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Abstract

Background: The increased availability of high-throughput datasets has revealed a need for reproducible and accessible
analyses which can quantitatively relate molecular changes to phenotypic behavior. Existing tools for quantitative analysis
generally require expert knowledge.

Results: CellPD (cell phenotype digitizer) facilitates quantitative phenotype analysis, allowing users to fit mathematical
models of cell population dynamics without specialized training. CellPD requires one input (a spreadsheet) and generates
multiple outputs including parameter estimation reports, high-quality plots, and minable XML files. We validated CellPD’s
estimates by comparing it with a previously published tool (cellGrowth) and with Microsoft Excel's built-in functions.
CellPD correctly estimates the net growth rate of cell cultures and is more robust to data sparsity than cellGrowth. When
we tested CellPD's usability, biologists (without training in computational modeling) ran CellPD correctly on sample data
within 30 min. To demonstrate CellPD's ability to aid in the analysis of high throughput data, we created a synthetic high
content screening (HCS) data set, where a simulated cell line is exposed to two hypothetical drug compounds at several
doses. CellPD correctly estimates the drug-dependent birth, death, and net growth rates. Furthermore, CellPD's estimates
quantify and distinguish between the cytostatic and cytotoxic effects of both drugs—analyses that cannot readily be
performed with spreadsheet software such as Microsoft Excel or without specialized computational expertise and
programming environments.

Conclusions: CellPD is an open source tool that can be used by scientists (with or without a background in
computational or mathematical modeling) to quantify key aspects of cell phenotypes (such as cell cycle and
death parameters). Early applications of CellPD may include drug effect quantification, functional analysis of gene
knockout experiments, data quality control, minable big data generation, and integration of biological data with
computational models.

Keywords: Phenotype digitizer, Growth rate, Net birth rate, Phenotype comparison, Cell population dynamics,
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Background
The growing adoption of systems biology and high-

availability, which are continually in flux. It is therefore
better to use data across multiple time points when meas-

throughput experimental techniques increasingly dem-
onstrates the need for quantitative and dynamic
measurements to better characterize the complexity of
biological systems [1, 2]. Measurements from a single
experimental snapshot in time (e.g., an endpoint ana-
lysis) can often be misleading. For example, cell growth
dynamics are influenced by cell density and nutrient
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uring cell phenotypes. On a broader scale, dynamical mea-
surements can help to compare data across labs and
identify protocol errors/discrepancies that may go un-
noticed if data are only collected at a single time point.
With the increasing availability of high-throughput mi-
croscopy and high content screening (HCS), one can meas-
ure cell counts in many different environmental contexts
with high precision over several time points [3]. These plat-
forms can be used to link studies on molecular biology to
observable, quantitative changes in cell behavior [4, 5].
However, as these experimental platforms have advanced,
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they have allowed the generation of vast amounts of data
which, in turn, require sophisticated bioinformatics tools
for analysis [6]. In order to leverage these bioinformatics
tools, a scientist needs to learn how to use complex com-
puter programs [7] or work in bioinformatics-oriented pro-
gramming environments (e.g, R, MATLAB, or Python),
often without the benefit of graphical interfaces to assist
them [8]. The need for specialized knowledge is com-
pounded when the user, for example, may want to test sev-
eral mathematical models of cell population dynamics (e.g.,
birth, death, and clearance rates) and choose one among
them. Furthermore, the many ways in which a software
package, the operating system in which it runs, and its re-
quired dependencies can be configured lead to challenges
in data reproducibility [9-11]. While built-in functions in
popular spreadsheet software such as Microsoft Excel can
perform basic analyses on small, simple datasets (e.g., total
cell counts for a few replicates), the functions cannot easily
be extended to fit more sophisticated mathematical models
that are better suited to analyzing more complex datasets.
Furthermore, in the process of implementing more
sophisticated mathematical models, a scientist can in-
advertently introduce elusive bugs in their calculations
[12, 13]. Therefore, tools which facilitate the replication
and implementation of new analyses should be used in
scientific computing.

To expedite the quantitative analysis of cellular pheno-
types from experimental data while promoting data repro-
ducibility, we introduce CellPD: a user-friendly cell line
phenotype digitizer which obtains best-fit parameters and
uncertainty estimates for cell birth, death, and population
carrying capacity, based upon well-established “canonical”
mathematical forms (e.g., exponential and logistic growth,
with either net birth rates or separate birth, death, and
dead cell clearance rates). CellPD has been designed to
comply with the MultiCellDS data standard [14], therefore
it can be expanded to record additional phenotype param-
eters, such as pharmacodynamics and cell motility. CellPD
uses Microsoft Excel-compatible spreadsheets containing
cell counts and experimental metadata as its sole input.
The spreadsheets are also compatible with open source
office suites such as LibreOffice. It is packaged as both a
Python script (for those with existing Python 3 or Python
2.7 installations) and standalone executables for Windows
and OSX, eliminating the need for installing and learning
any additional software. Finally, CellPD generates locally-
stored webpage outputs to clearly and intuitively present
parameter estimation results with publication-quality ta-
bles and graphics as well as machine-readable XML out-
puts. These webpage reports also rank the quality of each
fitted model to help the user choose the appropriate
results without specialized mathematical knowledge. (See
Additional file 1 for two examples of CellPD outputs.)
CellPD is a beneficial tool for experimentalists, especially
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for those without a computational background or an exis-
ting partnership with a trained biostatistician or mathe-
matician, as it provides a uniform and precise method for
analyzing cellular dynamics data. Furthermore, CellPD not
only computes growth rates from time series data, but also
fits mathematical models in order to gain further insights
from time series data, such as discerning between cyto-
static and cytotoxic drug effects (as shown in the Results
and Discussion section). While all the tasks that CellPD
performs (automatic analysis by multiple models, uncer-
tainty quantification, automatic ranking of fitted models by
quality, user-friendly interfaces, publication-quality graph-
ics, open data standards-compliant outputs for future data
sharing, and utility in high-content screening experiments)
are in principle possible today with significant custom
scripts (e.g., in R, Python, or Matlab), no tools available
today have already been tailored to these tasks and shared
with the scientific community in a user-friendly format. In
this article we describe some applications of CellPD and
link to its source code (which will be updated as new fea-
tures are added) so the scientific community can use it and
build upon it.

Implementation
CellPD was designed with the following goals in mind:

o Utility for experimental biologists: The main goal of
CellPD is to facilitate a quantitative description
and analysis of cell population dynamics, using
mathematical models that are powerful enough to
make full use of increasingly detailed datasets.

o [Ease of learning and ease of use: A scientist with no
training in mathematical/computational modeling
can learn how to use CellPD in an hour or less.

o Robustness to sparsity in data: CellPD can fit
mathematical models to irregularly and sparsely
sampled data requiring a minimum of two data
points to fit the most basic mathematical model.

o Accessibility and Shareability: CellPD is open source
and free to use with an unrestrictive license.

o Extensibility: We have planned extensions to
CellPD’s capabilities. In addition, its source code
may be modified by any member of the scientific
community, provided they follow the guidelines of
the (permissive) MIT License.

o Portability: CellPD’s Python code is packaged with a
Python interpreter and all the required libraries;
therefore, a computer running Windows, OSX, or
Linux can run it without installing any software.

Previous work

There have been numerous efforts to compare and
standardize cell line data across labs to ensure reprodu-
cibility and accuracy [15-17]. For example, an early
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effort by Osborne et al. characterized MCF7 breast can-
cer cells grown in four different laboratories [18]. Their
investigation exposed substantial differences in the four
labs’ cell population doubling times. However, it can be
difficult to discern any irregularities between cell cul-
tures from different labs using doubling times for com-
parison, especially if those doubling times have not been
computed to account for confluency effects.

Many tools have been developed specifically to estimate
cell line growth parameters. Several were written in R such
as cellGrowth [4, 19], grofit [20], and minpack.m [21, 22];
MATLAB packages include PHANTAST [23] and
SBaddon [24]; Ruby packages include BGFit [25]; and
Python packages include ABC-SysBio [26] and GATHODE
[27]. Although these packages are very useful, they are diffi-
cult to use for those without formal programming or
bioinformatics expertise; moreover, the MATLAB-based
packages require additional, costly software licenses. Some
of these packages require data to be formatted in an inflex-
ible format, for example requiring the data to be the output
of a specific high content screening microscope. None of
these tools and software packages are designed for regular
use by scientists without extensive training with computa-
tional tools (ie., they do not incorporate user-friendly
inputs and outputs). They are also primarily designed for
single-lab use. For example, they create outputs with lab-
specific formats, rather than a standardized, well-annotated
format suitable for curation and meta-analysis. These out-
put formats make it challenging to compare different data-
sets from multiple laboratories. Thus, they do not answer
the call for (big) data sharing [28]. While spreadsheet soft-
ware such as Microsoft Excel can be used for some basic
calculations (such as computing the net growth rate of an
exponentially growing cell culture), fitting more sophisti-
cated models is much more difficult and potentially error-
prone. Hand-coded spreadsheet formulas and macros can
hide subtle but critical errors (e.g., incorrect row/cell num-
bers), sometimes invalidating results or requiring paper
retractions [12, 13].

CellPD aims to fill these workflow gaps by providing a
user-friendly tool to estimate some key cell phenotype pa-
rameters from data acquired using common experimental
platforms. In this paper, we lay the groundwork for a suite
of tools that can be shared among different labs, that will
help to facilitate data sharing and cross-lab meta-analyses.
While the first release of CellPD is focused on quantifying
cell cycle and death parameters, it has been built from
the ground up to allow future extensions to quantify other
phenotypic parameters, such as motility and pharma-
codynamics, and to leverage anticipated advances in
single-cell tracking to test hypotheses-driven phenotype
parameters (e.g., an S-phase duration that depends upon
glucose availability and cell size). Some early applications
of CellPD may include quantification of drug effects on

Page 3 of 12

cancer cells (using data from assays containing varying
drug doses), functional analysis of gene and other knock-
out experiments (such as the ones used in Gagneur et al.
[4]), quantifying the effect of the microenvironment on
cell phenotype (such as described in Garvey et al. [5]), cell
culture quality control (by comparing estimated growth
rates with a curated database), data mining (by extracting
data from databases and analyzing it with CellPD) and
generation of minable big data (by creating digital cell
lines for each experiment that CellPD analyzes), and in-
tegration of biological data into computational models
(by using CellPD’s estimates as parameters for compu-
tational models).

In order to simplify the user interface, the primary input
for CellPD is a Microsoft Excel spreadsheet that contains
the experimental data (e.g., total cell counts at different
time points), metadata related to the experimental setup
(e.g., the name of the cell line and user notes), and the
user information (e.g., the name and contact information
of the CellPD user/data creator). Every CellPD download
includes template spreadsheets to guide users through the
spreadsheet layout and data formatting. In order to bring
mathematical modelling expertise to biologists, the user-
supplied data are then parsed and used to calibrate several
mathematical models (for example exponential and logis-
tic growth); the models were designed for extracting
biologically-meaningful cell parameters from typical ex-
perimental data, such as the cell population growth rate
and cell cycle information (such as population doubling
times) with adjustment for confluence effects. See the
Methods section for details on the mathematical models,
their underlying assumptions, and a layperson's descrip-
tion of the mathematical models.

CellPD automatically selects one or more mathemat-
ical models for fitting based upon the type and quantity
of data supplied by the user. For example, if the user
provides cell counts at different time points but no cell
viability, then CellPD (without extra input from the user)
will calibrate models which describe cell counts but will
omit models which describe cell death. Finally, a series
of locally-stored webpage outputs are created to report
and rank the fitted models (by quality of fit) and their
parameters. Each fitted model includes a layperson’s de-
scription of the underlying model assumptions and the
biological meaning of each parameter. The results are re-
ported in publication-quality figure (PNG, JPG, SVG, EPS,
and PDF files) and table formats (XLSX and CSV files).
For a list of all the outputs, see the Additional file 1.

CellPD has been designed to run on both finely-
sampled data (measured at many time points, for ex-
ample every 15 min, such as in yeast and bacteria
experiments where dynamics have shorter timescales)
and more sparsely (measured once per day, as is com-
mon in cancer cell culture experiments). We intend
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CellPD to be used in a wide range of applications so it is
robust to sparse data, but its accuracy improves when
given more data points (as shown in Fig. 1). For a model
with # parameters, CellPD requires at least # data points
to estimate those parameters and at least # + 1 data points
to estimate standard error of the mean for each parameter.
The simplest model that CellPD can fit is the exponential
model (a two-parameter model; see the methods section
for more details); CellPD can analyze data so as long as
there are at least 2 data points, in which case CellPD will
assume exponential growth in between those two points.

Downloading CellPD

CellPD is hosted at SourceForge.net. Its source code,
Windows and OSX executables can be downloaded at
http://CellPD.sf.net [29]. Alternatively, tutorials and the
most recent version of CellPD can also be downloaded
at http://MultiCellDS.org/CellPD/ [30].

Results and discussion

We first validate CellPD’s parameter estimates by com-
paring its results against another previously published
cell growth parameter estimator, cellGrowth, and Excel
2016’s built in functions (see Additional file 2 for a list
of other tools that we examined). After validating the
code, we demonstrate some key applications of CellPD
by (1) evaluating its use in cell culture quality control by
comparing two cultures of the same cell line (HCT 116,
a colon cancer epithelial-like cell line) grown in two differ-
ent media, (2) demonstrating its utility in HCS experiments

CellPD cross-validation
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Fig. 1 Cross-validation of growth rates. Growth rates + Standard
error of the mean (SEM) of Yeast strain seg_07A grown in YPD
media computed by cellGrowth (red), Excel (green) and CellPD (blue)
using different number of sampling time points (i.e,, at different
sampling rates). All three tools correctly estimated the maximum
growth rate for high sampling rates. For low sampling numbers
(approximately less than 10 samples), the three tools become less
accurate; cellGrowth lacks the necessary number of data points to
perform data smoothing, Excel becomes inaccurate, but CellPD
continues to estimate reasonable growth rates. Even at the limit
case of only 3 sampled data points, CellPD provides a reasonable
estimate (although it can no longer estimate SEM of the parameter)
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by calculating dose-dependent cell birth and death pa-
rameters in a simulated drug screening experiment, and
(3) using CellPD to determine whether these drugs are
cytostatic or cytotoxic.

To test and quantify user-friendliness, we subjected
CellPD, cellGrowth, and Excel to a series of timed use
cases: installing all necessary software (first time setup
for a new user), formatting data (6 replicates of yeast
growth data from [4, 19] sampled every 15 min) running
the software, and analyzing output. The lead author per-
formed this test and recorded them (see Table 1 for links
to the videos), and a group of 12 biologists volunteered
to perform this test using CellPD either as individual
testers (two participants) or in either pairs or groups of
three. We also tested robustness by repeating the use
cases for sparser data samples.

CellPD comparison and cross-validation

Advantages of CellPD over Excel’s built-in fitting functions
Some of the computations that CellPD performs auto-
matically can be replicated, albeit not automatically,
using a spreadsheet. Spreadsheet software can use built-
in regression functions to fit an exponential curve to ex-
perimental data. While other, more complex, dynamics
can be modeled using a spreadsheet (such as logistic
curves), these approaches push the limits of spreadsheet
software by requiring hand-coded formulas, macros, or
VisualBasic coding. Such calculations tend to be less re-
usable and more error prone, occasionally invalidating
study results or even contributing to retractions [12, 13].
Hence, spreadsheets should only be used for minor calcu-
lations; more complex applications are best left to well-
designed, purpose-built open source scientific software.
CellPD is designed to estimate parameters accounting for
expected behavior in cell population growth (such as logis-
tic limitations). Additionally, CellPD is modular and exten-
sible, thus allowing the user to fit multiple mathematical
models at once, modify its current models, or even code
new custom models. CellPD also creates high resolution
figures which can be used in scientific publications, as well
as minable XML reports and intuitive webpage reports.

Cross-validating CellPD

In order to cross-validate CellPD’s parameter estimates,
we utilized a publicly-available dataset from [4]. From
this dataset, we selected the strain seg 07A grown in
“YPD” medium (high in glucose) and computed the
population growth rates using CellPD, Excel’s linear re-
gression function (linest), and cellGrowth. Not all of the
replicates from that dataset have the same number of
measurements, so we truncated the longer-time repli-
cates so that they all have the same number of time
points. We first computed the maximum growth rate of
the data using all three tools, and defined cellGrowth’s
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Table 1 Comparison between CellPD, cellGrowth, and Excel

CellPD cellGrowth Spreadsheet (Excel)
0.25 h sampling rate (95 samples) 0.375 (+0.00963) 0.3971 (+0.0045) 03751 (+0.0045)
max_growth_rate (£SEM) h'
3 h sampling rate (7 samples) max_growth_rate 0438 (+0.0326) 0.1916 (£0.0045) 0.3044 (+0.0096)
(+SEM) h'!
6 h sampling rate (3 samples) max_growth_rate 0462 (N/A) Breaks down 0.2519 (+0.0435)
(#SEM) h'!
Usability benchmark: Tyo, lead author 6m55s 6m35s 2m27s
Usability benchmark: Tio, lead author
Usability benchmark: T,naysis, lead author 5m43s 3m17s 2m27s
Usability benchmark: T,paysis, lead author
Usability benchmark: Tyoa, 12 scientists Approximate range, in minutes N/A N/A
unfamiliar with CellPD [20, 30]
Usability benchmark: T,na1ysis, 12 scientists Approximate range, in minutes N/A N/A
unfamiliar with CellPD [14, 26]
Run time ~30's <ls <1s
Video of timed use case https://youtu.be/3xR9x_2pBKs https://youtu.be/DO- https://youtu.be/
Lkwgllg YCyCfzl7yFY
Comments on ease of use Tutorial available, drag and Good tutorial to use Present on (viritually) every
drop option custom data computer, many tutorials
available online
Comments on input user interface Executable file, command Command-line in R Manual input of formulas
line option within the GUI
Comments on output user interface Easy to read webpages Option to display and Easy to create simple graphs
with downloadable plots save an informative plot
Typical Ul https://youtu.be/3xR9x_2pBKs?t=276 https://youtu.be/DO- https://youtu.be/YCyCfzI7y
LkWgllg?t=272 FY7t=12
Typical output https://youtu.be/3xR9x_2pBKs?t=406 https://youtu.be/DO- https://youtu.be/YCyCfzI7y
LkWallg?t=391 FY7t=158
Feature comparison matrix:
Uncertainty quantification Yes If user computes it If user computes it
Parametric growth models Yes Yes If user creates them
Nonparametric growth models No Yes If user creates them
Publication quality graphs Yes No No
Fully annotated results in a standardized Yes No No
markup language
Open Source Yes Yes No
Language written Python R C/C++, C++/Java/Python
Required software to run Spreadsheet editor (Excel, LibreOffice), R Excel, LibreOffice
Web browser (internet Explorer will
suffice)
Required computational expertise No specialized experience Working knowledge of R Familiarity with spreadsheets

All three tools correctly estimate the growth rate when provided with a large number of samples. cellGrowth is more precise than CellPD for higher number of samples

(i.e, shorter sampling intervals). However, even with fewer samples (i.e,, larger sampling intervals), CellPD correctly estimates the growth rate (within the 95 % confidence
interval). For fewer samples (i.e., larger sampling intervals), both cellGrowth and Excel become unreliable. CellPD is slower than cellGrowth or Excel for an experienced user,
but CellPD does not require prior programming knowledge (unlike cellGrowth) and it also creates multiple useful outputs (Excel does not generate publication-quality graphs
and cellGrowth has the option of creating a single graph which the user can export). CellPD is quicker to set up than cellGrowth, but it takes longer to run in order to create
the multiple outputs. Excel usually requires no set up (beyond installing Microsoft Office), and it is often already installed in a research computer. The lead author computed
the usability benchmark running a fixed, “clean” Windows 7 configuration on a Virtual Machine (VM). This VM included an installation of LibreOffice 5.1.4 and was run in a
Lenovo ThinkPad Yoga with an Intel Core i7-4600U CPU with 8GB of Ram running Windows 10 (64-bit)
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estimate (0.397 h' which corresponds to a population
doubling time of 1.75 h) as the ground truth (the true
value). We then used the three tools to estimate the
growth rate using only a subset of the data (to simulate
an experiment where samples are taken less frequently).
We first fitted to the original data, which corresponds to
95 samples (and a sampling time interval of 0.25 h), then
we reduced the number of samples roughly by half (the
equivalent of sampling every 0.5 h), then we used
roughly 1/3rd of the number of samples (the equivalent
of sampling every 0.75 h), and so on, until we fitted to
only 3 data points (i.e, sampling every 6 h). Figure 1
shows the estimated growth rates as the number of sam-
ples is varied (for the same experiment) using the three
tools (see Additional file 3 for a figure where the x-axis
represents sampling interval). CellPD, Excel, and cell-
Growth correctly estimate the maximum growth rate for
largest number of samples. CellPD generates reasonable
growth parameter estimates over a broad range of data
sampling rates, while both Excel and cellGrowth rapidly
lose accuracy as the number of samples decreases. In
particular, cellGrowth fails altogether when there are
fewer than 6 samples. cellGrowth relies on smoothing
methods arising from signal processing methods in order
to provide accurate growth rates. Thus, it requires a sub-
stantial number of data samples. Neither CellPD nor
Excel perform data smoothing, so they can estimate pa-
rameters with fewer data samples. While Excel can still
compute the net growth rate with very few sampling
points, its approach is prone to user bias (because users
must choose which points to include in the linear
regression and which to omit, e.g, due to confluence
effects) and replication errors due to the manual nature
of this computation. Hence there is a need for tools like
CellPD which perform these analyses systematically and
automatically. However, even tools which do not per-
form data smoothing are susceptible to problems caused
by low number of data samples. Figure 1 shows that the
uncertainty of the parameter estimates reduced for all
three tools as the number of samples is increased, as de-
scribed in Harris et al. [31], two data points are not
enough to accurately model the dynamics of cell popula-
tion growth.

Usability comparison testing
In order to quantitatively assess the usability of software
package we used the following usability benchmark:

Usability benchmark

Measures how easily a new user can set up the package,
starting from a “clean slate” using data formatted as out-
putted by a generic high content screening microscope
(i.e., raw cell counts or optical densities at different
times, each replicate recorded in its own file).
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Use case:

Step 1: Install and setup software (included required
dependencies)

Step 2: Reformat data for the software

Step 3: Run software

Step 4: Compute means and standard deviations of
maximum growth rate

Total time (Tyoa1) = Step 1 to Step 4.

Tanalysis = Step 3 and Step 4.

We recorded times measured by the usability bench-
mark as rows of a feature comparison matrix described
in Table 1. We also recorded videos while the lead
author performed the usability benchmark. Links to the
videos are also listed in Table 1. To minimize user
experience differences between the methods, the lead
author spent time learning R and cellGrowth before per-
forming the benchmark tests. Thus, the times reported
are the minimum times to perform an analysis. For a
novice user with no computational expertise, the diffe-
rences would be larger. In particular, such users would
require at least 1-10 days to learn introductory R before
completing the benchmark use case, whereas users can
complete the benchmark use case with CellPD without
any additional training. The usability benchmark was
repeated for CellPD by multiple volunteers with a wide
range of computational experience, these times are also
recorded in Table 1. The volunteers did not repeat the
benchmarks on cellGrowth because using it requires
familiarity with R.

Using CellPD to compare two cultures of the same cell
line

A significant issue in biological experimentation is inter-
and intra-laboratory variability [10, 15-17, 32]. For
example, cells are typically grown in various media irre-
spective of the initial culturing methods. Moreover, even
when culturing conditions are standardized, the use of
biological reagents that are inherently variable in com-
position (such as fetal bovine serum (FBS)) can dramat-
ically impact cell growth [33]. As result, it is important
to devise tools such as CellPD to assess cell growth and
perform quantitative quality control. We used CellPD
and Excel (there are not enough sample points for cell-
Growth to process these data) to compute the growth
rate of two HCT116 cultures grown in two different
media. In this paper, cells grown in McCoy’s media are
labeled “USC” and those grown in DMEM are labeled
“WFU”. Figure 2 shows the growth rates and the 95 %
confidence interval (CI) as computed by CellPD and Excel.
With either tool, the 95 % CI of the same HCT116 cells
grown using these two different media do not overlap. This
experiment was designed to observe different growth
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HCT116 grown in USC and WFU media

CellPD
Excel
F+ WFU e USC]
2.0 25 3.0 35 4.0

growth rate [1/h] [+95% CI] x107?

Fig. 2 Using CellPD and excel to identify difference in “single clone
cell lines” grown under the same microenvironmental conditions.
Growth rates of HCT116 cell cultures grown in two different media
(red: USC, Blue: WFU). USC cells grow at a rate of 0.0354 +0.0017 h™",
95 9% CI [0.0322, 0.0388]h~" as estimaded by CellPD. WFU cells grow
at a rate of 0.0264 +0.0029 h™', 95 % CI [0.0206, 0.0321]h™" as
measured for CellPD. The 95 % Cls do no overlap (using either tool),
showing that the cell cultures grow at different rates. For the complete
CellPD outputs see Additional file 1

dynamics when culturing the same cell line (HCT116)
in two different media due to differences in glucose
concentrations (McCoy’s — 16 mM; DMEM - 25 mM)
and other nutrients and growth factors [33]. CellPD
allows for detection and quantification of such differ-
ences. These quantifications can be used to identify
potential deviations from the protocol, such as in this
case (where we intentionally used the wrong medium).
This result highlights the importance of standardizing
experimental conditions within and across laboratories.
Such a large discrepancy in growth rates as a result of cul-
ture media could significantly alter the interpretation of
standard tumor cell growth and their response to stimuli
or inhibitors, such as chemotherapies.

Using CellPD to analyze (synthetic) high-content drug
screening data

CellPD can be used to quantitate cell phenotype under
multiple drug conditions using data generated in high con-
tent screening platforms. To demonstrate this feature, we
first generated a synthetic drug screening dataset typical of
high-content screening platforms and tested CellPD against
these synthetic data. Specifically, we generated synthetic live
and dead cell counts for two drugs at 5 doses, with 5 bio-
logical replicates for each experimental condition (a specific
drug at a specific dose). Each simulated experimental
measurement included normally-distributed noise to
approximate both instrument and biological variability.
See Additional files 4 and 5 for full details on the syn-
thetic dataset, generating code, and the synthetic data
themselves. CellPD was able to quantitate the net birth
rate for each experimental condition, along with uncer-
tainty estimates, and plot the responses. See Fig. 3a.
Note that these analyses would be difficult to automate
with cellGrowth, and would require substantial manual
effort when using Excel.

a x10-2 Synthetic ce.ll line

6 L L

Net growth rate
w

0.0 0.2 0.4 0.6 0.8

Drug concentration
[—I— DrugA —I— DrugB“
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44 g 081 H
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14 L 0.5 L L
0 T T T T T T 0.4 T T T T T T
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Drug concentration Drug concentration

[—I— Drug A —I— DrugB]|

Fig. 3 Using CellPD to analyze high-content drug screening (synthetic)
data. CellPD's quantification of a synthetic cell line’s response to two
different drugs. The net growth rates a show different responses to each
drug. CellPD automatically decouples the birth rate b and death rate c
which elucidates the drugs’ mechanisms of action. Drug A reduces the
birth rate while keeping the death rate relatively constant, Drug B mainly
increases the death rate

0.0 0.2 0.4 0.6 0.8 1.0

J

We note that because we used a synthetic dataset with
known “true” values, we can assess CellPD’s accuracy and
to test its robustness to measurement noise. We found
that even with 10 % noise, CellPD was able to recover the
correct parameter values for both simulated drugs at all
doses, with a mean error of 2.6 % for the birth rate, 6.7 %
for the death rate, and 3.0 % for the net growth rate. See
Additional files 4 and 5 for more details.

Using CellPD to differentiate between cytotoxic and
cytostatic drug effects

Continuing with the prior analysis, we used CellPD to
separately quantitate the cell birth and death rate param-
eters for each experimental condition. See Fig. 3b-c. This
additional analysis correctly reproduced the known birth
and death rate parameters. Moreover, CellPD found that
drug A was primarily cytostatic (it mainly influenced the
cell birth rate) and drug B was cytotoxic (it chiefly
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affected the cell death rate). Because cellGrowth and
Excel only fit the total population curve (i.e., they de-
termine the net birth rate = birth — death), they cannot
easily repeat this analysis nor help distinguish between
cytostatic and cytotoxic drug effects here. In fact, by
only examining the dose-dependent net birth rate, it
can be (wrongly) inferred that drug A is cytotoxic be-
cause increasing the dose of drug A rapidly decreases
its net birth rate to negative values, whereas drug B
has a very shallow dose-net birth rate curve, which
could be (wrongly) interpreted as arresting cell birth to
maintain a zero or small net birth rate. Here, a more
detailed analysis (facilitated by CellPD) was necessary
to discern that counter to intuition from the net birth
rate graphs, drug A is cytostatic, and drug B is cyto-
toxic. More sophisticated mathematical analyses—-
made possible by the broader class of models encoded in
CellPD with straightforward usability—are necessary to
discern the mechanism of action of each simulated drug
compound.

Limitations

CellPD can currently only estimate parameters for prede-
fined models (see Methods section for a list of the
models); it does not currently support user-defined math-
ematical models except by directly modifying the source
code. CellPD can directly analyze a dataset in which mul-
tiple environmental conditions are changing, e.g. if a data-
set includes experiments where both the oxygenation and
the media are changed independently. However, this func-
tionality is under development. Currently publication-
quality plots can only be generated for a single environ-
mental condition with multiple values (e.g., different levels
of oxygenation). When more than one environmental con-
dition is changing at the same time, CellPD will perform
the quantitative analysis and it will create plots, but those
plots may not be as intuitive to read as the rest of the out-
put files that CellPD generates. CellPD is designed to
analyze population-level phenotypic data and is currently
not equipped to provide single-cell dynamic information,
although this is a feature that could be added in the
future.

Future versions of CellPD

CellPD is open source: anyone may modify the code
under the terms of the MIT License (MIT). We plan to
update CellPD and release future versions which will
include:

e Implement other common mathematical models of
cell growth (e.g., Gompertzian).

e Implement additional cell cycle models (e.g., cells
transitioning between Go/Gy, S, G,, and M phases)
suitable to flow cytometry data.
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e Automatically handle multiple-condition datasets for
a single experimental factor (e.g., varying a drug
level or the oxygenation). This function is in active
development and testing. A beta version is now
included with the main code of CellPD, with a fully-
supported version anticipated soon.

e Automatically handle multiple-condition datasets for
multiple experimental factors (e.g., varying a drug
level and the oxygenation).

e Implement pharmacodynamics (drug response) models.

e Interactive web version.

o Interface with ORCID’s API [34] to pull in user
details automatically.

e Black-box optimization, allowing the user to define a
custom mathematical model and estimate its
parameters.

e Alternative minimization techniques such as
cross-validation, bootstrap, genetic algorithms,
and different heuristics for global optimization.

Conclusions

CellPD is a useful tool for biologists to analyze, quan-
tify, and share phenotypic data. It can be used for data
quality control and to identify unexpected changes in
cell population dynamics. It can help automate analysis
of high-content screening data, while distinguishing be-
tween cytostatic and cytotoxic drug effects. In all of its
analyses, it makes use of biological and technical replicates
to help assess uncertainty. CellPD facilitates integration of
experimental data into computational models, rapidly
quantifying critical phenotypic characteristics such as a
cell line’s net birth rate and producing consistent publica-
tion quality data.

Methods

Cell culture and reagents

HCT116 cells were acquired from ATCC and maintained
in McCoy’s media (USC HCT116). HCT116 cells cultured
in DMEM media were also gifted to us by the Soker la-
boratory at Wake Forest University (WFU HCT116). All
culture media was supplemented with 10 % fetal bovine
serum (Gemini) and 1 % penicillin/streptomycin solution
and cells were kept under standard tissue culture condi-
tions (5 % CO,, 37 °C).

Live/dead cell counts

Cells were seeded at 1,000 cells per well in 96 well plates
(Corning #3904). Live and dead cell counts were deter-
mined at 0, 48, and 72 h using the Operetta high content
screening (HCS) platform by PerkinElmer. Briefly, cells
were stained with 5 pg/mL Hoechst 33342 (Invitrogen
#H21492) and 7.5 nM Sytox Red (Life Technologies
S34859) prior to imaging to identify cells as live or dead,
respectively. Using the Harmony 3.5.2 (PerkinElmer)
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image analysis software, individual cells were quantified as
live or dead using nuclear segmentation algorithms and
intensity thresholds. Each assay condition was performed
in triplicate. All data points used in the analysis were
taken before any confluence effects were apparent. Raw
data can be found in Additional file 6.

Software implementation
CellPD is written in Python 3 (but a version compatible
with Python 2.7 was created, in part, using 3to2), and it
can be downloaded as source code to run in scripted
python, or as a downloadable, self-standing executable
(Windows and Mac). As shown in the graphical abstract,
CellPD takes in a Microsoft Excel file as an input (or a
compatible XLSX/XLS spreadsheet created or edited
with open source software such as LibreOffice [35]). It
creates a collection of webpage (HTML) reports as
primary outputs, including a summary and ranking of
fitted models and publication-quality graphics. CellPD
also generates multiple supplementary outputs to facili-
tate data extraction. Supplementary outputs include:
log-linear plots, black and white plots, figure captions,
model descriptions, model equations in latex, table of
estimated parameters in multiple formats (TEX, XLSX,
and CSV), and a digital cell line XML file (a standar-
dized, hierarchical reporting of cell phenotype and
metadata; see the MultiCellDS project website for more
details [14]). The HTML-based report is saved locally
for later access.

In order to run properly, CellPD requires the following
common Python libraries (note that they are included in
the executable files):

e LMEFIT: Non-Linear Least-Square Minimization
and Curve-Fitting for Python. CellPD requires it
to perform the minimization required in parameter
estimation and to store the parameter values in
LMFIT’s Parameter’s structure [36]. MIT license [37].

e NumPy: A basic numerical library for Python.
CellPD requires it through to create numerical
arrays and to use various mathematical functions
[38]. BSD license [39].

e SciPy: A scientific computing library for Python.
CellPD requires it to complement NumPy’s
mathematical functions and for its numeric
integration algorithms [40]. Custom BSD
compatible license [41].

e matplotlib: A common and versatile plotting library
for Python. CellPD requires it to generate publication
quality plots [42]. Custom BSD compatible license: [43].

e tzlocal: A library with time and locale tools for
Python. CellPD requires it for generating time-
zone sensitive time stamp [44]. License CCO 1.0
Universal [44].
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o tabulate: A library for handling tables in Python.
CellPD requires it for generating table of parameters
for the reports [45]. MIT License [45].

e OpenPyXL: A library to read/write Excel files in
Python. CellPD requires it to read the input files and
to create the excel files that are supplemental
outputs [46]. MIT/Expat license: [46].

e Dylnstaller: A software to create stand-alone
executable files for Windows and Mac. CellPD
does not invoke Pylnstaller, rather, we use Pylnstaller
to package CellPD with Python interpreters into a
single executable file [47]. Modified GPL license to
“have no restrictions in using PyInstaller as-is” [47].

e 3to2: A python script that converts most Python 3
code into Python 2. CellPD does not invoke 3to2,
rather, we use 3to2 to translate most of CellPD’s
Python 3 code into Python 2.7 code, the rest of the
code that is not translated by 3to2 is translated
manually [48]. Apache Software License [49].

Further algorithmic detail

e Levenberg—Marquardt algorithm (LMA): CellPD
uses LMFIT [50], which uses the LMA to minimizes
an error metric to obtain an optimal, best fit
between a supplied mathematical and data. LMA is
a generalization of the steepest gradient descent
method designed to solve smooth nonlinear
problems (by using a “damping” on the gradient). A
good explanation can be found in the book
Numerical Recipes, The Art of Scientific Computing
[51]. In our application of LMA, we used the
following error metric:

Error; = Data;—Simulation;

N 2
1 [Error;]
WSSE = Z; Data

where sigma is the standard deviation of the /™ data
point. Thus, data with the largest uncertainty carries the
least weight in the optimization (i.e., LMA prioritizes
data with higher certainty). WSEE is the Weighted Sum
of Squared Errors.

e MAPE and Reduced y:: In order to compare
different models, the Mean Absolute Percentage
Error (MAPE) and the reduced chi squared are
computing using the formulas:

WSSE
Datai Y Ndata _Nparameters

|Error;| ,

1 N
MAPE = ﬁZmo

where Nggta is the number of data samples and Nparameters
is the number of parameters of the model being evalu-
ated. MAPE gives an intuitive sense of how well the model
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fit the individual data time points, on average, expressed as a
percentage of the fitted data. x> adjusts this metric to ac-
count for the complexity of the fitted model (the difference
between the number of measurements and the number of
model parameters). It is meant to find a balance between fit-
ting the data and simplifying the model, to avoid overfitting.
(E.g., with enough parameters, a model could be made to fit
every data point, even if it were a very poor model of the
underlying biological system.) Both MAPE and y2 are appro-
priate scores for ranking models applied to a given dataset
so we provide both to allow the user decide which metric
they prefer.
e Estimates of standard error of the mean (SEM): To
estimate the SEM of the estimated parameter i,
LMFIT uses the formula:

SEM; = 1/ x2Cov(i, i)

where Cov(i, i) is the element of the covariance matrix in
the i™ row and the /™ column. A good explanation of
these numerical methods can be found in LMFIT’s website
[36, 50] and can be supplemented by [52].

Mathematical models implemented

e live: This is an exponential model that describes the
growth of the live cells:

d|[Live]
dt

Here, [Live] is the total number of live cells, and
growth_rate is the net rate of live cell population
growth (cell birth minus death).

e live_logistic: This modifies the exponential growth
model to account for logistic growth effects (e.g.,
depletion of a growth substrate, or approaching cell
confluence):

= growth _rate[Live]

d[Live]
dt

= growth _rate (1— [L1ve]> [Live]
Lcap

[Live] is the total number of live cells, and growth_rate
is the net rate of live cell population growth (cell birth
minus death). L, is the total cell population carrying
capacity (the maximum number of live cells).

e live_dead: This extends the exponential model to
describes the changes of the live and dead cell

populations:

d[Li
[dltve] = birth_rate[Live]-death_rate[Live]
D

d| detad] = death _rate[Live|-clearance rate[Dead]
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[Live] is the total number of live cells, [Dead] is
the total number of dead cells, birth_rate is the
cell birth rate, death_rate is the cell death rate,
and clearance_rate is the rate at which dead cells
are cleared from the system (or the rate at which
they become undetectable/unrecognizable to cell
segmentation, cell counter, or other measurement
techniques). 1/birth_rate is the mean time between
cell divisions, and 1/clearance_rate is the mean
time required for dead cells to degrade and/or
cease to be recognized as cells by cell detection
software.

live_dead_logistic: This model modifies the live_dead
model to account for logistic population effects:

d|Li Li
[dltve] = birth _rate <1— m) [Live]—death rate|[Live]
cap
D
4 detad] = death _rate[Live]-clearance _rate[Dead]

[Live] is the total number of live cells, [Dead] is
the total number of dead cells, birth_rate is the
cell birth rate, death_rate is the cell death rate,
and clearance_rate is the rate at which dead cells
are cleared from the system (or the rate at which
they become undetectable/unrecognizable to cell
segmentation, cell counter, or other measurement
techniques). L, is the total cell population
carrying capacity (the maximum number of live
cells). 1/birth_rate is the mean time between cell
divisions, and 1/clearance_rate is the mean time
required for dead cells to degrade and/or cease to
be recognized as cells by cell detection software.
total: This is an exponential model that describes
the growth of the live and dead cells combined:

d|Total]
dt

[Total] = [Live] + [Dead] is the total number of cells,
and growth_rate is the net rate of cell population
growth (cell birth minus death).

total_logistic: This modifies the exponential growth
model to account for logistic growth effects (e.g.,
depletion of a growth substrate, or approaching cell
confluence) in the total cell population:

= growth _rate[Total]

d|Total]
dt

[Total]

cap

= growth rate (1— ) [Total]

[Total] = [Live] + [Dead] is the total number of cells,
and growth_rate is the net rate of cell population
growth (cell birth minus death). T, is the total cell
population carrying capacity (the maximum number
of total cells).
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Additional files

Additional file 1: Example of CellPD's outputs. This folder contains two
examples of the outputs generated by CellPD (using the data from Fig. 2
and Additional file 6). (ZIP 36462 kb)

Additional file 2: Other tools that we examined. This file contains a list
of five other tools we attempted to use and the reasons why we did not
use them. (PDF 120 kb)

Additional file 3: Growth rate estimates versus sampling frequency. This
file contains an alternative representation of the same data from Fig. 1. In
this representation, the x-axis is the sampling interval (instead of the log
10 of the number of samples). (PDF 239 kb)

Additional file 4: Creation of synthetic data. This file contains a
description of how the synthetic data for Fig. 3 was created, as well as
the calculation of the estimation error. (PDF 500 kb)

Additional file 5: Synthetic data. This folder contains the synthetic data
used for Fig. 3 and Additional file 4. Additionally, it contains the python

scripts that were used to make the synthetic data, Fig. 3, and Additional

file 4: Figure S9-1. (ZIP 890 kb)

Additional file 6: Raw data. This spreadsheet contains the raw data
used for Fig. 2, as well as the experimental setup. (XLSX 15 kb)

Additional file 7: CellPD Tutorial. This file contains a step by step tutorial
detailing how to add experimental data and metadata to CellPD's input file,
as well as how to run CellPD in Windows, OSX, or Linux. (PDF 2240 kb)

Additional file 8: Cuantificacion de Dindmicas Poblacionales de Cultivos
de Lineas Celulares Utilizando CellPD. This file is a Spanish summary of
the manuscript. (PDF 127 kb)

Additional file 9: Source code. This folder contains the Python code
with the version of CellPD used throughout this manuscript. (ZIP 554 kb)

Additional file 10: Windows and OSX distributions of CellPD. This file
contains simple instructions and links to download CellPD and use it on
a Windows or an OSX computer. (PDF 119 kb)
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