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Abstract

Background: Dissecting the regulatory relationships between genes is a critical step towards building accurate
predictive models of biological systems. A powerful approach towards this end is to systematically study the
differences in correlation between gene pairs in more than one distinct condition.

Results: In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a
suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions.
To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand
differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average
difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation
study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the
existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data
in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their
target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation
module that is specific to triple negative breast cancer (TNBQ).

Conclusions: DGCA is an R package for systematically assessing the difference in gene-gene regulatory
relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly
facilitate the application of differential correlation analysis in many biological studies and thus will help
identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.
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Background

Over the past two decades, a wealth of high-dimensional
biological data types have emerged including microarray,
RNA-seq, proteomics, epigenomics, metabolomics, lipido-
mics, and many others [1, 2]. A common use of these data
is to gather and compare samples from multiple conditions,
e.g, disease and non-diseased, in an attempt to identify
molecular identifiers (e.g., probes, transcripts, genomic fea-
tures, proteins, metabolites, lipids; henceforth, “genes”) that
distinguish between different conditions. Currently, the
most common method of comparing samples from
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different conditions is differential expression analysis [3, 4].
Recently, new methods for detecting differential co-
expression or differential correlation analysis have emerged
to gain insights into the difference in gene-gene relation-
ships between various conditions of interest. Distinct from
differential expression, differential correlation operates on
the level of gene pairs rather than individual genes (Fig. 1).
Differential co-expression analysis can start with coex-
pressed gene modules or clusters based on the similarity of
their gene expression in each condition using WGCNA [5]
and MEGENA [6] and then computes module overlap
statistics between conditions [7] or the average modular
differential connectivity [8, 9]. Alternative approaches
including DICER [10], DINGO [11], CoXpress [12], SDC
[13], DiffCoEx [14], GSCA [15], and GSNCA [16] were de-
veloped to identify differential co-expression relationships
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Fig. 1 An example demonstrating the theoretical difference between differential expression and differential correlation. The top panel shows the
RNA expression levels for two example genes in two example conditions. The bottom left panel shows that both of these genes have decreased
expression values from condition A to condition B. On the other hand, the bottom right panel shows that these genes have positive correlation

relationships alone

in condition A but no correlation in condition B, which could not have been predicted on the basis of the differential expression

between conditions and gene modules in each condition
simultaneously.

While differential coexpression analysis has proven useful
in identifying significantly different modular connectivity
patterns, differential correlation analysis of individual gene
pairs is far more granular. As an example of such a
differential correlation, RNA levels of the prostate cancer
biomarker gene AMACR have been found to have positive
correlation with the tumor suppressor gene PTEN in
adjacent normal tissue samples, but not in prostate cancer
tissue samples [17]. Multiple approaches for identifying
differential correlation between individual gene pairs have
been developed, including DiffCorr [18], EBcoexpress [19],
and Discordant [20]. DiffCorr calculates correlations in
each condition and uses the difference in z-transformed
correlation coefficients to calculate p-values. EBcoexpress
uses an empirical Bayesian approach and a nested
expectation-maximization algorithm to estimate the poster-
ior probability of differential correlation between gene pairs.
Discordant fits a mixture distribution of correlation classes
in each condition and uses an expectation-maximization
algorithm to estimate the posterior probability of each
differential correlation category [21].

In this manuscript, we introduce DGCA, an R package
to identify differential correlations between gene pairs in

multiple conditions. DGCA shares some features with
existing approaches for identifying differential correlation.
Like DiffCorr, DGCA transforms correlation coefficients
to z-scores and uses differences in z-scores to calculate
p-values of differential correlation between genes. Like
Discordant, DGCA classifies differentially correlated gene
pairs into the nine possible categories. However, DGCA
differs from the existing differential correlation approaches
in four key ways. First, DGCA calculates false discovery
rate of differential correlations through non-parametric
sample permutation. Second, DGCA can calculate the
average difference in correlation between one gene and a
gene set across two conditions. Third, DCGA integrates
with MEGENA to perform multiscale clustering analysis
of differential correlation networks to identify gene mod-
ules (clusters) and hub genes. Finally, DGCA provides
comprehensive downstream functional analysis of differen-
tial correlation structures including visualization, gene
ontology (GO) enrichment, and network tools.

To assess the performance of DGCA and the existing
methods EBcoexpress and Discordant in identifying
differentially correlated gene pairs, we designed and
implemented a simulation study. Next, we applied DGCA
to the breast cancer data from The Cancer Genome Atlas
(TCGA) with and without p53 and PTEN coding
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mutations. We identified five genes with a significant
change of correlation with 7P53 in the p53-mutated sam-
ples, and two genes with a significant change of correlation
with PTEN in the PTEN-mutated samples. We showed that
each gene’s differential correlation with TP53/PTEN
between p53/PTEN wildtype and inactivated samples is
uncorrelated with its differential expression in this data set.
By evaluating differential correlations between the overall
correlation matrices, DGCA allowed us to harness add-
itional insights about the regulatory patterns among TP53’s
targets following p53 mutation. We further performed
DGCA on the estrogen receptor-positive (ER+) and triple
negative (TN) breast cancer subtypes in the TCGA breast
cancer data and identified key gene ontology categories that
differ in regulation between breast cancer subtypes. By inte-
grating DGCA with the multiscale clustering approach
MEGENA, we identified modules containing key hub genes
that coordinate differential correlations between the two
subtypes. We demonstrated that DGCA/MEGENA can
better detect modules than the established approaches
DICER and DiffCoEx in another simulation study. Further-
more, we showed that a majority of the modules detected
by DGCA/MEGENA in the TCGA breast cancer data were
not detected by DiffCoEx or DICER, while a majority of the
modules detected by either DiffCoEx or DICER were
uncovered by DGCA/MEGENA, revealing the novelty of
our proposed module detection approach.

Methods

Differential correlation analysis flow

DGCA has three main inputs including a matrix of gene
expression values, a design matrix specifying conditions
associated with samples, and a specification of the condi-
tions for comparison (Fig. 2). Prior to the actual analysis,
users have the option to filter the input expression matrix
to remove genes with low expression central tendency
and/or dispersion, since these genes are more likely to
have spurious correlations. Note that central tendency re-
fers to measures of centrality in a distribution, including
the arithmetic mean or median, while dispersion refers to
measures of spread in a distribution, including the
standard deviation and the dispersion index (the variance
divided by the mean). To stabilize the variance of sample
correlation coefficients in each condition, the Fisher
z-transformation is employed [22, 23]:

z = atanh(r) = %loge <11—1—rr>

where r is the sample correlation coefficient, log, is the nat-
ural logarithm function, and atanh is the arc-tangent hyper-
bolic function. In this context, the Fisher z-transformation
function serves as a normalizing transformation. The
variance of the resulting z-scores depends on whether the
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sample correlation coefficient is the Pearson product-
moment correlation coefficient (r,) or the Spearman’s rank
correlation coefficient (r;) [24]. When the underlying
distribution is assumed to be bivariate normally distributed,
the variance can be calculated by

1.06

1
var(ry) = morvar(rs) =3

where 7 is the sample size of the calculated correlation.
Notably, the variance of the correlation coefficients in a
particular condition could differ due to a different num-
ber of samples or due to missing data in one or both of
the genes’ expression measurements. These equations
for the variance have been found to be valid over a wide
range of sample sizes that are common in current
biological data sets [24]. Due to the denominator, the
equations require that there are at least 4 samples in
each condition considered. The difference in z-scores
(dz) between two conditions can then be calculated by,

21-22
P G
V |s§1_ S§2|
where s? refers to the variance of the z-score in condi-

Z
tion x. Using the difference in z-scores dz, a two-sided

p-value can be calculated using the standard normal
distribution. Gene pairs can then be ranked on the basis
of their relative strength of differential correlation.

Multiple hypothesis testing correction

When testing for differential correlation between gene pairs
in genome-wide experiments, the number of hypothesis
tests grows quadratically in the number of genes. For
example, differential correlation analysis of 20,000 genes
would require 199,990,000 hypothesis tests. Therefore,
DGCA offers several options for adjusting p-values for
multiple hypothesis tests, including the conservative
Benjamini-Hochberg p-value adjustment method [25, 26]
and the local false discovery rate method [27]. However,
even when using these options, it can be difficult to make
intuitive sense of the p-values returned because the
p-values are originally derived from the difference of
z-scores method, which depends on specifying the correct
form for the variance of the sample correlation coefficients,
and in turn on the bivariate distribution of the gene expres-
sion values. Therefore, DGCA also offers to generate per-
mutation samples by randomly shuffling the sample labels
across the input conditions and then re-computing the dif-
ferential correlation calls. The z-scores from the original
and permuted data sets are used to calculate empirical
p-values, using a reference pool distribution approach
adapted from the R package qvalue [28]. These empirical
p-values are used to estimate the proportion of null hypoth-
eses in empirical p-values by extrapolating a linear trend
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Fig. 2 Workflow for the Differential Gene Correlation Analysis (DGCA) R package. Users input a gene expression matrix, a design matrix to specify
the conditions, and a comparison vector to specify which conditions will be compared. DGCA then calculates the gene pair correlations within
each condition, processes these correlation values, and compares them to build up a difference in correlation matrix. If permutation testing is
chosen, DGCA will perform the same procedure on permuted gene expression matrices. These permutation samples are used to estimate an
empirical false discovery rate. After investigators choose the significance threshold for differential correlation between conditions (if any) to
choose downstream gene pairs, they can use DGCA'’s capacities for visualization, gene ontology (GO) enrichment, and/or network construction
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from a cubic spline fitted over candidate ranges of the tun-
ing parameter lambda [29]. Then, g-values are calculated
based on the empirical p-values and the estimated propor-
tion of null hypotheses.

Classifying differentially correlated gene pairs

At the most basic level, gene pairs can be classified as hav-
ing gain of correlation (GOC) or loss of correlation (LOC)
between one condition compared to another. For example,
a gene pair with p=0.8 in a condition A and p=0.2 in a
condition B is defined as having a gain of correlation in the
condition A and a loss of correlation in the condition B. To
go beyond this binary classification, we also determine if
two genes are significantly correlated in each condition or
not. By default and throughout this manuscript, the o
threshold for statistical significance of the hypothesis test
that the correlation in each condition is significantly differ-
ent from zero is defined as p < 0.05, although users can set
different thresholds. This p-value is calculated based on the
approximation that the correlation coefficient follows a

t-distribution with # - 2 degrees of freedom, where # is the
sample size of the calculated correlation [30]. The p-values
associated with the hypothesis test of non-zero correlation
in each separate condition are not adjusted for multiple
tests by default. Based upon a threshold for correlation
significance and the sign of correlation in each condition
(ie., positive or negative), gene-gene correlations in each
condition can be categorized into 3 classes, i.e. significant
positive correlation, no significant correlation, and signifi-
cant negative correlation. Therefore, there are 9 classes for
differential correlations between two conditions (Fig. 3).
DGCA also allows users to perform downstream analyses
of differential correlation classes, including heatmap
visualization and gene ontology (GO) enrichment analysis
of the genes in each differential correlation class.

Calculating the average differential correlation between
gene pairs

It is sometimes useful to measure the difference in average
correlations of a gene and a set of genes between two
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Fig. 3 Definition of differential correlation classes. This diagram
demonstrates the definition of differential correlation classes used
throughout DGCA in the case of two conditions. The default p-value
significance level threshold (a) parameter setting for the hypothesis test
of non-zero correlation in one individual condition in DGCA and
throughout this manuscript is 0.05, although users of DGCA can adjust
this parameter if they choose to. In each condition, gene pairs are
defined as having a non-significant correlation (p-value < ), a significant
and positive correlation (p-value < a, correlation (p) > 0), or a significant
and negative correlation (p-value < q, correlation (p) < 0). The Cartesian
product of the 3 possible correlation classes in one condition with the 3
in the other condition yields a total of 9 possible differential correlation
classes. Note that, theoretically, a gene pair with a significant positive
correlation in one condition and a non-significant correlation in another
condition may not be significantly differentially correlated between
these conditions since the correlation class identification is independent
of the differential correlation hypothesis test

conditions. DGCA quantifies the median difference in
z-transformed correlation coefficients of a gene and a gene
set (henceforth, median difference in z-score) between two
conditions. In this context, a median difference in z-score
above 0 indicates a tendency towards a gain of correlation
between the given gene and the gene set in the first condi-
tion with respect to the second condition, while a median
difference in z-score below 0 indicates a tendency towards
a loss of correlation. To measure the significance of the
median change in correlation, DGCA leverages the permu-
tation samples to calculate empirical p-values, as illustrated
by the following equation,

n
12
p

where, med refers to the function for the median of a
set, i is the gene for which the median difference in
z-score is being compared between conditions, dz;; is the
difference in z-transformed correlation coefficients be-
tween genes i and j in the two conditions, p refers to a
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permutation, and # refers to the total number of permu-
tations. As a generalization, DGCA also offers to calcu-
late the median difference in z-score between all gene
pairs in two conditions. In this case, in order to calculate
a two-sided p-value, the median is taken over all of the
gene pairs using the following equation,

n
-2
p

This approach is similar to the modular differential
correlation calculation that was previously described and
used [8, 9].

med (dzy) ‘ >

ijiizj

1 (42) |

Simulated biological data and comparison with
EBcoexpress and Discordant

We designed a simulation study to assess the perform-
ance of DGCA and the existing methods EBcoexpress
(version 1.12.0) [19] and Discordant (version 0.99.0) [20]
at detecting differentially correlated gene pairs in the
presence of noise. We did not compare DGCA to
DiffCorr [18] in the simulation study, since both of these
packages use the Fisher z-transformation and z-score
calculation as its underlying algorithm, although DGCA
offers a number of additional options, including permu-
tation testing to quantify the statistical significance of
gene-gene differential correlation. Among the 600 genes
in our simulation study, 300 have high average expres-
sion and high dispersion (i.e., are occasionally “activated”
in a biological sense) and 100 have high average expres-
sion and one-fold lower dispersion (i.e., are “housekeep-
ing” genes that are constitutively expressed), and 200
have substantially lower average expression and high
dispersion (i.e., genes that in a particular cell or tissue
type are “non-expressed”). We built two covariance
matrices to describe the dependence structure of the
179,700 gene pairs in each condition. We specified these
covariance matrices so that 19 gene pairs, for which
both of the genes were in the “activated” gene set, were
segregated into each of the 8 differential correlation
classes. Note that by default all of the gene pairs in the
covariance matrices are set as 0 and the “0/0” differential
correlation class means that two correlations under two
conditions are not statistically different and thus it are
not specified. To maintain a positive-definite covariance
matrix in the case of negative correlations, we only set
the super- and subdiagonals of the off-diagonals of the
covariance matrix to non-zero values. The super- and
subdiagonals were set to 0.5 or -0.5 times the variance of
a particular gene pair, corresponding to positive or nega-
tive correlation in one condition, respectively. Because
two differential correlation classes, p=+/+ and p=-/-,
do not specify a difference between correlation between
conditions, the number of actually differentially
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correlated gene pairs is reduced from 152 to 114. We
then simulated the mean values for each gene using a
negative binomial distribution with a dispersion param-
eter of 0.5, and set the mean values of less than one to
one. The negative binomial distribution and its parame-
ters were designed to approximately match the bimodal-
ity of expression means observed in RNA expression
experiments [31, 32]. With the mean values for each
gene as well as the covariance matrix, we simulated
multivariate normally distributed gene expression matri-
ces for various numbers of samples using the R package
MASS [33]. We then employed receiver operating char-
acteristic (ROC) curves [34] to measure the performance
of DGCA and EBcoexpress on detecting the 114 truly
differentially correlated gene pairs out of the total
179,700 gene pairs, for six different numbers of simu-
lated samples in each condition, i.e., n =10, 30, 50, 70,
90, and 100. We ran the simulation 5 times in order to
estimate the standard error of the area under curve
(AUC) statistics in the ROC curves. To estimate the
statistical significance of the difference in performance
between these methods, we used Student’s ¢-test to com-
pare their AUCs at various sample sizes. We adjusted
the p-value threshold required to call a comparison as
significantly different for the number of simulated cases
(n=6; p<0.05/6 =0.00833).

Of the six types of differential correlation in this simula-
tion study, 38 truly differentially correlated gene pairs had
a strong difference (JAp| = 1) in correlation coefficient be-
tween conditions, while 76 had a medium difference
(|Ap| =0.5) in correlation coefficient between conditions.
We measured the accuracy of each of the methods to dis-
tinguish truly differentially correlated gene pairs for both
the strong and medium difference classes, using the same
comparison approach as in the full simulation experiment.
For the simulations with # = 30 simulated samples, we also
plotted representative ROC curves for each class, to
visualize the ability of each of the differential correlation R
packages to detect truly differentially correlated gene pairs
in each of the 6 differential correlation classes. R code for
this simulation study is available online (see “Availability
and requirements”).

Data processing for applications using breast cancer RNA
expression data

We applied DGCA to the breast cancer RNA-seq data from
The Cancer Genome Atlas (TCGA) [35] under two scenar-
ios: a) the samples with and without a p53/PTEN mutation
and b) the estrogen receptor-positive (ER+) samples and
the triple negative (TN) samples. The level 3 RNAseqV2
data of breast cancer in the TCGA data portal first went
through a log(x+1) transform, then was quantile-
normalized, and finally was corrected for age, batch, race,
and gender using a linear regression approach. For the
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differential correlation analysis of p53/PTEN, this RNA ex-
pression data was filtered to contain only genes previously
described as within p53/PTEN pathways (described below),
but underwent no expression filtering. For the differential
correlation analysis between ER+ and triple negative breast
cancer, RNA expression data was filtered to remove genes
in the bottom 25™ percentile of median expression and/or
dispersion index of expression (described below), but
underwent no filtering for specific gene sets.

Differential correlation of p53/PTEN targets in normal and
p53-/PTEN-mutated breast cancer tumor samples

Somatic mutation data was obtained from TCGA-
curated mutations (Washington University School of
Medicine curated mutation calling). We identified a set
of RNA expression samples with and without a) a non-
silent p53 DNA mutation and b) a non-silent PTEN
DNA mutation. For the p53 analysis, we next filtered
these RNA expression matrices to contain only genes
that contain a p53 response element [36], are in the
Molecular Signatures Database (MSigDB) p53 hallmark
gene set [37], and/or are a downstream target of p53 in
the Pathway Interaction Database [38]. For the PTEN
analysis, we filtered the RNA expression matrices to only
contain genes that are in the Biocarta PTEN pathway
[39], the Sigma-Aldrich PTEN pathway [40], and/or have
been identified in physical interactions with PTEN by
affinity capture, as curated via Biogrid [41]. We then cal-
culated the differential Spearman correlations on this fil-
tered RNA expression matrices between the p53/PTEN
mutated and non-p53/non-PTEN mutated breast cancer
samples. For p53 only, we used the signType argument
in DGCA to restrict the difference in z-score calculation
between conditions to positive correlations, since p53 is
a transcriptional activator and we reasoned that negative
correlations with TP53 are less likely to be biologically
meaningful. Notably, the signType argument in DGCA,
which refers to the differential correlation sign type (i.e.,
direction), can also be used to restrict the difference in
z-score calculation between conditions to negative
correlations if users are interested in only considering
negative correlations as non-zero when assessing the dif-
ference in correlation between conditions. To assess the
significance of the difference in gene-gene correlations,
we generated empirical p-values via 10,000 permuta-
tions. For p53, we further visualized the global difference
in correlations among p53-associated genes using the
DGCA heatmap visualization, which builds on the gplots
R package (version 2.17). We then visualized the gene-
gene correlation matrix in each condition, and calculated
both the median change in correlation for each gene and
the median change in correlation for all gene pairs
between the conditions, using 1000 permutations to
quantify the significance.
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Differential correlations in RNA expression data from
estrogen receptor-positive compared to triple-negative
breast cancer samples

For the data from the ER+ and TN breast cancer samples,
we removed the genes in the bottom 25" percentile of
median expression and/or dispersion index of expression.
Note that the dispersion index is calculated as the ratio of
the variance divided by the mean. We measured the differ-
ences in Pearson correlation between all pairs, using 5 per-
mutations to quantify the significance of the difference in
correlation, and identified genes with g-value <0.05 for
downstream analysis. Upon identifying the significantly dif-
ferentially correlation gene pairs, we first collapsed these
gene pairs to identify the genes uniquely present in gene
pairs with a gain of correlation in one condition compared
to the other, and used the DGCA wrapper function to per-
form gene ontology (GO) enrichment analysis based on
the GOstats R package (version 2.34) [42] and org.Hs.eg.db
GO annotation R package (version 3.1.2). For the GO en-
richment analysis, we used genes identified in gene pairs
with q < 0.01, since this greater specificity yielded a larger
set of genes uniquely present in only one of the two
differential correlation conditions. To compare the GO en-
richment between the two conditions, we first filtered for
those GO terms with between 50 and 600 gene symbols
with a nominal significant p-value (<0.05) in at least one of
the conditions. We next took the log of the ORs, since log
ORs converge more rapidly to a normal distribution. We
then calculated the standard error for the log ORs in each
condition, using the following equations [43],

OR = log <w>

My * a1

1 1 1 1
—t—t+—+—
Ny N2 M1 N

where, n;; is the number of genes in the intersection be-
tween a gene signature and a GO term, nj, is the num-
ber of member genes in the GO term but not in the
gene signature, ny; is the number of genes in the signa-
ture but not in the GO term, and ny, is the number of
genes in the universe but not in either group. In order
to quantify the significance of the difference in the log
ORs in each group, we used the following equation,

,__ OR-OR,
/SEor,~SEor,

where, OR; and OR, refer to the log odds ratio of the
enrichment in conditions 1 and 2, respectively, while z
refers to the z-score of the difference in log ORs. We
then calculated the associated p-value from the z-score
using the cumulative distribution function for the
standard normal distribution. For each GO term type
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(i.e., Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF)), we adjusted these
p-values using the Benjamini-Hochberg false discovery
rate (FDR) method. We chose the top 5 terms in each
group with FDR < 0.05 for visualization.

Next, we used the MEGENA R package (version 1.3) [6]
to first build a planar filtered network (PEN) from signifi-
cantly differentially correlated gene pairs (q < 0.05) and then
identify multiscale gene modules in the PEN. We used the
absolute value of the z-score for the difference in correl-
ation between conditions as the network weights, and after
calculating the perfuse forced network, we also normalized
these weights, to follow the convention that network
weights fall between 0 and 1. Next, we identified modules
and hubs, using the default MEGENA parameters values,
including module significance threshold of p < 0.05, a hub
detection significance threshold of p <0.05, 100 network
permutations, and a module size of between 50 and 800.
We then calculated the odds ratios of the enrichment of
correlation class edges in each module using the hypergeo-
metric test, and adjusted the enrichment p-values for each
correlation class using the Benjamani-Hochberg method.
Further, we performed the enrichment of GO terms in each
modules using the GOstats R package [42] and org.-
Hs.eg.db GO annotation R package and adjusted the result-
ing p-values for all GO terms in each module with the
Benjamini-Hochberg method. We visualized two of the
networks derived from differential correlation modules
using Cytoscape and created interactive versions of them
via CyNetShare.

Comparison to alternative module detection approaches

We sought to compare DGCA/MEGENA to two
approaches to differential correlation module detection,
DiffCoEx [44] and DICER [10]. For DiffCoEx, we down-
loaded the R script that the authors released in their
Supplementary materials and used the same method and
set of R commands they used therein. For DICER, we
downloaded the Java executable file from the author’s
website (http://acgt.cs.tau.ac.il/dicer/) on 8/21/2016 and
ran it using Java v. 1.8.0_66. We designed a simulation
study to assess the performance of different approaches
for detecting differentially correlated modules. This
simulation study uses many of the same parameters as
our previous simulation study of differentially correlated
gene pairs but has several unique features. First, instead
of individual gene pairs that vary in correlation between
conditions, we designated two modules of 30 genes each,
a fraction of the pairs of which were positively correlated
in one of the conditions but had no correlation in the
other. In the simulation, we changed the fraction of
positively correlated gene pairs in a module, defined
as the network connectivity k, from k=0.5 to 1, in
increments of 0.1. Further, to ensure positive-definite
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covariance matrices, we set the numerical tolerance to
0.4 in simulating each of the multivariate normally dis-
tributed gene expression matrices. Because this numer-
ical tolerance moderated the strength of the correlation
difference between conditions, we increased the strength
of correlated gene pairs to 0.9 in the positively correlated
condition. Notably, we used the default 10 permutations
and g-value threshold of 0.05 for DGCA in the simula-
tion study to identify differentially correlated gene pairs
as input to MEGENA for module detection. To be con-
sistent with DICER, the minimum module size was set
to 15 for both MEGENA and DiffCoEx. For each of the
10 simulation runs, we computed the highest sensitivity
(i.e., the size of the detected module intersection with
the true module) for all modules with less than 50 mem-
bers for each module detection method. In each simula-
tion run, we also computed the highest Jaccard index
(i.e., the size of the intersection of the detected and
modules divided by the union) for all modules for each
module detection method. In the case that no modules
were detected by a method, a pseudo-module comprised
of all the genes in the simulation study was assigned,
leading to a Jaccard index of 0.05 (30/600). We then
compared the sensitivity statistics and Jaccard indices of
all simulation runs between the methods at each
network connectivity fraction and number of samples
using a ¢-test.

We next compared the module detection methods in
terms of their performance on the same set of filtered
genes for ER+ and TN breast cancer RNA expression
data as used by the DGCA/MEGENA pipeline. We first
assess the relevance of the sets of modules identified by
the three methods through the enrichment test for five
gene signatures characterizing these breast cancer sub-
types under study. The modules from each method were
filtered by size to retain modules with greater than 25
and less than 1000 members. The five gene sets used
were a set of genes associated with ER+ breast cancer in
multiple data sets [45], a set of genes associated with
TNBC in multiple data sets [46], a set of genes associ-
ated with ER signaling curated from several data sets
[37, 38, 47-52], KEGG Cell Cycle genes, and KEGG
DNA Mismatch Repair genes [47] (Additional file 1).
The Benjamini-Hochberg adjustment method was used
to correct the enrichment p-values for multiple testing,
and we used an FDR threshold of 0.3 for all the enrich-
ments of the gene sets. We then tested how the modules
detected by one method are conserved in each other
method based on a significance threshold (p <0.05) of
the Benjamini-Hochberg adjusted Fisher’s Exact Test
(FET) enrichment p-value. A module is defined as
unique to a method if it does not significantly overlap
with any module identified by any other method. This
procedure allowed us to determine the proportion of
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modules specific to each of the three methods or in any
pairwise comparison of modules.

Results

Simulation study to measure the accuracy of detecting
differential correlation

DGCA is an R package designed to detect differences in
the correlations of gene pairs between distinct biological
conditions. We first developed a simulation study to
confirm that DGCA can accurately detect differential cor-
relation relationships between gene pairs. Specifically, we
designed an in silico experiment with 600 genes and 114
differentially correlated gene pairs out of 179,700 total
gene pairs. Thirty eight of the truly differentially correlated
gene pairs had a strong difference (1) in correlation coeffi-
cient between conditions, while 76 had a medium differ-
ence (0.5) in correlation coefficient between conditions.
The accuracy of DGCA increased as the number of simu-
lated gene expression samples in each condition increased
(Fig. 4a-d). DGCA also demonstrated significantly higher
accuracy under these simulation conditions than Discord-
ant with and without use of the Fisher z-transformation
for n=30, 50, 70, 90, and 100 samples (two-sided Stu-
dent’s t-test, p-value < 0.0083), although the two packages
did not significantly differ in accuracy at n =10 samples
(Fig. 4e). DGCA demonstrated significantly higher accur-
acy in the simulation study than EBcoexpress at all of the
sample sizes tested (Fig. 4e). Furthermore, DGCA was
substantially faster than the other two methods (Table 1).
At n =30 samples, all three methods more accurately de-
tected gene pairs with strong difference in correlation than
gene pairs with medium difference in correlation, but
there were no major differences within methods between
correlation classes within the strong or medium groups
(Fig. 5a-c). All the methods have similar power to detect
gene pairs with strong differences in correlation at any of
the sample sizes tested (Fig. 5d). For medium strength
gene pairs, DGCA does not significantly differ from
Discordant at n=10 and 30 in terms of accuracy, but
outperforms Discordant at # =50, 70, 90, and 100, while
DGCA outperforms EBcoexpress at all sample sizes tested
(Fig. 5e). Therefore, DGCA outperforms the two
established approaches, EBcoexpress and Discordant, in
our simulation study.

Differential correlation of p53 targets in normal and p53-
mutated breast cancer tumor samples

We downloaded RNA-seq data of breast cancer samples
with and without non-silent p53 DNA mutations from
TCGA (n =590 non p53-mutated samples, n = 254 non-
mutated samples), and corrected the data for known
covariates. We chose this data set because the ability of
p53 to affect the expression of its downstream targets is
known to be altered following p53 mutation [53, 54].
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We filtered the RNA-seq data to select 295 genes in the
data set as the p53 signature that have previously been as-
sociated with p53 [36-38]. Since p53 is known to be a tran-
scriptional activator, we restricted our analysis to positive
correlations with TP53 in the two groups (see Methods).
We then quantified the significance of these differential
correlation relationships using permutation testing. We
identified five genes that have a significant (q < 0.05; corre-
sponding to nominal p-value 0.0098) change in correlation
with 7P53 in the group of samples with p53 mutations
(Fig. 6; Table 2; Additional file 2). Two of these are due to a

loss of correlation following p53 mutation (GNB2LI,
RPS12), while three are due to a gain of correlation
(TSC22D1, CDKNI1A, DGKA). The gene with the strongest
loss of correlation with TP53 is GNB2L1 (a.k.a. RACKI), a
ribosomal gene whose expression is strongly predictive of
breast cancer outcome [55]. CDKNIA, a well-established
transcriptional target of p53 that encodes the protein p21,
demonstrated an increased correlation with 7P53 in the
group of samples with p53 mutations, possibly reflecting
compensatory p53-independent transcriptional activation
of CDKNIA [56].

Table 1 Speed measurements for DGCA, Discordant, and EBcoexpress across in the simulation study

Number of Simulated DGCA Execution

DGCA (10 Perm.) Execution

Discordant Execution EBcoexpress Execution

Samples Time (s) Time (s) Time (s) Time (s)

10 24 +4/-02 182 +/- 0.2 259.1 +/- 331 26255 +/- 2718
30 26 4/-02 174 +/-0.2 2935 4/-175 282.6 +/- 34
50 19 4/-02 16 +/- 0.7 266.3 +/- 283 2609 +/- 369
70 2 +/-0. 17.1 4/-03 2404 +/-1.3 2224 4/-2

90 1.9 +/- 0.1 186 +/- 0.3 2103 +/-173 1983.9 +/- 126.2
100 21 +4/-02 159 +/- 0.7 246.8 +/- 345 2479.1 +/- 3808

The time (in seconds) for each analysis tool to take an input gene expression data with 600 genes and the given number of samples and output a table of

differential correlation predictions for all 179,700 gene pairs. For DGCA, speed times both with and without 10 permutations (the default number of permutations
in DGCA) are shown. These numbers were calculated from 5 runs of the simulation study, representing the arithmetic mean +/- the standard error of the mean
across the simulations
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We further explored the relationship between
differential correlation and differential expression. We
performed differential expression analysis on these genes
using the R package limma (Additional file 3). We then
calculated the Spearman correlation between the
magnitude of differential expression (measured by the
t-statistic) and the differences in positive correlation
values with TP53 for all of the genes. Although these
two measures trended in the same direction, they had
no significant correlation between them (p=0.08,
p-value = 0.15; Fig. 7a). Because this lack of correspond-
ence may have been influenced by our restriction to
differences in positive correlations, we also measured
the correlation between differential expression and
differential correlation with 7P53 across all the
correlations, and found no correlation in that case either
(p =0.06, p-value = 0.30; Fig. 7b). The lack of correlation
corroborates our theoretical claim that differential ex-
pression and differential correlation are complementary
approaches to identifying differences in gene expression
between conditions.

To gain more insights into the overall change in
correlation structure in RNA expression matrices between

p53-mutated and p53-non-mutated breast cancer samples,
we used DGCA to visualize the all gene pair correlations
in both conditions (Fig. 8). Genes in this heatmap are
ordered by their median z-score correlation difference
with all of the other genes in the filtered set between the
two conditions, without the restriction to positive correla-
tions. When we quantified the difference in correlation
between all gene pairs using permutation testing, we iden-
tified a global loss of correlation between p53-mutated
and p53-wildtype samples (median difference in z-score
(dz) =-0.06, p=0.007), suggesting that p53 mutations
decrease the correlations among the p53 signature genes.
Because visual inspection of the heatmap indicated that a
subset of genes tended towards gain in correlation while
others tended towards a loss in correlation, we used
permutation testing to measure whether each gene’s
median change in correlation was more extreme than ex-
pected, and adjusted the resulting empirical p-values for
multiple hypothesis testing. Using this approach, we iden-
tified genes with significant changes in median correlation
in p53-mutated samples (Table 3; Additional file 4).
Notably, the transcription factor FOXAI has a gain in
correlation with the other genes in the p53 signature in
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Fig. 6 Expression correlations of five genes with TP53 in samples with and without p53 mutations. Expression values for genes from breast cancer
samples without p53 mutation, or p53 wildtype (WT; red, n=590), compared to samples with non-silent p53 coding mutations (blue, n = 254).
For each gene pair, the expression of TP53 is on the x-axis, while the expression of GNB2LT a, RPS12 b, CDKNTA ¢, TSC22D1 d, and DGKA e are on
the y-axis. For visualization purposes, a linear model was fit to the data in each comparison, with the grey lines representing 95% confidence
intervals. This visualization was made using a DGCA wrapper function to the ggplot2 R package

the p53-mutated breast cancer samples (median dz = 0.48,
p < le-4). This suggests that FOXAI may play a role in
transcriptional compensation following p53 mutation,
which is consistent with the finding that FOXAI binding
sites are enriched in p53 binding sites [57]. On the other
hand, the transcription factor ATF3 has a loss of cor-
relation with the other genes in the set (median dz = -0.67,
p <le-4), which is consistent with its highly synergistic
role with p53 in mediating transcription [58] and ability to
directly bind to and suppress mutant p53 [59]. LDHB also
has a strong loss of correlation in p53-mutated samples
(median dz=-0.56, p < le-4). Since LDHB (lactate de-
hydrogenase B) is a marker of highly glycolytic cancers
[60], its broad dysregulation following p53 mutation may
reflect the disrupted role of p53 in regulating glycolytic ac-
tivity [61]. These examples highlight the ability of DGCA
to parse out the individual components of the differential
correlation structure between conditions.

Differential correlation of PTEN targets in normal and
PTEN-mutated breast cancer tumor samples

We used a similar approach to measure the differential
correlation of genes known to be associated with PTEN
following PTEN DNA mutation, using the same proc-
essed breast cancer RNA expression data as we used for
p53. PTEN is typically considered a tumor suppressor,
and its role in breast cancer pathogenesis has been sug-
gested to be related to loss of PTEN protein activity
[62]. We filtered the RNA-seq data to select 66 genes in
the data set as the PTEN signature that have previously
been associated with PTEN [39-41]. Because PTEN was
not considered as a transcriptional activator, we did not
restrict the correlations to positive values prior to
calculating differential correlations as we did for p53
(see Methods). We identified two genes with a signifi-
cant gain in correlation with PTEN in breast cancer
samples with PTEN mutations (n=27) compared to
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Table 2 Differential correlations of genes with TP53 between non p53-mutated and p53-mutated samples

Gene p53 WT Cor. p53 Mut. Cor. z-score Empirical p-Value g-Value Classes
GNB2L1 0.257 0.01 -3.25 3.81E-05 0.008 +/0

RPS12 0.231 -0.002 -3.02 0.0001 0.009 +/0

TSC22D1 -0.027 0227 297 0.0001 0.009 0/+

CDKNTA 0.019 0227 2.73 0.0004 0.02 0/+

DGKA 0.057 0.252 2.58 0.0007 0.03 0/+

CARM1 0.172 -0.036 -2.24 0.0025 0.091 NonSig
DDB2 0.025 0.191 2.16 0.0033 0.094 NonSig
TNFRSF10B 0.194 0.034 -2.09 0.0043 0.094 NonSig
RPL18 0.158 -0.01 -2.05 0.0049 0.094 NonSig
ATF3 0.004 0.161 2.04 0.0051 0.094 NonSig
PYCARD 0.205 0.05 -2.04 0.0051 0.094 NonSig
TAX1BP3 0305 0.156 -2.03 0.0052 0.094 NonSig
El24 0.154 -0.007 -1.99 0.0059 0.097 NonSig
TNFRSF10C 0.179 0.03 -1.94 0.0069 0.097 NonSig
CCNG1 0.149 -0.092 -1.93 0.0072 0.097 NonSig
PML 0016 0.163 1.92 0.0076 0.097 NonSig
CREBBP 0.153 0.006 -191 0.0077 0.097 NonSig
ABAT 0.145 -0.037 -1.88 0.0085 0.102 NonSig
NOL8 0.228 0.089 -1.85 0.0094 0.107 NonSig

The output of running DGCA on the p53 pathway gene set in the breast cancer RNA-seq samples, comparing correlations of these genes with TP53 in p53-wildtype
samples to correlations in p53-mutated samples, using the option to consider only positive correlations in calculating differential correlation between conditions. The
top 20 gene pairs are shown here, while the rest are available in the Supplementary data. The “Classes” column indicates the correlation class of each of the gene pairs
where, e.g., “+/0” indicates a significant (q < 0.05) positive correlation in the p53-wildtype samples and no significant correlation in the p53-mutated samples. Note that
the significance for the correlations within each condition is not adjusted for multiple comparisons. 10,000 permutation samples were generated in order to estimate
empirical p-values, using a pooled reference distribution approach, from which g-values were calculated

WT Wildtype, Mut. Non-silent p53 mutation
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Fig. 7 Comparing differential expression and differential correlation with 7P53 in samples with and without p53 mutations. For each gene, we plot
both DGCA's calculated differential correlation z-score between that gene and TP53 in p53 non-mutated breast cancer samples and p53-mutated
samples (x-axis), as well as limma's differential expression t statistic for that gene’s differential expression between the same p53 wildtype samples and
p53-mutated samples (y-axis). When differential correlation z-scores are calculated on positive correlation values only a, the Spearman correlation
between these two measures is not significant (p = 0.08, p-value = 0.15), and when differential correlation z-scores are calculated across all correlation
values b, the Spearman correlation between these two measures is also not significant (p = 0.06, p-value = 0.30). The blue line represents a linear model
of the best fit, with the grey lines representing 95% confidence intervals, computed using ggplot2
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Fig. 8 Differential correlations between the genes in the p53 pathway in p53 non-mutated and p53-mutated breast cancer samples. The top panel
shows a histogram of the correlation values pooled between both conditions that also demonstrates the color schema used to indicate the expression
correlation strength for each gene pairs. The bottom panel shows a heatmap of correlation values in the two conditions. The bottom left panel shows
the correlation of gene pairs in the non-p53-mutated breast cancer RNA-seq samples, while the upper right panel shows the correlation of gene pairs
in the samples with (non-silent) p53 mutations. The diagonal is marked black as each gene’s self-correlations from both conditions are omitted. Genes
are ordered by the median difference of z-score in correlation between that gene and all of the other genes present in both the rows and columns.

This plot was made using the DGCA wrapper function to the gplots R package

samples without PTEN mutations (n = 816), FASLG and
IPCEF1 (Table 4, Fig. 9a-b, Additional file 5). FASLG en-
codes Fas ligand, which induces apoptosis upon binding
to Fas, and polymorphisms in which contribute to breast
cancer risk [63]. Fas signaling typically activates PTEN
as a part of its promotion of apoptosis [64]. The expres-
sion of Fas and PTEN have previously been found to be
negatively correlated in prostate cancer [65], consistent
with the negative correlation we identify between PTEN
and FASLG in the PTEN wildtype breast cancer samples,
suggestive of negative regulation at baseline. In the
absence of PTEN protein activity, activation of Fas may
lead to compensatory increased transcription of PTEN
in a failed attempt of negative regulation, perhaps
mediated in part by microRNA-21 [66], thus inducing a
strong positive correlation between the expression of
these two genes. IPCEFI encodes a scaffold protein
involved in signal transduction downstream of growth
factors and Ras [67]. IPCEFI is less well-studied, so its
differential correlation with PTEN in the presence of
PTEN mutations may provide a way to study its
function. We next examined the relationship between

differential expression and differential correlation with
respect to PTEN. As in the case of p53, there is no
correlation between the genes differentially expressed
between the groups with and without PTEN
mutations and the genes differentially correlated with
PTEN (p=0.13, p=0.29; Fig. 9¢c; Additional file 6).

Global differential correlations between estrogen
receptor-positive and triple-negative breast cancer
samples

We next sought to use DGCA to make a global comparison
of gene expression correlation patterns between estrogen
receptor-positive (ER+) and triple-negative (TN) breast can-
cers in TCGA (n =625 ER+ samples, 7 =89 TN samples).
We filtered out genes in the bottom 25" percentile of
median expression and/or dispersion index of expression,
which yielded a total of 10,530 genes. We found the differ-
ence in Pearson correlations among all of these gene pairs
across the two conditions, and identified 520,907 differen-
tially correlated gene pairs at q-value < 0.05 (corresponding
to nominal p-value < 3.le-4) between the ER+ and TN
breast cancer gene expression samples. We first measured
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Table 3 Median differences in correlation among p53 pathway
genes between non p53-mutated and p53-mutated samples

Gene Median z-Score Empirical Adjusted
Difference p-Value p-Value
SERPINBS -0.730683588 p<le4 p<le4
ATF3 -0.666702829 p<le4 p<le4
FAS -0.590308897 p<le4 p<le4
ARID3A 0.584112447 p<le4 p<le4
RPS12 -0.565836003 p<le-4 p<le4
SPHK1 -0.56379232 p<le4 p<le4
LDHB -0.562303813 p<le4 p<le4
MET -0.527886541 p<le4 p<le4
CX3CL1 -0511204357 p<le-4 p<le-4
KRT17 -0.504964779 p<le4 p<le4
FOXAT 0482088394 p<led p<led
IGFBP3 -0.438982138 p<le4 p<le4
MAP4K4 -0.436176474 p<le4 p<le4
NOTCH1 -0.610467618 0.001 0.013409091
PMS2 0.535342391 0.001 0.013409091
MLH1 0.52374045 0.001 0.013409091
EGFR -0.515311146 0.001 0.013409091
FOXO3 -0.499303329 0.001 0.013409091
PPP1R15A -0.487186159 0.001 0.013409091
TADA2B 0480724824 0.001 0.013409091

The top 20 genes by their median difference in correlation for each gene and
all other genes in the p53 pathway gene set between non p53-mutated and
p53-mutated breast cancer RNA-seq samples. 1000 permutation samples were
generated in order to estimate empirical p-values for each gene, which were
then adjusted by the Benjamini-Hochberg method to control the false
discovery rate among this set of genes

gene ontology (GO) of the genes in gene pairs with a gain
of correlation in ER+ samples to the GO enrichment of
genes found in gene pairs with a gain correlation in TN
samples, but found no significant differences in the GO
term enrichments between groups, likely due to the small
number of unique genes in each category (n=49 genes
found uniquely in gene pairs with a gain of correlation in
ER+ samples and n=45 corresponding genes for TN
samples). However, by restricting to the 97,644 gene pairs at
q<0.01 (corresponding to nominal p-value <7.3e-6) for
specificity, we were able to perform GO enrichment on a
larger set of genes unique to gene pairs with a gain of cor-
relation in ER+ samples (# = 1201 genes) or a gain correl-
ation in TN samples (r = 1320; Fig. 10). Genes in gene pairs
with a gain of correlation in ER+ samples were enriched in
the GO term vasculature development (ER+ OR = 1.5, FDR
of difference with TN = 1.6e-4), which makes sense in light
of the finding that ER+ breast cancer samples harbor a
relatively high proportion of blood vessels in the tumor en-
vironment [68]. Further, genes in ER+ specific gene pairs
were enriched in calcium ion binding (OR=1.5, FDR =
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0.008), which is consistent with the ability of calcium to
stimulate estrogen receptor-alpha expression and mimic es-
trogen [69, 70]. On the other hand, genes in gene pairs with
a gain of correlation in TN samples were enriched in the
GO term negative regulation of viral life cycle (TN OR =
4.9, FDR = 0.006), which may be explained by reports that a
subset of TN breast cancers are associated with viral infec-
tion [71]. Surprisingly, despite the presence of multiple gene
sets related to estrogen-regulated genes in the GO annota-
tion set employed, including “estrogen receptor activity”
and “estrogen receptor binding”, none of these were
identified as significantly enriched in differentially correlated
gene pairs unique to ER+ or TN samples. This may be
because changes in the correlations of ER-responsive genes
with other genes occur in both ER+ and TN samples,
suggesting that DGCA can pull out novel biology for
further investigation.

In order to identify coherent subnetworks and hub
genes constituted by differential correlations, we inte-
grated DGCA with MEGENA (Multiscale Embedded
Gene Co-expression Network Analysis) [6] and used the
set of 520,907 gene pairs found at q <0.05 as inputs to
Planar Filtered Network (PFN) construction. MEGENA
projects candidate interactions onto a topological sphere
and parses the resulting planar filtered network into
multiscale modules (subnetworks) defined at multiple
resolutions, and has been shown to effectively recon-
struct gene regulatory networks [6]. The resulting planar
filtered network had 16,737 edges, from which we iden-
tified 25 modules using multiscale clustering analysis
(Fig. 11). We measured the enrichment of the edges in
these modules in each of the differential correlation clas-
ses, and further found their most enriched GO terms
(Fig. 12). We first focused on the module with the stron-
gest enrichment of edges with positive correlation in the
ER+ samples and no correlation in the TN samples
(Module 11; OR = 2.5, p = 4.2e-7), which is most enriched
in the GO term vasculature development (OR=4.2, p =
1.3e-13). We also used MEGENA to identify hub genes (at
FDR < 0.05) in this module, which revealed that CYYRI,
FAM171A1, PROSI, CCDC3, GJCI, REM1, and CAVI are
its hub genes (Fig. 13). The locus at CYYRI encodes seven
or more CYYRI alternatively spliced isoforms as well as
an antisense gene with high expression variability across
tissue types [72]. Our data suggests that CYYRI drives
and/or is associated with a strong reprogramming of tran-
scription in ER+ compared to TN breast cancer samples.
We next focused on the module with the strongest enrich-
ment of edges with negative correlation in ER+ samples
and positive correlation in TN samples (Module 13, OR =
2.3, p=24e-8), which is also significantly enriched in
edges with no correlation in ER+ samples and positive
correlation in TN samples (OR=1.7, p=0.005). This
module is most enriched for the GO term immune
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Table 4 Differential correlations of genes with PTEN between non PTEN-mutated and PTEN-mutated samples

Gene PTEN WT Cor. PTEN Mut. Cor. z-score Empirical p-Value g-Value Classes
FASLG -0.076 0628 3816 0.0003 0.015 -/+

IPCEF1 -0.012 0627 3511 0.0008 0.021 0/+

PIK3CD 0.015 052 263 001 0.169 NonSig
FBXW7 0.0001 0433 2177 0.031 0.381 NonSig
STUB1 -0.075 -0473 -2.06 0.041 0.381 NonSig
WWP2 -0.107 -0482 -1.965 0.051 0381 NonSig
MAPK3 0.013 -0.379 -1.934 0.054 0.381 NonSig
AKT1 0.077 -0.28 -1.71 0.087 0492 NonSig
BCAR1 -0.025 -0.369 -1.696 0.09 0492 NonSig
NCOA3 -0.055 0.272 1.566 0.116 0.573 NonSig
PARK?7 -0.001 -0.301 -1453 0.144 0.587 NonSig
CBL 0.069 036 1444 0.147 0.587 NonSig
MVP 0215 -0.082 -1414 0.155 0.587 NonSig
SOS1 0.022 0.299 1.343 0.176 0.62 NonSig
ANAPC5 -0.068 0.195 1.246 0.209 0.65 NonSig
PIK3R1 0309 0.065 -1.193 0.229 0.65 NonSig
RBL2 0.109 0338 1.139 0.251 0.65 NonSig
cbCz7 0.002 0.239 1.131 0.254 0.65 NonSig
SLCOA3RT -0.065 -0.267 -0975 0323 0.65 NonSig

The output of running DGCA on the PTEN pathway gene set in the breast cancer RNA-seq samples, comparing correlations of these genes with PTEN in PTEN-wildtype
samples to correlations in PTEN-mutated samples. The top 20 gene pairs are shown here, while the rest are available in the Supplementary data. The “Classes” column
indicates the correlation class of each of the gene pairs. Note that the significance for the correlations within each condition is not adjusted for multiple comparisons.
10,000 permutation samples were generated in order to estimate empirical p-values, using a pooled reference distribution approach, from which g-values

were calculated
WT Wildtype, Mut. Non-silent PTEN mutation

response (OR =4.6, p=79e-17), consistent with reports
of the relatively strong role of the immune system in me-
diating TNBC [73-75]. The hub genes identified in this
network are NAGS, JADE2, DRAMI, PTGER2, and
PROBI (Fig. 14). Notably, the protein product of JADE2
has been found to act as a ubiquitin-ligase to regulate the
activity of the histone demethylase LSD1 in neuronal dif-
ferentiation [76], suggesting that it may play a role in shift-
ing the immune-related epigenetic landscape in TNBC
samples. Interactive figures for these two differential cor-
relation networks are available online (see “Availability
and requirements”).

Evaluation of differential correlation module detection
approaches

To evaluate the performance of DGCA/MEGENA in
detecting differential correlations, we first compared it
with two established methods, DiffCoEx [44] and DICER
[10], using a simulation study. In this simulation, we de-
signed two differential correlation modules of 30 genes
each, out of a total of 600 genes. In each module, a fraction
of gene pairs (ranging from k=05 to 1) have significant
positive correlations in one condition but no significant
correlation in the other. For each of the true modules

across various numbers of simulated samples (7 =100 to
400), we identified the top sensitivity and Jaccard index sta-
tistics of the modules detected by each method and then
compared them (Fig. 15). DGCA/MEGENA identified
modules with significantly higher sensitivity and Jaccard in-
dices than DiffCoEx and DICER in all the simulation con-
ditions that have k<1 (t-tests, all unadjusted p-values <
0.05), with the exception of the Jaccard index comparison
with DICER at k=0.9, n =400 samples (p =0.25). In the
extreme condition where all the gene pairs are differentially
correlated (k = 1), DiffCoEx identifies modules with higher
Jaccard indices (p-values < 0.05) but not higher sensitivities
than DGCA/MEGENA at all sample sizes, while DICER
identifies modules with higher sensitivities and Jaccard in-
dices than both methods at # = 200, 300, and 400 (t-tests,
all unadjusted p-values < 0.05). However, even under the
extreme and limited condition of k=1, the practical
performance difference between DGCA/MEGENA and
the other two methods is very small. In contrast, DiffCoEx
and DICER usually fail to identify the differentially corre-
lated modules under the more general conditions (k < 0.9).
In summary, DGCA/MEGENA demonstrated the best per-
formance in detecting differential correlation modules
under the more general simulation conditions.
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Fig. 9 Summary of differential correlation results of PTEN in samples with and without PTEN mutations. a-b: Expression values for genes from breast
cancer samples without PTEN mutation, or PTEN wildtype (WT; red, n = 816), compared to samples with non-silent PTEN mutations (blue, n = 27). For
each gene pair, the expression of PTEN is on the x-axis, while the expression of FASLG a and IPCEFT b are on the y-axis. For visualization purposes, a
linear model was fit to the data in each comparison, with the grey lines representing 95% confidence intervals. ¢: For each gene, we plot both DGCA'’s
calculated differential correlation z-score between that gene and PTEN in PTEN non-mutated breast cancer samples and PTEN-mutated samples (x-axis),
as well as limma’s differential expression t statistic for that gene’s differential expression between the same PTEN non-mutated samples and PTEN-
mutated samples (y-axis). The correlation between the two measures is not significant (o =0.13, p = 0.29). The blue line represents a linear model of

the best fit, with the grey lines representing 95% confidence intervals

We next examined whether the differential correlation
modules identified by DGCA/MEGENA on the ER+ and
TN breast cancer RNA expression differed from those
identified by DiffCoEx [44] and DICER [10] (Additional
file 7). Although these alternative methods do not
automatically specify gene-gene links or identify hub
genes, they do also identify differentially correlated gene
modules. We first counted the number of modules iden-
tified by each method that were significantly enriched
(FDR<0.3) in five gene sets chosen because of their
importance in breast cancer (Fig. 16a; Additional file 1).
We found that DGCA/MEGENA identified the most
modules significantly enriched in genes associated with
ER+ breast cancer and estrogen receptor (ER) signaling,
while DGCA/MEGENA and DICER tied in the number
of modules significantly enriched in TNBC genes, and
DICER identified the most modules significantly
enriched in the KEGG terms Cell Cycle and Mismatch
Repair. We then identified the modules unique to each
method. We found the proportion of modules for each

method that were not significantly enriched in any of
the modules by one (off-diagonals, by column) or either
(diagonals) of the other methods (Fig. 16b). DGCA/
MEGENA identified a higher proportion of unique mod-
ules compared both pairwise and globally to the existing
methods DiffCoEx and DICER.

Discussion

The R package DGCA developed by this study is a
powerful new tool for querying the regulatory relation-
ship of gene pairs under different conditions. DGCA is
applicable to a wide range of input data types, including
microarray data, tissue-level or single-cell RNA-seq data,
proteomic data, methylation data, and metabolomic
data. In general, DGCA can be used to compare the cor-
relations between features from both continuous- and
count-based data types. Users input a gene expression
matrix with gene identifiers in rows and samples in col-
umns, a design matrix specifying which samples corres-
pond to which conditions, and a vector specifying the
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DGCA wrapper function to the plotrix R package

ER+p>TN p Gene Ontology Term Name ER+p<TNp
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1.4 cardiovascular system development 0.6 B CC
1.4 circulatory system development B MF
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Fig. 10 Gene ontology enrichment of genes associated with gain or loss of correlation in ER+ samples compared to TN. Genes identified as
members of gene pairs with a significant gain in correlation (g < 0.01) in the estrogen receptor-positive (ER+) samples compared to the triple
negative (TN) breast cancer samples were used as inputs to gene ontology (GO) enrichment analysis in GOstats. GO terms with less than 50 or
greater than 600 gene symbol members were filtered out included for the purposes of interpretability. Odds ratios for the GO enrichment of
terms were compared between these two groups, and p-values were adjusted using the Benjamini-Hochberg method for each GO term category
to yield false discovery rates (FDR). Up to 5 GO terms enriched in one of the groups compared to the other at FDR < 0.3 are shown. No terms
from the “Molecular Function” GO term category portion passed this FDR threshold and are therefore not shown. This plot was made using the

conditions to be compared. In our differentially corre-
lated gene pair simulation study, DGCA significantly
outperformed EBcoexpress and Discordant in terms of
accuracy and speed. When we applied DGCA to the
RNA-seq data from the TCGA breast cancer samples
with and without p53 mutations, we identified p53
pathway genes that had significant changes in correl-
ation with TP53 between the p53-mutated samples and
those without p53 mutations. We revealed that p53
mutations altered the correlation patterns between the
p53-pathway genes. We also studied the effect of non-
silent PTEN DNA coding mutations, and showed that
these mutations led to differential correlation between
PTEN and two genes that it has been found to interact
with. In the future, we will examine additional genes
such as MYC, KRAS, and ERBB2 in breast cancer and
other cancers.

One of the limitations of our differential correlation
approach to studying p53 mutations in breast cancer is
that there is a wide variety in the functions of p53-
mutations [53] and our approach averaged over many of
them. As the sample size of the available data increases,
it would be valuable to perform differential correlation
on groups defined by individual p53 mutations or classes

of p53 mutations. Given a larger sample size allowing
for factorial analyses in differential correlation, it would
also be interesting to consider both the effect of hetero-
zygous deletions of the short arm of chromosome 17
that contain the p53 gene, which is often seen in
combination with p53 coding mutations [77]. This
would allow investigators to study whether TP53 gene
dosage affects p53 activity, especially because some but
not all p53 coding mutations are able to act in a
dominant-negative manner [78]. Another factor we will
consider in future studies is MDM?2 gene amplification,
which can also modulate the activity of p53 [54].

DGCA fits in well with the growing suite of tools
available in the R statistical programming ecosystem for
analyzing gene expression data, and can be used
synergistically with a number of them. For example, as
demonstrated empirically in this study, differential
correlation is complementary to differential expression
for discovering differences in gene expression between
conditions. Differential correlation as a complement to
differential expression is particularly apt in the case that
the expression of a regulatory gene (e.g., a transcription
factor) has its activity altered in one of the conditions
without fully abrogating its expression, as is often the
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Fig. 11 Planar filtered network of differentially correlated genes.
Gene pairs with a significant change in correlation (g < 0.05) in
estrogen receptor-positive (ER+) compared to triple negative (TN)
breast cancer samples were to construct a planar filtered network
shown here. The modules identified at p < 0.05 in this network with
between 100 and 800 members are identified with distinct colors.
This plot was made using Cytoscape (version 3.2.1)
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case for DNA mutations in tumor cells. However, differ-
ential correlation can be applied more broadly as well;
for example, in discovering differences in the pathways
that genes participate in between tissues and cell types.
Differential correlation is also complementary to module
detection approaches, such as MEGENA, as was shown
in this manuscript through a comparison of estrogen
receptor-positive breast cancer to triple-negative breast
cancer. By using the finely-grained DGCA method, our
approach was able to identify individual differential cor-
relations between key gene pairs, and use them to create
“bottom-up” differential correlation network modules.
Further, differential correlation of individual gene pairs
works particularly well downstream of higher-level mod-
ule detection approaches, such as WGCNA, to perform
“top-down” identification of modules with significant
differential correlation. This is because parsing up the
input gene expression matrix into smaller sets is often
critical in order to make sense of the millions or even
billions of gene pair combinations that can be analyzed
in a typical RNA expression data set. In order to add
further to the R programming gene expression analysis
suite, future directions for improving DGCA include
detection of linear changes in correlation across more
than two conditions and integration with differential
expression to define genes with differential wiring across
conditions [79].
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Fig. 12 Enrichment of GO terms and differential correlation classes in the multiscale modules. This plot displays the enrichments of each of the
multiscale modules (whose sizes are between 100 and 800 members) in the ER+ vs TN differential correlation network. The left panel shows the
enrichment (Benjamini-Hochberg adjusted -log;, p-value) of edges in each of the differential correlation (DC) classes in each of the modules. The
right panel shows the most significantly enriched gene ontology (GO) term (-Benjamini-Hochberg adjusted log;, p-value) for the genes in each
of the corresponding modules, along with the GO enrichment of that same GO term in all the other modules. This plot was made using a DGCA

wrapper function to R package ggplot2
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Fig. 13 The differential correlation module most enriched in gene pairs that gain in correlation in ER+ breast cancer. This module of genes was identified
using MEGENA and chosen for downstream analysis because it was most enriched for the gene pairs with positive correlations in ER+ breast cancer but
no significant correlation in triple negative (TN) breast cancer. Node size and gene symbol text size are proportional to the number of connections for
each gene. Edges are colored according to the differential correlation class (see Legend), while edge weight is proportional to the absolute value of the

z-score for the difference of correlation between ER+ and TN breast cancer samples. This plot was made using Cytoscape (version 3.2.1)

Aside from integration of DGCA and MEGENA, there
are several alternative approaches available to identify
modules of differentially correlated genes between con-
ditions. One of the earliest studies to address this prob-
lem identified gene sets that led to the largest difference
in an additive model that scored co-expression of genes
in each condition [80]. This model-based approach
allowed for an efficient search for gene sets that are co-
expressed in one condition but not the other. A distinct
approach called CoXpress first uses hierarchical cluster-
ing to identify groups of genes that are coexpressed
across conditions, and then leverages sample permuta-
tions to measure whether each of these gene sets is sig-
nificantly differentially coexpressed between conditions
[12]. A separate approach called SDC (Subspace Differ-
ential Correlation) uses a biclustering approach to
identify gene sets that are differentially coexpressed in
subsets of each of two conditions [13]. DiffCoEx calcu-
lates dissimilarity scores between gene pairs in two or

more conditions, and then uses leverages the WGCNA
approach to identify modules based on this dissimilarity
matrix [44]. An approach called DICER (Differential
Correlation in Expression for meta-module Recovery)
first calculates a probabilistic score for genewise
differential correlation between conditions [10], and then
performs hierarchical clustering on these differential
correlation scores to identify modules of differential
correlation, as well as meta-modules of modules that
demonstrate differences in correlation across conditions.
Another class of approaches also quantifies differential
coexpression between conditions given an initial collec-
tion of gene sets, including Gene Set Co-expression
Analysis (GSCA) [15] and Gene Sets Net Correlations
Analysis (GSNCA) [16].

The module detection method described in this manu-
script differs from all of these methods in that it does not
set out solely to identify modules, but rather to identify
individual gene pairs links with significant differentially
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Fig. 14 The differential correlation module most enriched for the gene pairs that gain correlation in TN breast cancer. This module of genes was
identified using MEGENA and chosen for downstream analysis because it was most enriched for the gene pairs that were positively correlated in
TN breast cancer but were either negatively or not significantly correlated in ER+ breast cancer. Node size and gene symbol text size are
proportional to the number of connections for each gene. Edges are colored according to the differential correlation class (see Legend), while
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correlations between conditions. Using this empirically
identified set gene pairs, we demonstrated how integration
with MEGENA, which has been previously shown to out-
perform alternatives in co-expression network construction
[6], can be used to construct a planar filtered network and
identify informative modules. This integration allows for
visualization of the individual differential correlation links
and their differential correlation classes, as well as the iden-
tification of hub genes within each module, which to the
best of our knowledge none of the existing methods offer.
Notably, DGCA is also complementary with several of the
previously described approaches, since DGCA offers func-
tions to calculate the average correlation difference across
conditions within a module of genes, both averaging across
all genes in the module and averaging across one gene
compared to all other genes in the module.

We further sought to comprehensively assess the
performance of the differential correlation modules
identified by DGCA/MEGENA in comparison with the
two most similar methods, DiffCoEx and DICER. First,
in our simulation study for detecting differentially
correlated modules, DGCA/MEGENA consistently out-
performed DiffCoEx and DICER under the more general
simulation settings, whereas DGCA/MEGENA has com-
parable performance with DiffCoEx and DICER under
the more extreme circumstance in which a vast majority
of gene pairs are differentially correlated. This result
makes sense in light of the fact that DGCA/MEGENA
adopts a “bottom-up” approach by first identifying
differentially correlated gene pairs and then detecting
modular structures, whereas DiffCoEx and DICER
employ a “top-down” approach that relies more heavily
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Fig. 15 Performance comparison of DGCA/MEGENA, DICER and DiffCoEx in detecting differential correlation modules. In the simulation study,
there were two modules and 30 genes were assigned to each module, within which a fraction (k) of the gene pairs had differential correlation,
where k varied from 0.5 to 1 across simulation runs. We also simulated different sample sizes in each condition (n =100, 200, 300, and 400). The
highest sensitivity (a; dots = means, lines = standard errors of the mean) and Jaccard index b between the detected and true modules were
calculated and averaged for each method (black for DGCA/MEGENA, blue for DICER and red for DiffCoEx) across all the independent runs in the
simulation study. In the case that no module was detected by a method, all the genes were considered to belong to one single module for
calculating Jaccard index, indicated by the dotted horizontal line. Each Jaccard index mean was calculated from ten simulation runs and two true
modules per run

on a consistent relationship between many gene pairs
within a module across conditions. Therefore, DGCA/
MEGENA works well under a wider range of circum-
stances where DiffCoEx and DICER miss many less
densely connected modules. Next, we found that all
three of the methods identified differential correlation
modules that were significantly enriched for gene signa-
tures related ER+ and triple-negative breast cancer sub-
types, though DGCA/MEGENA and DICER identified
the most relevant modules. A limitation of this analysis
is that although enrichment of disease-relevant gene sets
as a proxy for efficacy in different coexpression module
detection has been used before [10], it is unclear

whether a more sensitive approach to disease-associated
module detection is necessarily better when considering
the possibility of false positives. Therefore, the problem
of optimal differential coexpression module detection on
realistic biological data awaits future study, including the
identification of a gold-standard data set to compare
across methods in an unbiased and biologically mean-
ingful way. However, DGCA/MEGENA identified the
highest proportion of unique modules and this strongly
suggests that DGCA/MEGENA does represent a novel
method for differential correlation module detection.
Thus, DGCA/MEGENA increases the diversity of
options for this type of analysis.
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Fig. 16 Comparison of modules detected with DGCA/MEGENA to
those detected with DiffCoEx and DICER. a: The number of modules
significantly enriched (Fisher's Exact Test; FDR < 0.3) that were detected
by each of DGCA/MEGENA (red), DiffCoEx (green), and DICER (blue) in
five different gene sets selected for their relevance to breast cancer.

b: The proportion of modules detected by each of the three methods
that are not significantly enriched in (i.e, do not overlap with) any of
the modules detected by one (off-diagonals) or both (diagonals) of the
other methods, by Fisher's Exact Test, Benjamini-Hochberg adjusted
p-value < 0.05. Columns labels denote the reference method compared;
eg. 62% of DGCA/MEGENA-detected modules do not significantly
overlap with modules detected by either method, and 78% of DGCA/
MEGENA-detected modules do not significantly overlap with any
DICER-detected modules

As an important aspect of DGCA is the use of permuta-
tion samples to assess the statistical significance of differen-
tial correlations, we offer some guidelines for the use of this
approach. It is important to distinguish between permuta-
tion analyses that use pooled empirical null distributions as
opposed to analyses that use empirical null distributions
from each gene or gene pair [81]. For pooled approaches,
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fewer permutations are needed because information is
shared across gene pairs; for example, given a 10,000 gene
data set and five permutations, the differential correlation of
each actual gene pair is compared to 249,975,000 permuted
gene pairs in order to estimate empirical null p-values. How-
ever, this vastly increases the memory footprint required for
empirical p-value calculation and g-value estimation. Per-
haps as a result, some investigators have used only one per-
mutation of the data in such analyses [9]. If these memory
constraints limit the number of permutations possible, we
suggest that a reasonable approach is to repeat the analysis.
For example, we repeated the ER+ vs TN breast cancer dif-
ferential correlation analysis three times and found that the
number of significantly identified differentially correlated
gene pairs at both q < 0.05 and q < 0.01 were within accept-
able limits (within 30% of one another) for the purpose of
downstream analyses on gene sets. Although the above rea-
soning applies to cases with many gene pairs, heavy filtering
of the input data and/or differential correlation calculations
of only one gene compared to all others leads to far fewer
empirical null statistics. For example, five permutations of
the 295 gene pairs for the p53 differential correlation ana-
lysis would lead to only 1475 permuted gene pairs for use in
estimating empirical null p-values, which is why we used
more permutations (10,000) in this case. Non-pooled ap-
proaches are commonly used on the data sets with reduced
dimensionality, such as the module level, or in our case, in
the comparison of the average correlation of each gene
compared to all other genes in two conditions. Non-pooled
permutation approaches commonly use on the order of 100
or 1000 permutations [82, 83], and we use 1000 permuta-
tions to balance interpretability with computational effi-
ciency. Notably, the number of permutations in non-pooled
approaches delineates a clear lower bound on the empirical
p-value that can be ascertained from the analysis. Overall,
the number of permutations used in DGCA for pooled ref-
erence distributions depends on the total number of empir-
ical gene pairs under consideration, while for non-pooled
reference distributions it depends on the desired sensitivity
of the lower bound of empirical p-values.

Conclusions

Despite the theoretical advantages of studying differences
in the correlation of key gene pairs between conditions,
differential coexpression or differential correlation is not
yet widely utilized, partially due to the lack of effective and
biology-oriented software packages that enable biological
meaningful findings. Our R package, DGCA, provides a
comprehensive and user-friendly tool for not only calculat-
ing differential correlation between two conditions but also
performing a number of downstream functional analyses
including categorization of differential correlations, identifi-
cation of multiscale differential correlation clustering struc-
tures, detection of key differential correlation hubs, and
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enrichment tests of functional pathways in differential cor-
relation categories and clusters. Our differentially correlated
gene pair and module detection simulation studies show
that DGCA and DGCA/MEGENA perform favorably com-
pared to the existing alternative methods. Our application
to breast cancer data demonstrates that DGCA is capable
of unlocking novel insights into real biological problems.
This user-friendly, effective, and comprehensive software
tool will greatly facilitate the application of differential cor-
relation analysis in many biological studies and thus will
help identification of novel signaling pathways, biomarkers,
and targets in complex biological systems and diseases.

Software and data availability
The DGCA R package will be available for download from
CRAN (the Comprehensive R Archive Network, https://
cran.r-project.org/), a repository of open-source soft-
ware. Source code and other files are available at https://
github.com/andymckenzie/DGCA.

Below is R code for using the DGCA package to analyze
a subset of a publicly available single-cell RNA-seq data set.

Step 1. Load the DGCA R package. > library(DGCA)
Step 2. Read in the gene expression matrix.

> data(darmanis)

Step 3. Read in the design matrix. > data(design_mat)
Step 4. Perform the basic differential correlation
analysis for the gene RTN4 between oligodendrocytes
and neurons. > dgca_res = ddcorAll(inputMat =
darmanis, design = design_mat, compare =
c(“oligodendrocyte”, “neuron”), adjust = “perm”, nPerm =
10, splitSet = “RTN4”)

Step 5. View the top 20 genes differentially correlated
with RTN4 as well as their differential correlation
statistics. > head(dgca_res, 20)

Step 6. Visualize the correlation in each condition
between RTN4 and its top differentially correlated gene
pair in this data set. > plotCors(inputMat = darmanis,
design = design_mat, compare = ¢(“oligodendrocyte’,
“neuron”), geneA = “‘RTN4”, geneB = “COX6AI1")

For a more detailed explanation about package usage,
please read the R help documents or vignettes.

> help(package = “DGCA”); vignette(package = “DGCA”)
The Cancer Genome Atlas (TCGA) datasets supporting
the conclusions of this article are available in the
National Cancer Institute's Genomic Data Commons,
https://gdc.cancer.gov/.

Additional files

Additional file 1: Gene sets used in the enrichment analysis for the
breast cancer modules. The five cleaned gene sets used for enrichment
analysis of the differential correlation modules. (TSV 9 kb)
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Additional file 2: Full table for differential correlation output from the p53
mutation study. The output of running DGCA on the p53 pathway gene set
in the breast cancer RNA-seq samples, comparing correlations of these genes
with TP53 in non-mutated samples to correlations in p53-mutated samples,
using the option to consider only positive correlations in calculate differential
correlation between conditions. The “Classes” column indicates the correlation
class of each of the genes where, e, “+/0" indicates a significant positive
correlation in the non-mutated samples and no significant correlation in the
p53-mutated samples. Note that the significance for the correlations within
each condition is not adjusted for multiple comparisons. 10,000 permutation
samples were generated in order to estimate empirical p-values, using a
pooled reference distribution approach, from which g-values were calculated.
WT = Wildtype, Mut. = Non-silent p53 mutation. (TSV 46 kb)

Additional file 3: Differential expression output from the p53 mutation
study. The results of differential expression (using the R package limma) on
the input breast cancer RNA-seq data filtered for genes in the p53-pathway.
Note that the contrast called in limma used p53 non-mutated samples as
the reference condition, so positive logFC values are upregulated in the
mutant condition compared to wildtype, while negative logFC values are
downregulated in the mutant condition compared to wildtype. (TSV 33 kb)

Additional file 4: Full table for average differential correlation output from
the p53 mutation study. Genes are ranked by the significance of their
median difference in correlation for each gene and all other genes in the
p53 pathway gene set between non p53-mutated and p53-mutated breast
cancer RNA-seq samples. 1000 permutation samples were generated in
order to estimate empirical p-values for each gene, which were adjusted by
the Benjamini-Hochberg method to control the false discovery rate among
this set of genes. (TSV 13 kb)

Additional file 5: Full table for differential correlation output from the PTEN
mutation study. The output of running DGCA on the PTEN pathway gene set
in the breast cancer RNA-seq samples, comparing correlations of these genes
with PTEN in non-mutated samples to correlations in PTEN-mutated samples.
The “Classes” column indicates the correlation class of each of the genes
where, eg, “+/0" indicates a significant positive correlation (p < 0.05) in the
non-mutated samples and no significant correlation in the PTEN -mutated
samples. Note that the significance for the correlations within each condition
is not adjusted for multiple comparisons. 10,000 permutation samples were
generated in order to estimate empirical p-values, using a pooled reference
distribution approach, from which g-values were calculated. WT = Wildtype,
Mut. = Non-silent PTEN mutation. (TSV 10 kb)

Additional file 6: Differential expression output from the PTEN
mutation study. The results of differential expression (using the R
package limma) on the input breast cancer RNA-seq data filtered for
genes in the PTEN-pathway. Note that the contrast called in limma used
PTEN wildtype samples as the reference condition, so positive logFC
values are upregulated in the mutant condition compared to wildtype,
while negative logFC values are downregulated in the mutant condition
compared to wildtype. (TSV 7 kb)

Additional file 7: Differential correlation modules from each method
analyzed. Genes identified in each of the differential correlation modules
with >25 and <1000 members by DGCA/MEGENA, DICER, and DiffCoEx

from the same filtered ER+ vs TNBC RNA expression data set. (TSV 360 kb)

Abbreviations

DGCA: Differential Gene Correlation Analysis (R package name);

dz: Difference in z-scores; ER+: Estrogen Receptor-Positive (breast cancer
subtype); FDR: False discovery rate; GOC: Gain of correlation; LOC: Loss of
correlation; p53: tumor protein 53 protein isoform; TCGA: The Cancer
Genome Atlas; TN: Triple Negative (breast cancer subtype); TP53: Tumor
Protein P53 gene.
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