerobic and anaerobic growth rates.

Byproduct cross feeding
We hypothesized that cross feeding of secreted meta-
bolic byproducts (lactate, succinate, acetate) would en-
hance the competitiveness of P. aeruginosa in the
aerobic portion of the biofilm. Except for the inability of
S. aureus to consume acetate, experimental studies as
well as our FBA results (see Table 4) show that the two
species are capable of metabolizing these byproducts in
the presence of sufficient oxygen. Therefore, we investi-
gated the impact of putative cross feeding by allowing
each species to enhance its growth through uptake of
the three byproducts (C-f scenario). The two species
were assumed to uptake each byproduct with the same
kinetics (see Table 2) due to lack of data on species and
substrate specific uptake parameters.
The cross-feed scenario model predicted that Wmax

remained 80 μm when byproduct cross feeding was in-
corporated. Because glucose was the more energetically
favorable carbon source, most of the available oxygen
was used for glucose oxidation and little oxygen
remained for lactate oxidation. Contrary to our hypoth-
esis, cross-feeding reduced the region where P. aerugi-
nosa was present and did not substantially increase the
P. aeruginosa biomass concentration within this region
(Fig. 4a). To succinctly quantify this behavior, the P.
aeruginosa and S. aureus biomass concentrations were
averaged across the biofilm and compared to average
concentrations obtained for the base case scenario
without cross feeding. While the total biomass concen-
tration was not affected, cross-feeding increased the
fraction of S. aureus relative to P. aeruginosa (Fig. 4e).
Since lactate was the primary byproduct of the two spe-
cies biofilm, we attributed this behavior to S. aureus
having more efficient lactate metabolism. Single species
FBA results show that S. aureus has higher growth rates
on lactate under oxygen sufficient and oxygen limited
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Fig. 3 Predictions for a two species biofilm of thickness W = 80 μm (Base case scenario). a Time resolved predictions over the first 50 h at the
bottom, middle and top of the biofilm. b Spatially resolved biomass and metabolite concentration predictions after 1000 h. c Spatially resolved
effective growth and uptake rate predictions after 10 h
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conditions (see Table 4). Because similar behavior was
observed for glucose metabolism in single species bio-
films, the addition of lactate consumption was predicted
to further increased S. aureus dominance in the aerobic
region where sufficient oxygen was available for lactate
oxidation.

P. aeruginosa inhibition of S. aureus
P. aeruginosa is known to secrete a number of small
molecules including pyocyanin which inhibit and lyse
competing bacteria such as S. aureus. Additional simula-
tions were performed to explore the impact of a putative
pyocyanin-mediated lysis mechanism on the two species

Fig. 4 Predictions after 1000 h for two species biofilms of thickness W = 80 μm with different species interaction mechanisms. Base case (BC):
competition for the nutrients glucose and oxygen. Cross-feed (C-f): nutrient competition plus cross feeding of lactate, succinate and acetate. Lysis
(Ly): nutrient competition plus P. aeruginosa mediated lysis of S. aureus. Aerotaxis (AT): nutrient competition plus P. aeruginosa chemotaxis towards
oxygen. a-d Spatially resolved biomass concentrations and e P. aeruginosa (PA), S. aureus (SA), total biomass concentrations averaged across
the biofilm and maximum thickness for the eight considered scenarios
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biofilm. When this mechanism was combined with nu-
trient competition (Ly scenario), the model predicted
that Wmax was slightly increased to 90 μm. Reduction of
S. aureus biomass in the anaerobic region resulted in
slightly higher glucose levels throughout the biofilm,
allowing increased P. aeruginosa growth in the upper
aerobic region and a greater biofilm thickness.

To allow direct comparison with the other species
interaction scenarios, simulations also were performed
for an 80 μm thick biofilm. Spatial profiles showed
sharp partitioning of the two species with P. aerugi-
nosa dominant in the upper aerobic region of the bio-
film (Fig. 5a). This effect was achieved at the expense
of the S. aureus biomass concentration, which was

Fig. 5 Spatially resolved predictions after 1000 h for a two species biofilm of thickness W = 80 μm with pyocyanin mediated lysis of S. aureus. a
Biomass and metabolite concentration predictions after 1000 h. b Effective growth and uptake rate predictions after 10 h
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substantially reduced in the lower anaerobic region
and dropped to zero at 40 μm. While the oxygen pro-
file was largely unaffected, reduction of S. aureus bio-
mass in the anaerobic region resulted in slightly
higher glucose levels throughout the biofilm. Pyocya-
nin levels were highest in the aerobic region due to
diffusion and removal at the tissue-biofilm interface.
The metabolic burden of synthesizing pyocyanin was
predicted to have a minimal effect on P. aeruginosa
growth due to the small enforced bound of 0.1 mmol/
gDW/h. At a maximum glucose uptake rate of
10 mmol/gDW/h, only 2.2 % of available carbon was
used for pyocyanin synthesis.
As before, local effective growth rates and nutrient up-

take rates were calculated at t = 10 h to investigate how
pyocyanin affected multispecies metabolism as a func-
tion of position in the biofilm. In this case, the effective
local growth rate of S. aureus was calculated by subtract-
ing the maintenance energy associated death rate and
the pyocyanin associated death rate from the biomass re-
stricted growth rate at a given point z (see Eq. (2)). In
the upper aerobic region, pyocyanin release caused the
S. aureus death rate to exceed the growth rate (Fig. 5b)
such that S. aureus was eventually eliminated from this re-
gion. This balance was reversed in the anaerobic region,
although S. aureus growth was substantially reduced. By
contrast, the P. aeruginosa growth rate was very similar to
the pyocyanin-free case (see Fig. 3c). The long-term effects
of these local growth rates were a sharp spatial partition-
ing of the two species and reduced S. aureus biomass con-
centrations in the anaerobic region. As a result, slightly
higher glucose uptake rates were predicted across the bio-
film while the oxygen uptake rates were similar to the
pyocyanin-free case (see Fig. 3c). When biomass concen-
trations were averaged across the biofilm, the pyocyanin-
mediated lysis mechanism was predicted to substantially
increase P. aeruginosa competitiveness at the expense of
both S. aureus and total biomass (Fig. 4e).
Combining byproduct cross feeding and the lysis mech-

anism (Ly +C-f scenario) did not change Wmax from the
pyocyanin-free case (C-f scenario) but did increase S.
aureus competitiveness by shifting the location where the
species partitioned approximately 15 μm towards the
biofilm-air interface (Fig. 4b). The addition of cross feeding
resulted in average biomass concentrations that were
roughly equal, while total biomass was reduced (Fig. 4e).
We hypothesized that this unexpected effect was due to in-
creased oxygen utilization by S. aureus for lactate oxidation.
Although S. aureus biomass was simultaneously reduced by
pyocyanin- mediated lysis, the oxygen used for S. aureus
growth was not available for P. aeruginosa oxidative growth
and total biomass decreased. Therefore, the pyocyanin
mechanism was interpreted as an antagonistic mechanism
by which P. aeruginosa increased its own competitiveness.

P. aeruginosa aerotaxis
P. aeruginosa has a single flagellum that may allow mo-
tility in complex, heterogeneous environments such as
biofilms [82] while S. aureus is generally viewed as non-
motile [83]. More specifically, P. aeruginosa has been
observed to chemotax towards higher oxygen environ-
ments, a process known as aerotaxis, which offer more
favorable growth conditions [37]. To explore the impact
of this putative aerotaxis mechanism on two species bio-
film metabolism, the P. aeruginosa biomass equation in-
cluded a chemotaxis term (see Eq. 2) and simulations
were performed with both nutrient competition and
aerotaxis (AT scenario). The energy requirements for
chemotaxis were assumed negligible compared to
growth. When aerotaxis was combined with nutrient
competition, the model predicted that Wmax was
increased to 120 μm. Aerotaxis increased spatial parti-
tioning of the two species (see below) such that P. aeru-
ginosa had access to more oxygen for lactate respiration,
resulting in a thicker biofilm.
Spatial profiles generated for an 80 μm biofilm show

almost complete partitioning of the two species, with P.
aeruginosa dominating in the upper aerobic half, only S.
aureus present in the lower anaerobic region, and the
two species coexisting for about 10 μm near the middle
of the biofilm (Fig. 6). Aerotaxis allowed P. aeruginosa
to substantially improve its competitiveness by increas-
ing its concentration in the upper portion of the biofilm
rather than by moving the transition region between the
two species (see Fig. 3a). When averaged across the bio-
film, the biomass concentrations of the two species were
approximately equal while total biomass was unaffected
compared to the aerotaxis-free case (Fig. 4e). Unlike
pyocyanin-mediated lysis, aerotaxis could be viewed as
an antagonistic mechanism by which P. aeruginosa in-
creased its own competitiveness without reducing total
cell densities.
When byproduct cross feeding was added to P. aerugi-

nosa aerotaxis and nutrient competition (AT + C-f sce-
nario), the model predicted Wmax = 120 μm, the same
value obtained in the absence of cross feeding. When
simulations were performed for an 80 μm thick biofilm,
the addition of cross feeding substantially increased S.
aureus biomass in the biofilm while having a small nega-
tive impact on total biomass (Fig. 4e). Of the eight sce-
narios investigated, a maximum Wmax = 130 μm was
predicted when nutrient competition and aerotaxis were
combined with pyocyanin-mediated lysis of S. aureus
(AT + Ly scenario). In this case, P. aeruginosa had access
to increased glucose due to S. aureus death in the anaer-
obic region and increased lactate due to the absence of
S. aureus in the aerobic region, which combined to en-
hance P. aeruginosa growth and allow a thicker biofilm.
For a nominal biofilm thickness of 80 μm, only P.
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aeruginosa was present in the upper 50 μm of the bio-
film and the amount of S. aureus was relatively small in
the lower anaerobic region (Fig. 4d). The further
addition of byproduct cross feeding did not affect Wmax

but did increase S. aureus competitiveness (AT + Ly + C-
f scenario) (Fig. 4e). Collectively, these predictions sug-
gest that both pyocyanin-mediated lysis and aerotaxis
are potentially powerful mechanisms for P. aeruginosa
to enhance its competitiveness in multispecies biofilms
with the faster growing facultative anaerobe S. aureus.

Discussion
We hypothesized that the tendency of bacteria to self-
organize into complex biofilm structures is at least par-
tially driven by the appearance of metabolic niches [2].
To test this hypothesis, we developed spatiotemporal
metabolic models of chronic wound biofilms consisting
of the aerobe Pseudomonas aeruginosa and/or the facul-
tative anaerobe Staphylococcus aureus. The models were
comprised of genome-scale metabolic reconstructions
combined with partial differential equations (PDEs) for

Fig. 6 Spatially resolved predictions after 1000 h for a two species biofilm of thickness W = 80 µm with P. aeruginosa aerotaxis. a Biomass and
metabolite concentration predictions after 1000 h. b Effective growth and uptake rate predictions after 10 h
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the diffusion and consumption/synthesis of nutrients/
byproducts within the biofilm. Both single species and
two species biofilms were simulated by supplying
glucose at the tissue-biofilm interface (bottom of the
biofilm) and oxygen at the biofilm-air interface (top of
the biofilm).
Simulations of single species biofilms were performed

to compare the metabolic behavior of each species and
to provide a basis for comparing the two species biofilm
simulations. Although the biofilm thickness was speci-
fied a priori for each simulation, we gained insights into
the collective biofilm substrate utilization efficiency as
quantified by the maximum achievable thickness Wmax

under the specified environmental conditions. By assum-
ing that the thickness was too large if the biomass con-
centration dropped below 10 g/L (5 % of the maximum
value of 200 g/L) anywhere in the mature biofilm, the
models predicted that S. aureus could grow much
thicker biofilms with Wmax = 90 μm compared to P. aer-
uginosa with Wmax = 30 μm. Other differences predicted
by the single species models were that S. aureus allowed
much deeper oxygen penetration and produced much
larger amounts of its primary metabolic byproduct lac-
tate, a putative cross-fed metabolite. We attributed these
differences in biofilm phenotypes to S. aureus having
more efficient oxygen utilization in the upper aerobic re-
gion as well as substanially high growth rates in the
lower anaerobic region. These model predictions could
be experimentally tested by measuring metabolite con-
centration profiles using spatially resolved metabolomics
[84–86] and gene expression profiles using spatially re-
volved transcriptomics [87, 88].
Two species biofilm simulations were performed for

eight different scenarios to investigate the impact of pu-
tative mechanisms for interspecies interactions. For the
base case involving only competition for the two nutri-
ents glucose and oxygen, we found a maximum thick-
ness Wmax = 80 μm for the two species biofilm. This
value represented a linear combination of the single
species Wmax values weighted by the average biomass
concentrations in the two species biofilm. Dynamic sim-
ulations for an 80 μm thickness predicted that the two
species would form a nearly mature biofilm in approxi-
mately 50 h, the time frame of many experimental
studies [89, 90]. Two metabolic niches were quickly
established in the simulated biofilm: an anoxic, glucose
rich region in the lower half and an aerobic, glucose lean
region in the upper half. Due to its superior anaerobic
growth and more efficient oxygen utilization, S. aureus
quickly established dominance throughout the biofilm.
Steady-state spatial profiles demonstrated that this
short-term behavior was maintained over long time
periods, with P. aeruginosa only present in the aerobic
region and lactate synthesized by S. aureus in the

anaerobic region being the main byproduct. The experi-
mental determination of spatially resolved biomass con-
centrations [91] would be beneficial in this context.
Cross feeding of secreted metabolic byproducts is

common in bacterial communities [92, 93] and multi-
species biofilms [94, 95]. For example, a cross feeding
mechanism has been proposed for a polymicrobial infec-
tion system consisting of the two facultative anaerobes
Aggregatibacter actinomycetemcomitans and Streptococ-
cus gordonii [94]. To explore the hypothesis that cross
feeding would enhance P. aeruginosa competitiveness
(C-f scenario), we allowed each species to uptake all pos-
sible carbon sources (glucose, lactate, succinate, acetate)
with the same uptake kinetics. Therefore, the results
reflected differences in carbon metabolism efficiency and
not differences in uptake properties. The model pre-
dicted that cross feeding would not increase Wmax but
would further enhance S. aureus competitiveness by re-
ducing the region where P. aeruginosa was present. This
prediction, which was consistent across all cross feeding
scenarios investigated, was attributed to S. aureus having
more efficient oxidative metabolism for the primary
byproduct lactate. Byproduct cross feeding in P. aerugi-
nosa/S. aureus chronic wound biofilms has not been ex-
perimentally studied to our knowledge and represents a
promising area of research.
Cross feeding predictions were obtained assuming

identical parameters for lactate uptake kinetics and non-
growth associated ATP maintenance for the two species.
Experimental studies with P. aeruginosa biofilms in the
cystic fibrosis lung show that lactate actually can be a
preferred carbon source to glucose [96, 97], suggesting
enhanced lactate uptake capabilities. This environmental
dependence emphasizes the importance of conducting
uptake experiments and studying cross feeding under
chronic wound relevant conditions. Well controlled
planktonic growth experiments are needed to accurately
estimate ATP maintenance demands of the two species,
since lactate oxidation might confer a growth advantage
to P. aeruginosa if the energetics are more favorable
than those modeled.
P. aeruginosa secretes a wide variety of inhibitory

compounds that have been shown to enhance its com-
petitiveness against competing bacteria in multispecies
biofilm communities [98–100]. To quantify the impact
of a representative small molecule inhibitor, P. aerugi-
nosa was forced to secrete pyocyanin and S. aureus was
lysed by pyocyanin diffusing from high concentration re-
gions. When combined with nutrient competition, the
pyocyanin-mediated lysis mechanism produced a slightly
larger Wmax = 90 μm and substantially increased P. aeru-
ginosa competitiveness by inducing S. aureus death in
the aerobic region. While we tuned our model to obtain
reasonable extracellular pyocyanin concentrations [71],
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key parameters (i.e. synthesis rate, diffusion coefficient,
killing rate) associated with the mechanism are unknown
and need to be experimentally determined to accurately
quantify the effect in chronic wound environments.
The motility of P. aeruginosa allows coordinated

movement of cells towards higher oxygen levels through
a chemotactic response known as aerotaxis [37]. When
putative P. aeruginosa aerotaxis was combined with nu-
trient competition (AT scenario), our biofilm model pre-
dicted substantially thicker biofilms (Wmax = 120 μm)
and nearly complete species partitioning as observed ex-
perimentally [47, 101], with P. aeruginosa dominant in
the upper aerobic half and only S. aureus present in the
lower anaerobic region. While not producing as dra-
matic increase in the P. aeruginosa/S. aureus ratio as the
pyocyanin mechanism, aerotaxis did not negatively im-
pact total biomass within the biofilm. Therefore, we
interpreted aerotaxis as a less antagonistic mechanism
than pyocyanin secretion by which P. aeruginosa could
enhance its own competitiveness. However, P. aerugi-
nosa aerotaxis within biofilm environments has not been
demonstrated to our knowledge. Therefore, biofilm re-
actor experiments aimed at demonstrating and quantify-
ing the aerotactic response would be highly beneficial.
Experimental testing could be achieved through a com-
bination of traditional and spatially resolved omics tech-
nologies [86, 87, 102].

Conclusions
Chronic wounds are often colonized by bacteria consor-
tia growing as biofilms on a complex mixture of wound
exudate. Improved understanding of these complex mul-
tispecies systems is required to develop more rational
and effective antibiotic therapies for biofilm eradication.
We developed genome-scale spatiotemporal models of a
two species consortium comprised of the chronic wound
isolates Pseudomonas aeruginosa and Staphylococcus
aureus to investigate the impact of putative species
interaction mechanisms on biofilm physiology. The
models were used to analyze the metabolic differences
between single species and two species biofilms and to
investigate the impact of nutrient competition, bypro-
duct cross feeding, P. aeruginosa inhibition of S. aureus
growth and P. aeruginosa aerotaxis on the relative abun-
dance and spatial distribution of each species. The key
predictions of our computational modeling study were:

1. The two species system was predicted to support a
maximum biofilm thickness much greater than P.
aeruginosa alone but slightly less than S. aureus
alone, suggesting an antagonistic metabolic effect of
P. aeruginosa on S. aureus.

2. Nutrient gradients imposed by supplying glucose at
the bottom and oxygen at the top of the biofilm

induced spatial partitioning of the two species, with
S. aureus most concentrated in the lower anaerobic
region and P. aeruginosa present only in the upper
aerobic region.

3. When each species was allowed to enhance its
growth through consumption of secreted metabolic
byproducts assuming identical uptake kinetics, the
competitiveness of S. aureus was further enhanced
due to its more efficient lactate oxidative
metabolism.

4. Lysis of S. aureus by the small molecule inhibitor
pyocyanin secreted from P. aeruginosa and/or P.
aeruginosa aerotaxis towards high oxygen levels
were predicted to enhance spatial portioning of the
two species and to increase P. aeruginosa
competitiveness in the aerobic region.

These model predictions require further validation
through the execution of targeted experiments that aug-
ment existing results in the literature that support our
conclusions. We believe that P. aeruginosa lysis of S.
aureus combined with nutrient competition is a particu-
larly relevant scenario for which model predictions could
be tested experimentally.

Additional files

Additional file 1: Figure S1. Spatially resolved byproduct (acetate,
lactate) concentration predictions after 1000 h for a two species biofilm
of thickness W = 80 μm with three different values (1 × 10−4 cm/s, 2 × 10−4

cm/s, 4 × 10−4 cm/s) of the metabolite mass transfer coefficient.
(DOCX 61 kb)

Additional file 2: Figure S2. Spatially resolved predictions after 1000 h
for a two species biofilm of thickness W = 80 μm when oxygen was
supplied from both ends of the biofilm. Oxygen was supplied at the
tissue-biofilm interface at a blood plasma concentration of 0.05 mmol/L.
Oxygen was supplied at the biofilm-air interface at a concentration of
0.21 mmol/L for an aqueous solution in equilibrium with atmospheric
oxygen. The effect of oxygen from the blood plasma on biofilm species
organization is studied. The species partitioning is obeserved between
W= 18–32 μm and two species coexist in rest of the biofilm. (DOCX 71 kb)
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