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Abstract

Background: Colorectal cancer arises from the accumulation of genetic mutations that induce dysfunction of
intracellular signaling. However, the underlying mechanism of colorectal tumorigenesis driven by genetic mutations

remains yet to be elucidated.

Results: To investigate colorectal tumorigenesis at a system-level, we have reconstructed a large-scale Boolean
network model of the human signaling network by integrating previous experimental results on canonical signaling
pathways related to proliferation, metastasis, and apoptosis. Throughout an extensive simulation analysis of the
attractor landscape of the signaling network model, we found that the attractor landscape changes its shape by
expanding the basin of attractors for abnormal proliferation and metastasis along with the accumulation of driver
mutations. A further hypothetical study shows that restoration of a normal phenotype might be possible by
reversely controlling the attractor landscape. Interestingly, the targets of approved anti-cancer drugs were highly
enriched in the identified molecular targets for the reverse control.

Conclusions: Our results show that the dynamical analysis of a signaling network based on attractor landscape is
useful in acquiring a system-level understanding of tumorigenesis and developing a new therapeutic strategy.

Keywords: Colorectal tumorigenesis, Attractor landscape analysis, Human signaling network, Cancer reversion,

Reverse control, Systems biology

Background

Tumorigenesis cannot be explained by gene alterations
themselves, but is rather becoming perceived as the
resulting dysfunction of signaling pathways [1-3]. Sig-
naling pathways carry external signals from the receptor
to intracellular biological system, and the activation of
signaling pathways is closely linked to the operation of
specific biological processes. Therefore, malfunctioning
of some crucial signaling pathway(s) due to genetic
mutations can cause tumorigenesis [1, 4]. In particular,
colorectal cancer, the most frequently occurring human
cancer worldwide, is known to be caused by driver
mutations such as tumor suppressor genes adenomatous
poly-posis coli (APC), phosphatase and tensin homolog
(PTEN), tumor protein p53 (TP53), and oncogene
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kirsten-ras (KRAS) [5-7]. In recent studies, the up-
regulated Wnt signaling due to APC mutation or the
growth signaling owing to KRAS mutation is considered
as an important cause of tumorigenesis [8]. Moreover,
the influence of such mutation has been observed af-
fecting not only an individual signaling pathway but
also the whole signaling flow in the signaling network
in a complicated way due to crosstalks, feedback loops,
etc. Therefore, in order to investigate the underlying
mechanism of tumorigenesis from a signaling network
perspective, we need to construct a large-scale human
signal transduction network including various canonical
signaling pathways and to develop a mathematical
model for systematic analysis.

Mathematical modeling has been widely used to study
the dynamics of a signaling pathway. In particular, con-
tinuous variable modeling based on a system of differen-
tial equations has often been used, but the estimation
of kinetic parameter values limits its use for modeling
a large-scale signaling network. To overcome such
difficulty, we have employed in this study a Boolean
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network model based on integrated experimental evi-
dence of signal transduction. In the Boolean network
model, the state value of each node represents the
activity of a signaling protein in a simplified way, ‘0’ for
an inactive state and ‘1’ for an active state. The state of
a signaling protein represented by discrete Boolean
logic ultimately converges to an ‘attractor’ state after
multiple state transitions. Here, an attractor is a math-
ematical concept representing a fixed stable state
(point attractor) or regularly recurring states (cyclic
attractor) adopted by a dynamic system [9-11]. Based
on the concept of an attractor, the steady state charac-
teristics of a biological network can be found from an
attractor landscape where each point in the landscape
represents a network state defined by a set of state
values that contain the activity states of all the mole-
cules in the network [10].

Colorectal tumorigenesis is known to be an evolu-
tionary process which arises through sequential accu-
mulation of somatic mutations, and the temporal order
of genetic changes along tumorigenesis is crucial for
tumor progression [6, 12]. Among driver mutations, the
mutation of APC is the earliest genetic alteration in
colorectal tumorigenesis and seems to be required for
adenoma formation [13]. Activating KRAS mutation is
an intermediate event of colorectal tumorigenesis and
was observed in approximately 50 % of colorectal aden-
omas and carcinomas [14]. The mutated APC and
KRAS genes have synergistic effect for clonal expansion
in the nascent colorectal tumor. Relatively, TP53 muta-
tion, observed in 75 % of colorectal carcinomas, is asso-
ciated with the late progression of tumor rather than
initiation [14, 15].

From the view of attractors, tumorigenesis, driven by
sequential accumulation of somatic mutations, can be
characterized by deformation of point or cyclic attractors
of complex signal transduction networks. However, it
has not been fully understood yet how network pertur-
bations, such as somatic mutations, changes the at-
tractor landscape during the development of cancer. In
this study, to investigate the underlying mechanism of
colorectal tumorigenesis at a system-level, we have re-
constructed a large-scale human signaling network by
integrating a vast amount of experimental evidence
from literatures and previously published models, and
then developed its Boolean logic model for dynamical
analysis. Next, we conducted extensive analysis of the
attractor landscape for colorectal tumorigenesis to re-
flect the sequential accumulation of driver mutations
(APC, KRAS, PTEN and TP53). As a result, we found
that the basin of a cancer progression attractor, charac-
terized by abnormally regulated proliferation and me-
tastasis, becomes larger along with the accumulation of
driver mutations, which implies that the cellular state
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can prone to transit to a malignant state by the influ-
ence of driver mutations. In particular, KRAS and TP53
mutations, known as frequently observed mutations in
patients of colorectal cancer, can significantly induce
the change of a cellular state to a carcinoma state in
concert with other mutations. Furthermore, based on
the attractor landscape analysis of colorectal tumori-
genesis, we performed a hypothetical investigation for
reverse controlling to restore a normal phenotype from
the cancerous state by regulating the activity status of
specific target nodes in the signaling network. As a re-
sult, we could identify a set of minimal control nodes
that can reshape the attractor landscape to drive all ini-
tial states of the attractor landscape into desired normal
proliferative or quiescent phenotype attractors. Intri-
guingly, we found that approved drug-targets are sig-
nificantly enriched in the set of identified control
nodes. Our study provides new therapeutic insights and
a way of discovering novel drug targets based on at-
tractor landscape analysis and reverse control for the
treatment of cancer which is known to be irreversible.

Methods

Construction of a Boolean network model of the human
signaling network

To reconstruct a large-scale Boolean network model of
the human signaling network, we have integrated previ-
ously published Boolean network models by Helikar et
al., Fumia et al.,, Choi et al. and Kim et al., and then fur-
ther added missing signaling components and interac-
tions that are known to have crucial roles in signal
transduction, from databases such as Kyoto Encyclopedia
of Genes and Genomes (KEGG) and PID (Pathway
Interaction Database) [10, 16—20]. The reconstructed
human signaling network is composed of 197 nodes
and 688 links. All the information of 688 links in the
network is described in Additional file 1. In addition,
for simulation analysis, we have constructed Boolean
logic tables that describe the activity state of each node.
The logic tables were constructed mainly based on the
logic information of previously published Boolean
models [10, 18-20]. For the newly added nodes and
links, we performed an extensive literature survey to
define the logical relationship of each signaling compo-
nent based on experimental evidence. The descriptions
of Boolean logic tables are included in Additional file 2
and the logic tables for each signaling component are
summarized in Additional file 3. The Boolean simula-
tion for attractor landscape analysis and identification
of control nodes described in the following sections
were all implemented using Matlab® 2014a and Python
2.7 in a Window Cluster system composed of 288 CPUs
in parallel. The source codes for mathematical simula-
tions were included in Additional file 4.
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Input-output relationship of the human signaling network

To investigate the biological properties of the human
signaling network, we analyzed the input—output relation-
ship of the network [19, 21]. In the Boolean simulation,
the states of all nodes in the network were updated ac-
cording to their assigned logical rules at each simulation
step. The state values of each node were represented as ‘1’
or ‘0, which means ‘ON” or ‘OFF, respectively. To com-
pare the activities of the nodes in detail, we defined the
steady-state activity of a node as the average activity over
the last 100 time steps of the simulation over 1,000 time
steps. For instance, if the activity of a node was observed
as a cycle of ‘1010101010; the steady-state activity of the
node is determined to be 50 % ON. In the same manner,
the input intensity was defined by the average ON of the
external-input node during the simulation. We changed
the input intensity to a range of 0-100 % ON with 1 %
interval, and observed the steady-state activity of the node
from different randomized initial conditions. We carried
out additional simulations to investigate the influence of
the last average steps by changing the steps to 30, 50 and
150 (see Figure S4 in Additional file 5). These results
showed that input/output relationship of representative
nodes was maintained regardless of an average step. It
should be noted that, when we changed the input intensity
of one input node, the activities of other input nodes
were fixed to the optimal input settings, as adopted
from Helikar et al. [19].

Attractor landscape analysis of the human signaling network
To investigate the transition in the cellular state of the
human signaling network during colorectal tumorigenesis,
we performed the attractor landscape analysis of the
human signaling network [10, 21, 22]. The attractor land-
scape is composed of attractors and their basins of
attraction where an attractor is one of the steady-states of
the network and the basin of an attractor represents a set
of network states that converge to the attractor. For a
given input condition, we obtained the attractor landscape
of the human signaling network from randomly sampled
10,000 initial states until the state trajectory of an initial
state reaches a point attractor with a fixed state or a cyclic
attractor with periodically repeated states. It should be
noted that our result was not significantly changed
depending on the sampling size of the initial states (see
Figure S1 in Additional file 5). We have reflected the
genetic mutation events to our network by pinning the
state of the mutated node as 1 or 0 when the mutation
is gain-of-function or loss-of-function, respectively.

Identification of control nodes and statistical analysis

To find out control nodes for reverse control, we
adopted the algorithm for identifying the control kernel
which is the minimal set of nodes that ensures all the
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initial states converge to a desired attractor [22]. Con-
trary to Kim et al., the aim of control in this study is not
ensuring such convergence to a single attractor but en-
suring convergence to attractors that are classified into
groups characterized by a specific phenotype; quiescence
or normal proliferation. In this respect, we have investi-
gated a minimal set of control nodes that are required to
be controlled to ensure that all initial states converge to
the desired phenotypic attractors. The state values of the
control nodes were fixed to either 0 or 1 during the
simulation. Considering the large size of the constructed
human signaling network, which computationally limits
obtaining the whole attractor landscape of the network,
1,000 state transition trajectories were randomly sam-
pled from different initial states to estimate the attractor
landscape. We could identify control nodes by using the
genetic algorithm (GA) which is a computational algo-
rithm for optimization problems by artificially evolving
chromosomes that contain all possible solutions. In this
simulation, we adopted the fitness function described in
Kim et al.,, and we used 100 initial chromosomes for GA
[22]. The fitness function is as follows:

2

B x (n—z;xi) %2, if B=1
2

B3 x (n—Z?:lX,») , otherwise

Fitness =
where B is the relative basin size of the desired pheno-
type, n is the number of nodes in the network, and X; is
1 or 0 when node i is selected or not in a chromosome
X, respectively. Then, the set of control nodes is deter-
mined by a node set in the chromosome with the high-
est fitness value (see Figure S3 in Additional file 5).
Next, we retrieved the drug targets of the US Food
and Drug Administration (FDA)-approved drugs from
DrugBank database [23, 24], and conducted one-sided
two-sample chi-squared tests to investigate the statis-
tical significance between the control nodes and ran-
domly selected nodes in the human signaling network.

Results

Boolean network model of the large-scale human
signaling network

To investigate the complex dynamics of intracellular
signaling process, we have integrated all relevant infor-
mation of key proteins and their interaction which are
known to have a major role for biological processes from
extensive manual curation of literatures and databases
such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) and PID (Pathway Interaction Database) [16, 17].
In addition, we also retrieved previously published
Boolean network models in Helikar et al., Fumia et al.,
Choi et al. and Kim et al., and integrated the information
of network components and their mechanistic relations
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used in these network models (See Methods for details)
[10, 18-20]. The reconstructed human signaling network
consists of 197 nodes and 688 directed links, and contains
thirteen external-input nodes; extracellular matrix (ECM),
epidermal growth factor (EGF), interleukin tumor necrosis
factor (IL1_TNF), transforming growth factor-beta (TGF-
beta), G protein-coupled receptors (GPCR) ligands
(alpha_i_lig, alpha_12_13_lig, alpha_s_lig, alpha_q_lig),
Stress, Wnt, Fas, calcuim pump (Extpump) and DNA
damage (Fig. 1 and Additional file 1). External-input nodes
in the human signaling network receive signals propagated
by different external stimuli and activate downstream
signaling pathways. The reconstructed human signaling
network involves various signaling pathways, including
mitogen activated protein kinase (MAPK), phosphoinosi-
tide 3-kinase (PI3K)/AKT, Wnt, TGF-beta, TP53, calcium,
DNA damage-related ATR/ATM, Rho GTPases, tumor
necrosis factor-alpha (TNF alpha), and p38/JNK path-
ways, which have critical roles in determining cellular
functions. The main function of each signaling pathway is
well-known from previous studies [25-27]. For instance,
MAPK, PI3K/AKT, TGEF-beta, and TNF-alpha signaling
pathways perform roles associated with the growth or
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death of cells, and Wnt and Rho GTPases pathways regu-
late cellular adhesion and migration of cells. In addition,
ATR/ATM and p38/JNK signaling pathways play key roles
in determining the response of cells to stress and DNA
damage signals from the extracellular environment. The
reconstructed human signaling network is adequate to
investigate the distinct cellular phenotypes and complex
biological processes because it includes core signaling
pathways with various crosstalks and feedback loops. Fur-
thermore, in order to investigate the dynamics of the hu-
man signaling network, a discrete Boolean network model
of the network was established based on the mechanistic
relations of each network component. The logic tables
which determine the activity state of each network com-
ponent were constructed based on relevant literatures
and previously published Boolean network models (see
Methods for details). In addition, qualitative simulations
were performed by varying different inputs from 0 % to
100 % to examine the model’s ability to reproduce bio-
logical properties of the real human signaling network. The
results indicate that the human signaling network model
successfully reflects the qualitative features of the known
biological activities of the network components (Fig. 2).
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Fig. 1 The human signaling network. The large-scale human signaling network consists of 197 nodes and 688 links; blue color, pointed arrows
mean positive regulation links and red color, blunted arrows mean inhibitory regulation links. Among 197 nodes, there are 13 external-input
nodes (see Additional file 1). The input nodes are represented by large circles
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Colorectal tumorigenesis upon the attractor landscape
Complex signaling networks exhibit dynamical properties,
leading to a multitude of cellular behaviors or phenotypes,
each representing an attractor state. An attractor is
defined as a stable state of a dynamic system, in which
a wide variety of initial states move toward a specific
state of the system that tends to converge over time. In
particular, for biological networks, the concept of an at-
tractor can be used to map the dynamic behavior of the
network into an attractor landscape. A set of all initial
states that converge to a given attractor is defined as
the basin of the attractor.

In the attractor landscape analysis, the attractors deter-
mined by the activation patterns of network components
are indicators of distinct cell phenotypes, and the cell

phenotypes can be defined by the part of the representa-
tive nodes instead of whole nodes in the network. In this
study, we defined a few basic cell phenotypes considering
the effects of mutations. The basic cell phenotypes are
apoptotic, metastatic, proliferative and quiescent pheno-
types. The apoptotic phenotype is characterized by active
cysteine-aspartic proteases (caspases), and the metastatic
phenotype is determined by inactive E-cadherin, active
matrix metalloproteinases (MMP) and Rho oscillation.
Wnt and Rho GTPases signaling stimulations induced by
receptor tyrosine kinases (RTK) activation have a crucial
role in tumor progression toward a highly invasive ma-
lignant phenotype [28—-30]. Among the components of
both signaling pathways, loss of E-cadherin with active
MMP-mediated cell adhesion and the occurrence of Rho
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oscillation-mediated push-pull mechanism for cell mi-
gration are a prerequisite condition for the subsequent
formation of tumor metastases [18, 31-33]. The prolifer-
ative phenotype is decided when cyclins are activated
along the cell cycle in the correct sequence (CyclinD —
CyclinE — CyclinA — CyclinB — CyclinD), and the qui-
escent phenotype is determined when both proliferative
and metastatic phenotypes are not given. In particular,
the proliferative attractor where the node CyclinD re-
mains active along the cyclic transition is defined as an
abnormal proliferative phenotype. CyclinD is a well-
known human oncogene and activator of cell cycle
progression. The overexpression of CyclinD is known to
cause a number of potentially oncogenic responses and
many different types of cancer commonly have CyclinD
overexpression rates of 15~40 % [34]. Each attractor
can be categorized according to three criteria based on
cell phenotype classifications: (1) whether normal regu-
lation of a proliferative activity is possible, (2) whether
the proliferative phenotype is shown, and (3) whether
the metastatic phenotype is shown. The attractors were
classified into eight types according to the attractor clas-
sification (See Figure S2 in Additional file 5). Among
eight types of attractor, two attractors were designated
as normal proliferation and cancer progression attrac-
tors. The normal proliferation attractor was defined that
the normal regulated proliferation is operated without
any metastatic behavior. The cancer progression at-
tractor was defined as having the abnormal proliferation
operated with metastatic activity in ON state.

In the case of colorectal cancer, tumorigenesis has
been known as a multistep process, which can be caused
by a combination of genetic mutations [6, 14]. These
genetic mutations induce inappropriate activation or in-
activation of specific signaling or genes, which drives the
transition of a cellular state from adenoma to carcinoma
during tumorigenesis. Among various genetic mutations,
the inactivation of the tumor suppressor genes, APC,
PTEN, and TP53 and the activation of the oncogene,
KRAS are considered to be critical factors in colorectal
tumorigenesis [6, 35-37]. In addition, the order of these
genetic mutations is well-studied (i.e., APC deletion
followed by KRAS over-activation, then PTEN deletion,
and finally TP53 deletion) [20, 38]. Based on these, we
have investigated the effect of sequential genetic muta-
tions for colorectal tumorigenesis by simulating the
corresponding node perturbations in the attractor land-
scape. In this analysis, we set up the external input con-
dition as a normal growth state, which includes EGE,
ECM and Wnt external inputs. Each external signal is
associated with cell growth, cytoskeletal regulation, and
cell migration, respectively. Such an external input con-
dition was provided in the same way for each attractor
landscape analysis of the Boolean network model.

Page 6 of 13

The first mutation introduced in the network was
APC deletion. In the case of APC mutation, there was
no significant change in the attractor landscape and the
basin size of each attractor (Fig. 3). Next, along with the
sequence of driver mutations, constitutive activation of
KRAS was introduced in the network model. In this
case, the basin size of a normal proliferation attractor
was significantly decreased from 70.4 % to 30.4 % com-
pared to that of the network without any genetic muta-
tion and the basin size of cancer progression, abnormal
proliferative phenotype and metastatic phenotype attrac-
tors were dramatically increased from 11.8 % to 42.2 %,
from 11.8 % to 43.4 % and from 18.4 % to 56.9 %, re-
spectively (Fig. 3b, ¢, d). Loss of function of APC tumor
suppressor gene is thought to initiate neoplastic growth,
and activating mutations of KRAS oncogene are com-
monly associated with tumor progression from a benign
adenoma to a dysplastic adenocarcinoma [14, 39]. In our
case, since KRAS mutation affects the key downstream
regulators, ERK and MEK signaling components in-
volved in the MAPK signaling pathway, suppression of
normal proliferation and enlargement of the abnormal
proliferation ratio were observed as an indicator of the
benign adenocarcinoma during colorectal tumorigenesis.
In addition, activated KRAS is known to trigger tyrosine
phosphorylation of beta-catenin, leading to its release
from E-cadherin at the adherence junction and the in-
crease of Wnt signal transduction to the nucleus [40, 41].
Owing to the underlying interaction with beta-catenin, we
found that KRAS mutation increases the basin size of a
metastatic phenotype attractor. This result indicates that
KRAS mutation can accelerate the metastatic phenomena
during colorectal tumorigenesis. According to the se-
quence of driver mutations, PTEN was deleted. The
ratios of abnormal proliferative phenotype and cancer
progression attractors were slightly increased from
43.4 % to 45.7 % and from 42.2 % to 44.5 %, respectively,
and the basin size of a normal proliferation attractor was
decreased from 30.4 % to 28.9 %, but no remarkable
change was observed (Fig. 3a, b, ¢). The last mutation in
the sequence of driver mutations was TP53 deletion. TP53
mutation is considered a relatively late event in the
development of colorectal cancer. In our simulation re-
sult, the basin size of a normal proliferation attractor
was dramatically decreased from 28.9 % to 5.9 % and
the basin size for a metastatic phenotype was increased
from 57 % to 80 % (Fig. 3a, d). This result indicates that
TP53 can be an important determinant of cancer pro-
gression from adenoma to a malignant and metastatic
tumor state.

In summary, as shown in Fig. 3, our simulation results
show that sequential driver mutations for the colorectal
tumorigenesis contributes to increasing both abnormal
proliferation and metastasis. In the attractor landscape,
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434 % of the initial states converged to the abnormal
proliferative phenotype while only 11 % converged to
that in the absence of driver mutations, and the basin
for the metastatic phenotype increased from 18.4 % to
80 % by the sequential genetic mutations. In particular,
among the driver mutations, KRAS and TP53 mutations,
known as frequently observed mutations in colorectal
cancer, induced the change of a cellular state from
benign adenoma to carcinoma in concert with other mu-
tations during colorectal tumorigenesis. Together, the
attractor landscape analysis of the Boolean network
model elucidates the system-level mechanism underlying
colorectal tumorigenesis driven by driver mutations.

Reverse control of colorectal tumorigenesis
Dysfunction of intracellular signaling is crucial in tumori-
genesis [4, 42]. In particular, colorectal tumorigenesis is
known to arise by sequential accumulation of somatic
mutations. These sequential mutations cause rewiring
of the molecular interaction network, which means that
mutated cells would have different network dynamics.
So, the genetic mutations that cause the change of net-
work dynamics allow normal cells to transform into
cancer cells.

In this study, we have investigated how cancer cells
can be treated by controlling the molecular network
dynamics. The complex signaling network should have

a certain degree of functional redundancy to keep toler-
ance of its biological function to the failure of specific
nodes or links. With regard to the functional redun-
dancy, distinct signaling components in an alternative
signaling pathway can compensate for the failure of
components to sustain the activity of key downstream
processes [43]. Considering such functional redundancy
of the signaling network, we performed a hypothetical
investigation for reverse controlling to restore a normal
phenotype from the cancerous state by regulating the
activity status of specific target nodes in the signaling
network. To identify a set of minimal control nodes for
the reverse control, we have employed genetic algo-
rithm which is a computational optimization algorithm
widely used to solve complex problems (see Methods
for details) [22].

To identify control nodes for cancer reversion, we
considered the following control objectives: achieving
quiescent or normal proliferative phenotype. Each of
these objectives might result in different therapeutic
strategies for the treatment of cancerous cells [44]. The
first control strategy for changing the cancerous pheno-
type into a quiescent phenotype can be used to suppress
any further progression of cancer cells into malignant
types by blocking the signaling for proliferation and
metastasis in response to external signals such as EGF
or Wnt. On the other hand, the second control strategy,
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changing the cancerous phenotype into a normal prolif-
erative phenotype can be used for restoring the original
phenotype of normal cells to recover the normal cellular
functioning by making use of the functional redundancy
of the complex signaling network. We have investigated
such reverse control strategies and identified a set of
minimal control nodes upon each deformed attractor
landscape along with the cancer progression stage. The
cancer progression stage is characterized by the accu-
mulation level of driver mutations.
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First, we have investigated the reverse control that can
change the cellular phenotype to a quiescent phenotype
for each cancer progression stage (Fig. 4a). As a result,
we have identified a minimal set of control nodes includ-
ing beta-catenin, MEK, Rho guanine nucleotide ex-
change factor-1 (P115RhoGEF) and protein phosphatase
2A (PP2A), that are essential for recovering a quiescent
phenotype regardless of the cancer progression stage
(Table 1). In particular, the inhibition of beta-catenin,
P115RhoGEF and MEK with the activation of PP2A

a Reverse control to a quiescent phenotype
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Fig. 4 Distribution of the basin size for the phenotype attractors in the attractor landscape before and after performing reverse control and the
essentiality of control nodes for each accumulation stage of driver mutations. a and ¢ The results of reverse control for transforming the cellular
state to a quiescent or normal proliferative phenotype. a Reverse control to a quiescent phenotype (green color). ¢ Reverse control to a normal
proliferative phenotype (blue color). We should reshape the attractor landscape at each accumulation stage of driver mutations to make all initial
states of attractor landscape converge to the attractor of a quiescent or a normal proliferative phenotype by regulating the activity of control
nodes. In the right panel, colored boxes represent the classified attractors that indicate different cellular phenotypes. More details about the
attractor classification are described in the main text. b and d Essentiality of control nodes identified in the reverse control. b Essentiality of
control nodes for a quiescent phenotype. d Essentiality of control nodes for a normal proliferative phenotype. The essentiality indicates the
capability of each control node to change the original attractor landscape into the desired one
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Table 1 The minimal sets of control nodes for the reverse control
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APC APC + KRAS

mutation mutations mutations

APC + KRAS + PTEN

APC + KRAS + PTEN + TP53
mutations

Control direction

Control nodes for a quiescent phenotype

beta-catenin beta-catenin beta-catenin

P115RhoGEF P115RhoGEF P115RhoGEF
MEK MEK MEK
PP2A PP2A PP2A

Control nodes for a normal proliferative phenotype

beta-arrestin beta-arrestin beta-arrestin

Erk Erk Erk
P115RhoGEF P115RhoGEF P115RhoGEF
Smad2/4 Smad2/4 Smad2/4

beta-catenin
P115RhoGEF
MEK

PP2A

beta-arrestin
Erk
P115RhoGEF
Smad2/4

ettt Paee

Snail

makes all initial states of the attractor landscape con-
verge to a quiescent phenotype attractor. In addition, we
found that the identified nodes play a critical role in
changing the cellular phenotype by blocking alternative
signal propagation through distinct signaling pathways.
Beta-catenin has an important role for signal transduc-
tion as a component of the Wnt signaling pathway.
Beta-catenin is activated by Wnt signal, and activates the
downstream key genes associated with cell proliferation
and metastasis, such as CyclinD, MMP and Slug [45].
Therefore, inhibition of beta-catenin can reduce abnormal
proliferation and metastasis induced during colorectal
tumorigenesis. In addition, P115RhoGEE, the regulator of
G-protein signaling domain, transmits cell migration and
adhesion signals from GPCR, and leads to the activation
of Rho [46—48]. The down-regulation of P115RhoGEF in-
hibits the activity of Rho, which is critical for reducing cell
migration. Together, we can successfully reduce the meta-
static phenotype involved in cell migration and invasion of
cancer cells by controlling the activities of beta-catenin
and P115RhoGEF. Next, the inhibition of MEK and acti-
vation of PP2A have a critical role to reduce the abnormal
proliferation of cancer cells. MEK is a signaling compo-
nent involved in the MAPK signaling pathway which
transmits a cell growth signal through the protein kinase
cascade (known as RAS — RAF — MEK — ERK) [49]. So,
the inhibition of MEK strongly blocks the growth signal
transduction. In addition, PP2A, which is known as a
tumor suppressor, induces the change in the phosphoryl-
ation status of AKT and ERK [50]. In particular, the up-
regulated PP2A blocks the cell growth signal that is trans-
mitted through the PI3K signaling pathway by inhibiting
the activation of AKT. Therefore, the combined blockage
of the MAPK and PI3K signaling pathways through
down-regulation of MEK and PP2A activities can signifi-
cantly decrease the abnormal proliferation during cancer
development [51].

Next, we have investigated the reverse control to a
normal proliferative phenotype (Fig. 4c). The attractor of
a normal proliferative phenotype represents a cellular
state that shows normal proliferation without any meta-
static behavior, which should be a dominant attractor of
normal cells (i.e. networks without any mutation) and
actually occupies 60 % of the attractor landscape. As a
result of restoring the network state in each cancer pro-
gression stage, we have identified different sets of a min-
imal number of control nodes including beta-arrestin,
P115RhoGEF, Smad2/4, ERK and Snail (Table 1). From
adenoma (a network carrying a mutation in APC) to the
late adenocarcinoma stage (a network with mutations in
APC, KRAS, and PTEN), we found that it is possible to
drive all initial states of the attractor landscape into the
attractor of a normal proliferative phenotype by changing
the status of four target nodes, beta-arrestin, P115Rho-
GEF, Smad2/4, and ERK. However, in the carcinoma stage
(a network with mutations in APC, KRAS, PTEN, and
TP53), Snail is additionally required as a control node,
and we can drive in this case the entire 98 % of the initial
states into a desired attractor by regulating the activities of
five control nodes.

In our network model, we found that the identified
control nodes modulate the core signaling to restore a
normal proliferative phenotype of cells in a very compli-
cated way. For instance, P115RhoGEEF, in addition to the
aforementioned role, serves to reduce the metastatic
phenotype by regulating the activity of Rho. And, the
down-regulation of ERK, involved in the MAPK signaling
pathway, decreases the abnormal proliferation of cancer
cells. Beta-arrestin is activated by GPCRs and activates the
MAPK and PI3K/AKT signaling pathways by Src activa-
tion [52, 53]. Beta-arrestin binds to several members of
Src and engages them to activate GPCRs as well as the
downstream signaling pathways [54]. The inhibition of
beta-arrestin serves to block the growth-related signal
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transduction during cancer development. The activation
of Smad2/4 causes the invasion and metastasis of cancer
cells by inducing the activity change of E-cadherin [55].
Therefore, the down-regulation of Smad2/4 promotes to
facilitate the restoration of a normal proliferative pheno-
type by reducing the metastatic behavior of tumor cells.
The last control node, Snail is additionally selected as a
control node in the carcinoma stage of colorectal tumori-
genesis. Snail has a role to suppress the activity of E-
cadherin, and interacts with MMP in tumor metastasis
[56]. A recent study showed that TP53 modulates Snail-
induced tumor metastasis by Snail degradation [57].
This implicates that, in the carcinoma stage, the inhib-
ition of Snail is additionally required to reduce the
metastatic phenotype increased by the loss of function
of TP53. Together, our study suggests that the inhibi-
tory control of beta-arrestin, P115RhoGEF, Smad2/4,
ERK and Snail might be able to restore the normal pro-
liferative phenotype from cancerous state in colorectal
tumorigenesis.

Essentiality of control nodes and the enrichment analysis
of approved drug-targets

To investigate the effectiveness of each control node, we
measured the essentiality of control nodes as the ratio of
a desired attractor basin after we controlled the activity
of each control node. The essentiality of each control
node is represented by a value between zero and one, on a
scale of increasing the influence over the reverse control.
In this study, we found that the identified control nodes
for reversely controlling the cellular state into a normal
proliferative or quiescent state were almost same regard-
less of the stage of cancer development, whereas the
essentiality of each control node was quite different along
with the accumulation level of driver mutations.

First, we calculated the essentiality of four control
nodes, beta-catenin, MEK, P115RhoGEF, and PP2A,
which were identified for the reverse control to a quies-
cent phenotype (Fig. 4b). In the benign adenoma stage,
the essentiality of beta-catenin and P115RhoGEF was
observed to be as high as 0.804 and 0.919 whereas that
of MEK and PP2A was observed to be as relatively low
as 0.024 and 0.01, respectively. However, in the adenocar-
cinoma stage in which the KRAS mutation was added, the
essentiality of MEK increased dramatically from 0.024 to
0.58. This result indicates that the activity control of MEK
became more important than in the previous stage to
suppress abnormal proliferation elevated by the over-ex-
pression of KRAS. In the late adenocarcinoma stage, there
was no significant change in the essentiality of each node.
Lastly, in the carcinoma stage that was preceded by the
mutation of TP53, the essentiality of all control nodes (i.e.,
beta-catenin, P115RhoGEF, MEK, and PP2A) was
significantly increased (Fig. 4b). The occurrence of TP53
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mutation increased the basin of metastatic and abnormal
proliferative phenotype attractors. Therefore, we need
stronger regulation of control nodes than the previous
stages of colorectal tumorigenesis.

Next, we have investigated the essentiality of each tar-
get node for a normal proliferative phenotype (Fig. 4d).
In the benign adenoma stage, the essentiality of four
control nodes, beta-arrestin, P115RhoGEF, Smad2/4, and
ERK were observed as 0.039, 0.085, 0.017, and 0.239,
respectively. In the normal state, the attractor of normal
proliferative phenotype was represented as a primary at-
tractor which occupied 60 % of the attractor landscape
of the original network. Therefore, because the remaining
proportion of an attractor landscape was relative small,
the essentiality values of target nodes show relatively low
values compared to those of other control nodes. In the
adenocarcinoma stage, we found that the essentiality of
ERK was significantly increased since it reduces the ab-
normal proliferative phenotype elevated by KRAS over-
expression. Finally, in the carcinoma stage, the essential-
ity of Smad2/4 and Snail was vastly increased from 0.017
to 0.561 and from O to 0.116, respectively, in order to
reduce the metastatic behavior of malignant cells that
was increased by the accumulation of TP53 mutation.

For further analysis, we compared the enrichment of
approved drug-targets in the control nodes to that of
randomly selected nodes in the human signaling net-
work. Changing the network state into a desired state by
controlling the activity of specific nodes is associated
with controlling the dynamics of a cellular system. This
control strategy suggests that the control nodes might
be associated with drug targets. Intriguingly, we found
that the approved drug-targets are significantly enriched
in the control nodes for a quiescent phenotype compared
to randomly selected nodes (p-value < 0.001) (Fig. 5a). In
contrast, the enrichment of approved drug-targets in the
control nodes for a normal proliferative phenotype
showed a relatively similar frequency compared to ran-
domly selected nodes (p-value = 0.464) (Fig. 5b). Taken
together, our study provides a new therapeutically
beneficial strategy to discover novel drug targets for the
cancer treatment.

Discussion

Cancer is a well-studied complex disease and extensive
efforts have been made to explore tumorigenesis during
the past few decades [3]. Although it is known that a
wide variety of genetic changes contribute to the abnor-
mal signaling in tumorigenesis, it still remains as a chal-
lenge to obtain a global view of how they affect the
signaling alterations to develop cancer in the entire sig-
naling network [4]. A cellular signaling network consists
of various signal pathways interlinked by complex regu-
latory relationships such as feedbacks and crosstalks.
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This complexity leads to a fundamental limitation in using
only conventional biological experimental techniques to
understand the cellular behavior. To overcome such a
limitation, mathematical modeling and computer simula-
tions were employed in this study to explore the hidden
mechanism of complex signal transduction systems.
Cancer reversion, reversing tumorigenesis which is
known to be an irreversible process, was theoretically
suggested somewhile ago and there have been several
experimental studies testing this concept. For instance,
the cancerous crypt with suppressed APC showed the
tumor regression and re-establishment of a normal crypt
was observed after restoring the activation of APC [58].
Cancerous cells from a leukemia patient were observed
being transformed to cells like normal macrophages by
myeloid reprogramming [59]. Reversal of the oncogene’s
and tumor suppressor’s status was suggested to cause
the reduced tumorigenicity by the direct reprogramming
of cancer cells [60]. Such reverse control of the cancer
can be an alternative treatment for cancer patients.
Currently, the treatment of cancer mainly focuses on the
strategy for killing tumor cells. This approach is limited
by the resistance of the heterogeneous cancer population
because only sensitive cells would be killed whereas
resistant cancer cells can survive and eventually over-
whelm the whole population after repeated rounds of
treatment. The cancer reversion strategy can overcome
such limitation because the reversed cells can still sur-
vive and compete with other heterogeneous cells in the
tumor population [61]. However, there have been very
few studies in this direction. In our study, based on the
attractor landscape analysis, we suggested a novel strat-
egy for cancer reversion that identifies control nodes by
which the cancerous cell might lose its malignancy and
finally become a quiescent or normal phenotype. Our
results showed that approved drug-targets are highly
enriched in the control nodes for a quiescent phenotype
since previous studies of a drug target excavation for
cancer treatment mainly focused on preventing growth
or inducing apoptosis of cancer cells, which is a similar
strategy to change the cellular state into a quiescent

state. In contrast, the enrichment of drug targets in the
control nodes for a normal proliferative phenotype was
not significantly different from that of randomly selected
nodes, since the strategy of changing the cancerous state
into a normal state has not been thoroughly studied yet.
This result indicates that the control nodes for a normal
proliferative phenotype were not conventionally consid-
ered as drug targets, so our results should be validated
by experiments in future studies.

Conclusions

To investigate the underlying mechanism of colorectal
tumorigenesis at a system-level, we have reconstructed a
large-scale human signaling network by integrating all
relevant information of canonical signaling pathways
related to proliferation, metastasis, and apoptosis from
extensive survey of literatures and databases. Moreover,
we developed a discrete Boolean network model, and
verified that the Boolean dynamics of a reconstructed
network can reproduce relevant features of well-known
input—output relationships of signaling network compo-
nents. This model was then used for a system-level
investigation of colorectal tumorigenesis based on the
concept of an attractor landscape. Our attractor land-
scape analysis of colorectal tumorigenesis not only elu-
cidated the progression mechanism driven by driver
mutations, but also showed that this analysis can serve
as a framework to identify a new drug target in the
complex signaling network. From systems analysis, we
found that the stage-wise progression of colorectal
tumorigenesis can be explained by sequential accumu-
lation of four driver mutations: APC, KRAS, PTEN,
and TP53. In particular, we found that KRAS and TP53
mutations dramatically increased the basin of abnormal
proliferation and metastasis attractors, respectively.
Moreover, from a hypothetical investigation of cancer
reversion, we identified a minimal set of control nodes
to alter the cancerous phenotype into a quiescent or
normal proliferative phenotype for each stage of cancer
progression. It is remarkable that approved drug-targets
were highly enriched in the identified control nodes for
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the reverse control. Our study provides a new system-
level understanding of colorectal tumorigenesis and
provides a promising new way of discovering a novel
drug target for the cancer treatment.
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