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Abstract

Background: Aging is a complex process relating multi-scale omics data. Finding key age markers in normal tissues
could help to provide reliable aging predictions in human. However, predicting age based on multi-omics data
with both accuracy and informative biological function has not been performed systematically, thus relative cross-
tissue analysis has not been investigated entirely, either.

Results: Here we have developed an improved prediction pipeline, the Integrating and Stepwise Age-Prediction
(ISAP) method, to regress age and find key aging markers effectively. Furthermore, we have performed a serious of
network analyses, such as the PPI network, cross-tissue networks and pathway interaction networks.

Conclusion: Our results find important coordinated aging patterns between different tissues. Both co-profiling and
cross-pathway analyses identify more thorough functions of aging, and could help to find aging markers, pathways
and relative aging disease researches.

Background
Aging is a multi-faceted and progressive bio-process for
many organisms [1]. The aging process is composed by a
serious of complex dynamic molecular interactions [2],
which indicate key physiological phenotypes of human
health. Moreover, dysfunctions of aging process have
been shown to be involved in many disorders such as
Parkinson disease [3], Alzheimers’ disease [4], many
kinds of cancers [5] and so on. Therefore finding im-
portant aging markers could provide opportunities to
predict healthy factors and improve diagnostic results
for both pre- and pro- gnosis [6].

It has been reported that profiling patterns of crucial
DNA methylation/mRNA markers change with the
chronological age [7]. For example, many single tissue
predictors (based on methylation or expression data)
have been applied to identify aging biomarkers [8]. In
addition, a multi-tissue predictor based on methylation
data has been used to analyze aging functions [7]. Thus
predicting age using multi-scale genome-wide data in
normal tissues could provide reliable results of aging-
related disease risks thereby [6]. As a result, integrating
multi-omics data (i.e. epigenome and transcriptome
data) with high predicting ability and meaningful bio-
logical results is required to analyze the aging process.
On the other hand, finding interactions between bio-

markers is also important to identify characterizations of
tissue/individual changes, such as phenotype stage and
disease outcome [9, 10]. Reconstructing molecular net-
works also gives systematic approaches to deal with
multi-scale data in aging analysis [11]. A previous study
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has constructed cross-tissue aging networks based on
tissue-specific microarray mRNA data in mouse [11].
Nevertheless, integrative aging networks from multi-
scale data (i.e. methylation and expression) have not
been constructed entirely in Homo species.
In the present work, we developed a computational

pipeline, the Integrating and Stepwise Age-Prediction
(ISAP) method, to regress and predict age by integrating
methylation and expression data in 9 normal tissues of
human. The improved method found key integrative
markers for both multi-tissue and tissue-specific models
with high accuracy. Furthermore, a serious of network
analyses such as the shortest Protein-Protein Interaction
(PPI) network, cross-tissue co-profiling and pathway
interaction networks revealed coordinated aging patterns
in both multi-omics profiling and functional levels. The
results showed integrative age-correlated profiles were
associated with important pathway characteristics.

Methods
Data and pre-process
We obtained paired methylation, transcription and clinical
data in 9 different normal tissues with more than 10 sam-
ples (BLCA: Bladder Urothelial tissue, BRCA: Breast inva-
sive tissue, HNSC: Head/Neck squamous cell tissue,
KIRC: Kidney renal clear cell tissue, KIRP: Kidney renal
papillary cell tissue, LIHC: Liver tissue, LUAD: Lung tis-
sue, PRAD: Prostate tissue, THCA: Thyroid tissue) from
The Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov) [12] platform (only using level-3 data). The age of
each person came from TCGA clinical data. TCGA
methylation data come from the Illumina Infinium Hu-
man Methylation27 BeadChip or the Illumina Infinium
HumanMethylation450 BeadChip, therefore Illumina
probe ID presented in both platforms were selected for
further analysis [7]. Transcription data were obtained
from RNASeq-v2 data (level-3). Both methylation and ex-
pression data were treated by a Singular Value Decompos-
ition (SVD) [13] method (regress the first 3 principle
components) to assess the sources of inter-sample vari-
ation separately in each tissue, and then were normalized
to have zero mean and unit variance.
The choice of training data sets was guided by the fol-

lowing criteria the same as the previous study [7]: First,
the training data should represent a wide spectrum of
tissues and cell types; second, the mean age in the train-
ing data should be comparable to that of the test data.
As a result, to predict age of each person in the multi-
tissue model, 6 tissues (Bladder, Breast, Head/Neck, Kid-
ney renal clear cell, Lung and Thyroid) were set as the
training data (mean value ≈ 58 years). The rest 3 tissues
(Kidney renal papillary cell, Liver and Prostate) were set
as the independent test data (mean value ≈ 61 years). To
train the multi-tissue model, each one out of the six

tissues of training data was set as a set of temporary test
data, so cross-validation of the multi-tissue model was
performed as 6-fold. To train tissue-specific models, the
common 5-fold cross-validation was performed for each
tissue respectively.

Lasso regression
Least absolute shrinkage and selection operator (Lasso)
is a regression method performing both variable selec-
tion and regularization to improve the prediction accur-
acy and interpretability of the statistical model [14]. In
this work Lasso was used to regress age using methyla-
tion data and the penalty parameter λ value was deter-
mined by cross-validation.

Partial least-square (PLS) regression
The partial least-square regression (PLS) method is
often used for dimension reduction when dealing with
small-sized samples of gene expression data [15]. The
algorithm is mainly performed as described by
Höskuldsson [16].
In this work PLS was used to transformed high-

dimension expression data before stepwise regression
and the number of first modified direction vectors of
PLS was finally determined (after stepwise regression) by
cross-validation.

Stepwise regression
The stepwise regression method is also widely used to
select important features in regression problem in small-
sample condition [17]. In this work the method was used
to select important expression features (genes), and it
works in the forward style as follows:

(1)Sort gene expressions by their absolute correlation
coefficients with the output in descending order. In
this work the output was the residuals of ages from
Lasso.

(2)Add each sorted gene expression after PLS
transformation individually. The number of selected
genes was determined by cross-validation.

Integrating and stepwise age-prediction method
In this paper, we presented an improved algorithm, the
Integrating and Stepwise Age-Prediction (ISAP) method,
to predict age by integrating Lasso, PLS and forward
stepwise regression method based on paired methylation
and expression data in normal tissues. Methylation data
were used to regress age firstly, and then expression data
were used to regress the residuals from methylation
data. The improved computational method (ISAP) works
as follows:
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(1)Predict age using Lasso regression based on
methylation data, the penalty parameter λ value in
Lasso is determined by cross-validation using training
data, and save the residuals after Lasso regression.

(2)Sort expression features (genes) by absolute
correlation coefficients with the residuals in
descending order.

(3)Predict the residuals by forward stepwise regression
method based on expression data. The expression
data with selected features (genes) are transformed
into full-ranked matrix by PLS firstly, and the
number of selected genes are determined by
cross-validation based on training data.

(4)For selected expression features (genes), determined
the number of first direction vectors of PLS by
cross-validation based on the training data.

(5)Caculate the final regression coefficients of aging
markers (both methylation and expression), and save
the regression coefficients.

In this paper, both the multi-tissue model and tissue-
specific models were calculated, and the selected aging
markers were used to further functional analyses. The
cross-validation was performed as 6-fold in the multi-
tissue model, and 5-fold in tissue-specific models, separ-
ately. Age of both training data and test were subtracted
mean value of training age before regression. The flow-
chart of ISAP and other succeeding works was shown in
Fig. 1.

Enrichment analysis
To gain understandings of gene sets statistically signifi-
cantly associated with biological functions, enrichment
analyses were carried out. Informations of Gene
Ontology (GO) terms (including all GO gene sets),
GO Biological Processes (BP), and KEGG pathways
were downloaded from Gene Set Enrichment Analysis
(GSEA) platform (http://software.broadinstitute.org/
gsea/downloads.jsp, version 5.1) [18]. The hypergeo-
metric test [19] was performed to estimate the en-
richment of these selected markers compared to
known terms/pathways. The formula of the hypergeo-
metric test is:

p X≥xð Þ ¼ 1−
Xx−1

k¼0

Ck
M � Cn−k

N−M

Cn
N

ð1Þ

where N is the total gene number of the gene expression
sets, M is the number of known genes sets (i.e. GO
terms or KEGG pathway), n is the number of the candi-
date genes that we identified, and k is the number of
common entries between them. P is the enrichment stat-
istical significance of the test. Finally, the selected signifi-
cantly enrichment p-values were controlled by False
Discover Rate (FDR, <0.25) [18, 20].

Protein-protein interaction (PPI) network
The background weighted PPI network was constructed
using data from STRING database (http://string-db.org/,
version 10) [21]. It weights protein-protein interactions
by calculating confidence scores. In this work, 70% con-
fidence score (>700) has been used as a cut-off for fur-
ther analysis. Each pair of selected integrative markers
was picked out and calculated their shortest pathway in
PPI network using Dijkstra algorithm [22]. Finally the
PPI network with shortest pathway among selected
markers were constructed, and proteins/genes in the PPI
network were sorted by their betweennesses in descend-
ing order.
To test whether the top betweenness genes were hubs

in the background network or not, we ran a permutation
to count the occurrence time of the top genes in the
shortest paths between random selected genes (con-
tained the same number of selected gene set of aging
markers) when they have greater betweennesses than
those in our study. We repeated this process 1000 times,
and the p-value was calculated as the proportion of oc-
currence times of the top betweenness genes in 1000
permutations.

Construction of integrative cross-tissue co-profiling net-
work of aging
Age ≥ 60 was considered as ‘old’ age group, and age ≤ 50
was considered as ‘young’ age group. Tissues with more

Fig. 1 The computational pipeline (the ISAP method and further
functional analyses) in this work
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than 3 samples in both young and old group were se-
lected to constructed cross-tissue network. As a result, 7
tissues were selected, they were: Breast invasive tissue,
Head/Neck squamous cell tissue, Kidney renal clear cell
tissue, Kidney renal papillary cell tissue, Liver tissue,
Lung tissue, and Thyroid tissue. The number of tissue–
tissue pairs was 21 in total.
For each tissue, profiles of selected aging markers (in-

cluding both methylation and expression) were discre-
tized using two thresholds mean+/-std. Then the
discretized intertissue gene pairs (from 21 tissue-tissue
pairs) within the same age group (young or old) were
calculated the Kolmogorov-Smirnov (K-S) statistic [23]:

K−S ¼ sup F1−F2j j ð2Þ

where F1 and F2 are the cumulative distribution of aging
markers in one tissue and in another tissue, respectively.
K-S values of both young age group and old age group
were calculated separately. The absolute difference of
K-S value between old and young group was set as
the edge in the cross-tissue network, which would be
filtered by a proper threshold (i.e. 0.95).
Moreover, all the aging markers in selected tissue-

tissue pairs were enriched to GO terms by the hypergeo-
metric test (FDR <0.25) to find functional characteristics
of tissue-tissue cross-talk.

Construction of integrative cross-tissue pathway interaction
aging network
Selected aging markers in each tissue were enriched to
KEGG pathway by the hypergeometric test using for-
mula (1). Significant KEGG pathways (FDR <0.25) in
each tissue (totally 7) was selected to further analysis.
Three types of pathway interaction networks were con-
sidered: first, sum of absolute K-S value differences (> a
moderate threshold, i.e. 0.6) was used as the connectivity
of two pathways from two tissues; second, sum of all the
absolute K-S value differences (with no thresholds) was
used as the connectivity of two pathways between two
tissues; third, sum of all the absolute K-S value differ-
ences (with a more rigorous KEGG enrichment FDR
<0.1) was used as the connectivity.

Results and discussion
Aging regression results
To identify integrative aging biomarkers of multi-tissue,
Lasso regression found 164 DNA methylation markers,
and then the forward stepwise regression found 77
mRNA expression markers. Totally 241 aging markers
were shown in Additional file 1 as well as their regres-
sion weights. Table 1 shows that the regression results of
this computational pipeline, the ISAP method, get higher
accuracy (with lower residual errors) compared to other

common regression methods (i.e. Lasso, elastic net or
PLS, either with methylation data or expression data).
Table 1 also shows that age prediction by methylation

data with higher accuracy than using expression data.
Moreover, simply combining methylation and expression
could not improve regression results compared with
using methylation data alone (shown in Table 1). There-
fore, our improved computational method could inte-
grate methylation and transcriptional data more
effectively than other general methods.
Figures 2 and 3 and Table 2 show more detailed

(residual errors, Pearson correlation coefficients and me-
dian absolute difference errors) results in each tissue.
The ISAP method not only got high accuracy on training
tissues, but also predicted independent test tissues with
enough accuracy (i.e. mean residual errors near 1.5 of
each test tissue).
Then we used our pipeline to regress age on each sin-

gle tissue separately. Each identified integrative aging
markers and their regression weights are also shown in
Additional file 1. Table 3 shows regression results of
tissue-specific biomarkers (details also shown in
Additional file 1). Both multi-tissue and tissue-specific
biomarkers were used to succeeding functional analyses
(e.g. network construction).

Functional/enrichment analysis and PPI-network
Firstly, selected integrative biomarkers were sorted by
their absolute regression weights in descending order,
which indicated their profiling patterns correlating the
chronological age. For example, the marker with the
greatest weight in the multi-tissue model was methyla-
tion profile of gene GPR45. Protein of GPR45 functioned
in the central nervous system, and was reported to be
related to aging significantly [24]. Moreover, the marker
with the greastest weight in tissue-specific models was
expression of gene CORO6 in the Kidney renal clear cell
model, which has been reported that to be regulated by
age [25].

Table 1 Regression results of ISAP and other methods

Method\residual errors Training data Test data

Lasso: methylation 120.3951 97.3057

Lasso: expression 148.3233 147.1687

Lasso: methylation and expression 130.6717 104.7382

PLS: methylation 120.1005 96.99

PLS: expression 187.9461 145.652

PLS: methylation and expression 130.8643 104.4602

elastic net: methylation 133.2711 94.871

elastic net: expression 141.8691 137.5191

elastic net: methylation and expression 129.1727 96.146

ISAP 116.3666 93.3048
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Furthermore, we performed enrichment analysis of se-
lected integrative biomarkers (multi-tissue and tissue-
specific) on Biological Process (BP) of Gene Ontology
(GO) and KEGG pathway using the hypergeometric test.
In the multi-tissue model, the top GO biological process
and KEGG pathway were positive regulation of immune
system process (GO:0007059, p-value = 1.6643e-08, and
FDR =1.3308e-05) and cell adhesion molecules (CAMs,
p-value = 1.4205e-06, and FDR =2.4517e-04), respect-
ively. It has been reported that inflammatory gene sets
such as positive regulation of immune system process or
dysfunction of immune system are induced by aging
[26]. In addition, multiple changes in immune system
occur and disrupt the regulation of body cells with aging
in the immune dysregulation theory [26], which also co-
incides with our results. Many cell adhesion molecules
have been indicated to be dependent on aging [27], too.
In tissue-specific models, the top GO biological process
and KEGG pathway were negative regulation of phos-
phate metabolic process (GO:0045936, p-value =
9.7695e-05, and FDR =0.0157) in kidney renal papillary

cell and Antigen processing and presentation pathway
(p-value = 3.3052e-06, and FDR =0.0006) in thyroid, re-
spectively. Phosphate metabolic process has been re-
ported to relate to aging diseases and cancer [28].
Moreover, autophagy is an important mechanism of
intracellular pathogen’s antigens, and dysfuncition of au-
tophagy is also regulated by aging [29]. As a result, the
enrichment analyses indicated that functions of immune
system related to aging deeply.
In addition, we constructed an undirected graph with

the PPI data from STRING. Each pair of selected 241 in-
tegrative markers in the multi-tissue model were picked
out and calculated their shortest path by Dijkstra algo-
rithm. Then a sub-network composed of 161 out of the
241 markers was obtained based on shortest pathways,
in which a total of 44244 protein-protein interactions of
2177 proteins annotating in the Ensemble Biomart data-
base (http://ensembl.org/biomart/martview) were picked
out. These genes/proteins were ranked by their between-
nesses in descending order as well as permutation p-
values (shown in Table 4). There were 7 out of the top
10 betweenness genes whose p-values were significant.
Among these genes, TP53 has the largest betweenness of
1023 (permutation p-value = 0.016), meaning that there
are 1023 shortest paths going through this gene. Accord-
ingly, TP53 may play an important role in connecting
the 161 candidate genes and hence may be related to
aging. Obviously, TP53 is one of the most important key
markers in cell cycle and cell apoptosis pathway, thus
the cross-talk between TP53 and MTOR regulates cellu-
lar senescence, cancer and aging [30].

Integrative aging-specific cross-tissue co-profiling
networks
Aging is a complex process where many tissues and
genes participate, thus gene profiling pattern pairs would
be perturbed or regulated during aging. To investigate
molecular aging profiling patterns of tissue-tissue pairs
relating to different age group (young versus old people),
cross-tissue co-profiling network were constructed using
absolute difference of K-S statistics (>0.95). Finally 31 in-
tegrative inter-tissue pairs were obtained. The 31 mo-
lecular pairs belonged to 6 tissue-tissue pairs of aging,
and they were shown in Fig. 4. Tissue of head/neck
might be in the core status with the largest degree of 4
in the cross-tissue network, meaning that head/neck
might affect other 4 tissues during the aging process.
Furthermore, each of the selected 31 pairs was calcu-

lated to investigate whether any pair shares the same
GO term. As a result, the correlation of GATA4 in
head/neck and EGFL7 in kidney renal clear cell shared
most GO terms (number = 4), including system develop-
ment (GO: 0048731), multicellular organismal develop-
ment (GO: 0007275), anatomical structure development

Fig. 2 Regression results in the multi-tissue model. a Across all training
data; b across all test data
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Fig. 3 Regression results of each tissue in multi-tissue models. a Bladder Urothelial tissue; b Breast invasive tissue; c Head/Neck squamous
cell tissue; d Kidney renal clear cell tissue e Kidney renal papillary cell tissue; f Liver tissue; g Lung tissue; h Prostate tissue; i Thyroid tissue. a-d, g and i
are training data; e, f and h are test data

Table 2 Regression results in the multi-tissue model

Tissue Residuals Correlation Median error Samples Type

Bladder 47.3902 0.9937 -11.0809 17 training

Breast 13.3672 0.9953 0.0509 84 training

Head/neck 26.9936 0.9892 -6.2175 20 training

Kidney renal clear cell 42.3265 0.9954 -8.3799 24 training

Lung 26.0847 0.9897 -5.2718 21 training

Thyroid 88.9724 0.9886 12.2297 50 training

Kidney renal papillary cell 39.4239 0.8735 -5.3395 23 test

Liver 63.6351 0.8111 -3.3107 41 test

Prostate 55.6967 0.3495 -3.836 35 test

training data 116.3666 0.8765 0.7133 216

test data 93.3048 0.7413 4.5372 99
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(GO: 0048856) and animal organ development (GO:
0048513). Since EGFL7 and GATA4 are related to aging
[31, 32], it was possible the expression of EGFL7 in the
kidney was regulated by the expression of GATA4 in
head/neck, with this regulation changing with age. All
the shared terms were related to cell/tissue develop-
ments, and tissue develpoments are correlated with
aging [33], obviously.
In addition, all the aging specific genes with top

high K-S differences (>0.85) were also performed en-
richment analysis of GO terms by the hypergeometric
test. The top GO terms were positive regulation of
caspase activity (GO:0043280, p-value = 9.8594e-05,
and FDR =0.0717). It is well known that caspase-
dependent apoptotic signaling is vital to many human
aging diseases [30, 34].

Integrative aging-specific cross-tissue pathway interaction
networks
To find inter-tissue pathway to pathway cross-talks,
cross-tissue pathway interaction aging networks were
constructed. Figure 5 depicts three types of pathway
interaction cross-tissue networks. The first type showed

the sum of absolute differences of K-S statistic with high
difference (K-S difference >0.6). Figure 5a shows the
pathway interaction networks of aging among head/
neck, kidney and thyroid, and interaction between cell
cycle and neurotrophin signaling pathway with the lar-
gest connectivity (=2.5167) might be important to aging.
The second type showed the network based on sum of
absolute differences of K-S statistic (only showed sum
>3). Interaction between cell adhesion molecules and
neurotrophin signaling pathway was with the largest
connectivity (=5.5062, shown in Fig. 5b). The third type
showed sum of absolute value of K-S statistics’ difference
(FDR <0.1 as the threshold), and cross-talk between kid-
ney and thyroid was the main pattern of the network.
Figure 5c shows that interaction between cell cycle and
cell adhesion molecules might be critical to aging
(connectivity =4.8748).

Table 3 Regression results in tissue-specific models

Tissue Residuals Correlation Median error Samples Methylation features Expression features

Bladder 0.7736 0.9999 -0.0658 17 14 17

Breast 0.3187 1 0.0057 84 74 92

Head/neck 0.9342 0.9998 -0.0634 20 18 106

Kidney renal clear cell 3.1858 0.9987 0.0069 24 22 13

Kidney renal papillary cell 3.7071 0.9985 0.1355 23 22 4

Liver 10.0158 0.9953 0.1281 41 40 3

Lung 4.5721 0.9971 -0.038 21 19 14

Prostate 1.0266 0.9997 -0.014 35 34 38

Thyroid 17.8715 0.9892 -0.2026 50 48 16

Table 4 Top aging markers with their betweennesses in the PPI
network

Gene Betweenness P-value

TP53 1023 0.016*

HSP90AA1 665 0.009*

SRC 363 0.086

STAT3 263 0*

BMP2 254 0*

AKT1 243 0.759

CD8A 235 0*

EP300 229 0*

HSPA4 221 0*

IL6 207 0.018*

*: p-value < 0.05, significant
Fig. 4 Patterns in the tissue–tissue pairs of aging
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In immunosenescence theories of aging, either innate
or adaptive immune responses are related to the aging
process [26]. For instance, cellular senescence is believed
to be involved immune and aging progresses, and sup-
pressed relative pathways such cell cycle, pathway of
cancers and so on [26, 30, 35]. Cell adhesion cascades
appear to affect the functional capacity of cells during
aging [27, 36]. Moreover, both cell adhesion and neu-
rotrophin cooperatively perform critical functions in
the aging process responding to the immune system
[37, 38]. Our results found that the cross-talk among
key pathways (i.e. cell cycle, cell adhesion and neu-
rotrophin signaling) played important roles in the
aging process altogether. Furthermore, head/neck
and kidney might be in core status to regulate the
aging process and relative pathways in other tissues.

Conclusion
Predicting age in human normal tissues is fundamental
to aging researches. In this paper, we developed an im-
proved method, the ISAP pipeline, to integrate both
methylation and expression data for age prediction. The
ISAP method predicted age more accurately than other
popular methods. Furthermore, the PPI network and en-
richment analyses also find core aging genes and
pathways.
In addition, network analysis could also help to iden-

tify aging related genes/pathways between different tis-
sues. We have performed a serious of network analyses
of aging specific markers, and find important profiling
patterns and pathway interactions. Our results con-
firmed existing aging theories or hypotheses and could
improve further aging researches.

Additional file

Additional file 1: Integrative age predictors and their weights. Note:
type 1 indicates methylation data, and type 0 indicates expression data;
tissue with 0 indicates the multi-tissue model, and 1-9 indicate each of 9
normal tissues (Bladder Urothelial tissue, Breast invasive tissue, Head/Neck
squamous cell tissue, Kidney renal clear cell tissue, Kidney renal papillary
cell tissue, Liver tissue, Lung tissue, Prostate tissue, Thyroid tissue),
separately. (XLS 97 kb)
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