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Abstract

Background: High-throughput technology could generate thousands to millions biomarker measurements in one
experiment. However, results from high throughput analysis are often barely reproducible due to small sample size.
Different statistical methods have been proposed to tackle this “small n and large p” scenario, for example different
datasets could be pooled or integrated together to provide an effective way to improve reproducibility. However,
the raw data is either unavailable or hard to integrate due to different experimental conditions, thus there is an
emerging need to develop a method for “knowledge integration” in high-throughput data analysis.

Results: In this study, we proposed an integrative prescreening approach, SKI, for high-throughput data analysis. A
new rank is generated based on two initial ranks: (1) knowledge based rank; and (2) marginal correlation based
rank. Our simulation shows the SKI outperforms other methods without knowledge-integration in terms of higher
true positive rate given the same number of variables selected. We also applied our method in a drug response
study and found its performance to be better than regular screening methods.

Conclusion: The proposed method provides an effective way to integrate knowledge for high-throughput analysis.
It could easily implemented with our provided R package named SKI.
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Background
The understanding of the molecular basis of complex dis-
eases such as cancer has been greatly enhanced in present
time by genomic sequencing and other omics-approaches.
Genomic biomarkers have been applied to disease screens
[1–3], cancer subtype classification [4–6], and to predict
drug response [7–9]. As large numbers of biomarkers can
be measured simultaneously at a relative small cost, the
bottleneck for such omics studies has become the expan-
sion of the number of samples collected. Unfortunately,
for many current studies, the number of subjects is much

smaller than the number of genetic markers measured,
which has ranged from thousands of genes to millions of
genetic variants. Thus how to identify the relevant
variables or biomarkers precisely in a high-dimensional
data set has become a challenge for the further
advancement of the development of precision medicine
and personalized treatment.
Traditionally, variables were identified by univariate

analysis, followed by multiple-testing adjustment such as
Bonferroni’s p value correction or false discovery rate
(FDR) procedure [10, 11]. For example, in genome-wide
association studies (GWAS), single nucleotide polymor-
phisms (SNPs) are screened site-by-site to test the associ-
ation between diseases and complex traits. However, this
approach ignores the underlying correlation structure
between genomic markers, leading to the absence of
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identification of the joint impacts of biomarkers on
phenotypes. To address the joint impacts, popular variable
selection methods such as LASSO [12], adaptive LASSO
[13], and SCAD [14] have been established over the past
decades. Such methods, however, are beset with high
computational costs when p is as large as an exponential
of the sample size n. To overcome these high computa-
tional costs in analyzing such ultra-high dimensional data,
an effective solution is to conduct pre-screening of
variables. For example, Fan and Lv proposed the sure in-
dependence screening (SIS) approach in which prescreen-
ing is based on marginal correlations [15]. Tibshirani et al.
proposed a method to prescreening-based on a LASSO
penalization under the Cox model [16].
Another way to tack this “large p small n” paradigm is

to collect multiple datasets (i.e., increase n). One popular
approach is to pool datasets together and then perform
further analysis as if they originated from a single study.
This approach demands the data to be fully comparable
and it’s often not feasible to integrate datasets from
different sources of genomic information. Other data inte-
gration methods have been developed by incorporating
hierarchical and network-based models to integrate differ-
ent omics data. Shen et al. proposed an iCluster approach
to assign cancer subtype by integrating multiple levels of
omics data with introducing a latent variable [17]. Aure et
al. identified in‑trans process associated genes in breast
cancer by integrated analysis of copy number and expres-
sion data [18]. Akavia et al. identified driving cancer muta-
tions and the processes that they influence by integration
of copy-number variation and gene expression [19]. In a
recent NCI-DREAM challenge, various integration
methods, such as Bayesian multitask multiple kernel
learning (MKL), have been applied to identify biomarkers
for drug response [20].
Such methods however are often associated with a few

problems. First, most of them are very complex and
sometimes difficult to apply without possession of spe-
cialized statistics knowledge. Secondly, since these
methods may be designed for specific cases, they are po-
tentially inflexible and hard to modify in order to apply
to another study. Lastly, and most importantly, all of
them require the access to the raw data, which often is
unavailable.
The goal of this study is to develop a general procedure

for variable selection with knowledge integration. The
basic idea of our method is to guide the pre-screening
procedure by taking prior knowledge into account, and
then after prescreening, sophisticated variable selection
techniques such as LASSO could be applied.
The only input required for our method is a rank of

genomic biomarkers obtained from external information,
which is certainly a desirable feature for the users without
accessibility to raw data. For example, in one possible

application, summary statistics of psychiatric disorders
could be found at the Psychiatric Genomics Consortium
(PGC) website [21, 22] and used to develop a ranking.
This ranking could be then applied to pre-rank the SNPs
in GWAS studies related to psychiatric disorders. In other
applications, an association between genes and other
biological terms could be obtained through text mining of
the literature [23, 24], and genes could be ranked based
on this association. Similarly, the genes reported to have
interaction with a drug or compound [25] can be placed
on the top of the list (prioritized) when predicting drug
response. in the top of lists when predicting the drug
response. More commonly, a candidate list could already
exist before the high-through measurement procedure
takes place and it is then reasonable to give these candi-
dates a higher priority. In the most extremist case, only
candidate biomarkers were measured (e.g., customized
array, target sequencing or exome sequencing) instead
applying a genome-wide measurement. To distinguish our
method from others, we call this “knowledge integration”.
A simulation study was conducted to examine the

performance of our method. We also compared it to the
other popular approaches. We then applied our method
in a drug response analysis. Our method outperformed a
commonly used marginal correlation based screening
procedure.

Method
Sure independence screening
Suppose we have a genomic dataset (yi, xi), where yi is
the response and xi = (xi1, xi2,…, xip) is the vector of p
covariates, for i = 1, 2,…, n. In real applications, Y could
be measurements of some phenotypes or quantitative
traits, such as weights, drug response, etc. X could be
some high-dimensional omics-measurements, such as
gene expression, CpG methylations, etc. In a typical
genomic setting, p could be far larger than n. To deal
with high dimensionality, effective variable selection
techniques are required.
The sure independence screening (SIS) method

introduced by Fan and Lv [15] is a two stage approach.
First, it selects significant predictors by sorting the
corresponding marginal likelihood (correlation in linear
model), thus fast reducing the ultra-high dimensionality
to a relatively large scale d (e.g., o(n)). Subsequent to
SIS, a more sophisticated lower dimensional model
selection technique such as SCAD [14], the Dantzig
selector [26], LASSO [12], or adaptive LASSO [13] could
be applied to perform the final variable selection and
parameter estimation. Apparently, SIS could dramatic-
ally speed up variable selection when the p is extremely
large. Fan and Lv proved SIS enjoys the sure screening
property and model selection consistency under certain
conditions.
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Screening with prior knowledge integration
We noted that the idea of SIS is based on marginal
correlation to first select important variables. Based on
this idea, we proposed an novel approach, screening with
prior knowledge integration (SKI), to select variables in
the first stage. The basic procedure of SKI is drawn in
Fig. 1. The idea of the SKI is to rank the variables not
only based on marginal correlation but to also incorpor-
ate external information. The rationale here is that the
variables supported by both marginal correlation and
external information are more likely to be important
features, and thus should be included in the second
stage for parameter estimation with larger probability.
Besides the same settings in SIS, now suppose we also

have an external ranking of variables R0, which is of length
p, obtained from prior knowledge. We define a new rank
for gene j as the weighted geometric mean of two ranks:

Rj ¼ Rα
0j � R1−α

1j

for i = 1, 2,…, p. R0j is the rank of gene j obtained from
prior knowledge, and R0j is the rank of gene j obtained by
sorting marginal correlation. Here α is a parameter
controlling the importance of prior knowledge. Here, we re-
strict 0 < α < 0.5 to limit the influence of prior knowledge
so that it could not be stronger than the data at hand and
we will estimate it by data (introduced next). But in prac-
tice, α could be a value, in range from 0 to 1, predetermined

by users or estimated by data. If we set α = 1, the genome-
wide measure becomes the targeted-region measure.
The initial ranking represents the importance of each

variable known ahead of the ongoing study. For example,
if the goal of this study is to predict drug response based
on gene expressions, other genetic measurements such as
copy number variants (CNV) might be available. We
could first rank each CNV by its marginal correlation with
drug response obtained by univariate linear regression and
then we map CNV ranks back onto the genes to get an
initial rank of genes. More commonly, we could rank
genes based on their importance scores obtained by expert
domain knowledge or literature searching.
Typically, we require that each variable has an initial

rank. For those variables with no information, an average
rank can be assigned. For instance, among 100 predic-
tors, 10 of them are found associated with response from
existing knowledge. We could assign ranks (ranged from
1 to 10) to these 10 predictors based on their association
strength and 55 for the rest. Alternatively, if we don’t
know the association strength, we could set the ranks of
10 predictors as the average of 1 to 10, which is 5.

Estimation of α
As mentioned above, the selection of α could control the
relative strength of influence imposed by prior know-
ledge, which is essential for the success of the proposed
methods. Unfortunately, there is no pleasant way for

Fig. 1 A brief description of (i)SKI procedure. For each variable, two ranks are generated, one based on prior knowledge (R0), the other based on
marginal correlation (R1). A predefined α, (or estimated based on the dev. ratio) is used to control the weight of prior knowledge. Variables are
then sorted by weighted geometric mean of two ranks. SKI first reduces the variable number from p to d, and then a more sophisticated method
such as SCAD is used to further refine the model to size d ’ and estimate the parameters. iSKI updates the marginal correlation based rank (R1) by
regressing residues over the rest p − d ’ variables. The procedure is repeated until the desired number of parameters obtained
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tuning this parameter. LASSO or elastic-net [27], uses
cross-validation strategy to select α with lowest internal
prediction errors. However, the problem we face here is
a ultra-high dimensional problem, where the number of
covariates p is already much larger than sample size n.
Cross validation will require us to further spit the
sample into training and testing, which can make the
ultra-high dimensionality issue worse. To alleviate these
concerns, we develop the following alternative strategy.
We first generate a sequence of α = (0, 0.1, 0.2, 0.3, 0.4,

0.5). For each α, we re-rank the variables as its weighted
geometric mean rank. We then select the top d ranked
variables as inputs for a ridge regression model [28].
After fitting a penalized ridge regression, we calculate
the fraction of null deviance explained as.

dev:ratio ¼ 1−
loglikesat − loglike

loglikesat − loglikenull

Here loglikesat refers the log-likelihood or the saturated
model (i.e., a model with a free parameter per observa-
tion). And loglikenull refers to the intercept model. We
compare the dev. ratio across different α’s, and select the
α yields largest dev. ratio as the final α.
The rationale of this method is that if one set of vari-

ables is more biologically meaningful than the other, the
better it could fit a ridge regression model. We do notice
that the number of variables selected d will affect the per-
formance of SKI in terms of estimation of α. In the most
extreme case, if only one variable is selected (d = 1), then
the estimated α will always be zero. But our experiences
suggest the number of variables selected won’t affect the
results significantly if this number is not too small.
Although some methods have been proposed to tune this
parameter [29], how to determine the number of variables
is out of the scope for this study.

Extension: iterative SKI
Fan and Lv demonstrated that when too many predictors
are involved, the basic sure screening methods might
miss some important variables due to collinearity issues.
In their paper they developed an iterative version of SIS
to use fully the joint information of the covariates rather
than marginal information. Briefly, in the first step, a
subset of k1 variables is selected using an SIS-based
method. Next, a n -vector of residuals are obtained from
regressing the response Y over k1 variables are treated as
new responses and the same method is applied to the
remaining p − k1 variables. The process is repeated until
desired number (e.g., d) of variables is selected or
(predefined) maximum iteration is reached.
We extend this idea to SKI and developed an iterative

version of SKI (iSKI). The similar procedure was used.
In the first step, the rank of each variable is obtained as

weighted geometric mean of knowledge-based rank and
the sorting marginal correlation between responses and
predictors. For the rest of the steps, the rank is weighted
geometric mean of the knowledge-based rank and the
sorting marginal correlation between residuals and
predictors.

Results
Simulations
We adopted a similar simulation in Ma 2012 [30]. In total
nx = 200 samples (X, Yx) were simulated, with gene num-
ber p = 10, 000. 200 clusters were simulated independ-
ently, and 50 genes in each cluster were simulated from a
multivariate normal distribution with μ = 0, σ2 = 1 and
AR(1) correlation structure ρ = 0. 6. (i.e., cor(i, j) = ρ|i − j|).
This is to mimic a real gene expression studies with taking
pathway structure into account. In each cluster, the coeffi-
cients β’s of first ten genes were simulated from a uniform
distribution with minimum 0.5 and maximum 1. All other
β’s were set to be zeros. This is consistent with the parsi-
monious assumption that only few genes and pathways
were associated with phenotypes or diseases. Continuous
responses were generated from linear regression models
with σx

2 = 1 (or 3).
Another nz = 200 samples (Z,Yz) with gene number p =

10, 000 were simulated to mimic an external gene expres-
sion study, where our prior knowledge was drawn from.
Gene expressions and responses were simulated from the
same structure as described above. But the non-zero coeffi-
cients β were simulated to have 0, 50, and 100% overlap
with non-zero β in the internal settings. This is to mimic
the situation that the prior knowledge completely disagrees,
partially agrees and exactly agrees with our true experiment
settings.
To better evaluate the performance of the proposed

approach, we also consider other alternatives:

(1)Select genes without external knowledge available.
Genes were based on marginal correlations between
X and Yx. (SIS)

(2)Select genes based on the proposed methods, where
the prior ranks of genes generated based on
marginal correlation between Z and Yz. (SKI)

(3)Select genes based on pooling two dataset together
and conduct analysis as one dataset. Genes were
ranked based on marginal correlations. (P)

In Table 1, we summarize the results of variable selec-
tion by generating 100 datasets. As expected, under the
same settings of ρ, σx

2, and σz
2, the estimated α was in-

creased as the percentage of non-zero β that overlapped
between internal and external datasets increased. The
proposed methods selected consistently more true posi-
tive genes when prior knowledge partially or exactly
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agrees with internal settings (i.e., 50, 100%). When the
prior knowledge is completely noisy (i.e., 0%), the per-
formance of the proposed methods is comparable with
only using an internal dataset. Although, the perform-
ance of pooling two datasets is better than the proposed
methods when the prior knowledge is useful, the
performance will drop dramatically when the prior
knowledge is not useful. More importantly, as stated
before, the focus of this study is to develop a strategy to
integrate biological knowledge. Obviously, the applied
range of the proposed methods is much broader.
We also investigated the performance of the extension

of the proposed approach (iSKI), by compared it with
non-iterative version of the proposed approach (SKI),
SIS and iSIS methods. The last two methods were pro-
posed by Fan 2008 to select important variables without
considering prior knowledge. The extension methods
were proposed to solve the issue of strong collinearity
between genes. So we simulated different ρ (0.3 and 0.6)
to investigate its performances under different correl-
ation settings. Since both iSIS and iSKI are very compu-
tation intensive, we fixed σx

2 = 1 and σx
2 = 1. We also set

the maximum iteration to three to reduce computing
time. SCAD was used to fit the model in the second
stage. All the other settings were kept the same as
before. Table 2 summarizes the number of true positives
when the top 1% genes were selected. As expected, iSIS
included more true variables than SIS, and iSKI
performs even better than iSIS when the external
information are useful.

Real application: drug response analysis
We next applied the SKI procedure to a drug response
study and compared it to the results obtained with the SIS
procedure. Selumetinib (AZD6224) is a drug used to treat
various types of cancer such as non-small cell lung cancer
(NSCLC). It is a potent, highly selective MEK1 inhibitor.
Unfortunately, despite intensive studies, the genetic mech-
anism for Selumetinib resistant remains controversial
[31–34]. We applied the SKI procedure to identify the
potential biomarkers of response to Selumetinib. We
downloaded the drug response data (i.e., Active Area)

Table 1 Simulation results compared the number of true positives among different methods

Positivea 1% 5% 10%

%b σx
2 c σz

2 d αe SISf SKIg Ph SIS SKI P SIS SKI P

0.0 1 1 0.075 38.96 38.94 36.36 45.78 45.72 43.63 47.66 47.63 45.63

0.5 1 1 0.275 38.53 43.06 45.22 45.66 47.65 48.54 47.53 48.85 49.13

1.0 1 1 0.384 38.5 46.34 47.99 45.65 48.9 49.58 47.49 49.51 49.83

0.0 1 3 0.090 39.10 38.97 35.01 45.81 45.80 42.94 47.71 47.72 44.03

0.5 1 3 0.249 38.92 42.55 43.85 45.80 47.31 48.28 47.57 48.55 49.10

1.0 1 3 0.368 39.04 45.81 47.58 45.88 48.60 49.44 47.65 49.21 49.73

0.0 3 1 0.113 36.84 36.43 35.77 44.61 44.01 43.37 46.69 46.57 46.19

0.5 3 1 0.261 37.27 42.16 44.90 45.15 47.36 48.34 47.07 48.56 49.03

1.0 3 1 0.374 36.91 46.01 48.89 44.76 49.42 49.51 47.12 49.86 49.90

0.0 3 3 0.104 37.84 37.48 35.19 45.73 45.43 44.07 47.63 47.53 45.93

0.5 3 3 0.264 37.26 42.52 44.48 45.03 47.35 48.26 47.19 48.58 49.00

1.0 3 3 0.355 37.05 45.20 47.37 45.1 48.6 49.39 47.05 49.36 49.76
aTop 1, 5 and 10% variables were selected respectively under different settings
bthe percentage of non-zero β’s overlapped with each other in two datasets
cσx

2 : the variance added in internal dataset to generate response Yx
dσz

2: the variance added in external dataset to generate response Yz
eα: the estimated value of α which control the weight of two ranks in geometric mean
fSIS: variables were sorted by marginal correlation using only internal dataset
gSKI: variables were sorted by weighted geometric mean of two marginal correlation based ranks using two dataset
hPool: two dataset were pooled together and treated as a single dataset, and then variables were sorted by marginal correlation

Table 2 Simulation results compared the number of true
positives among iterative and non-iterative approaches when
top 1% variables were selected

%a ρb αc SISd SKIe iSISf iSKIg

0 0.3 0.061 23.32 23.12 25.22 22.53

0.5 0.3 0.342 24.83 33.20 26.13 34.43

1 0.3 0.443 23.14 34.41 26.33 38.85

0 0.6 0.044 37.35 36.34 41.11 36.17

0.5 0.6 0.392 36.47 41.67 39.67 44.83

1 0.6 0.453 37.12 45.83 40.44 49.40
a%: the percentage of non-zero β’s overlapped with each other in two datasets
bρ: correlation coefficients between two neighbor variables in each cluster
cα: the estimated value of α which control the weight of two ranks in
geometric mean
dSIS: variables were sorted by marginal correlation using only internal dataset
eiSIS: iterative version of SIS
fSKI: variables were sorted by weighted geometric mean of two marginal
correlation based ranks using two dataset
giSKI: iterative version of SKI
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from the Cancer Cell Line Encyclopedia (CCLE) project
[35] together with its baseline omics measurement, which
includes gene expression, mutation data, and copy num-
bers. In total there were 489 cell lines and 41,872 genomic
features measured. For a single feature, we assign a
specific gene annotation on it. We then searched the
Drug2Gene database [25] to acquire prior knowledge of
association between selumetinib and genes. Drug2Gene is
an integrative knowledge base reporting relations between
genes/proteins and drugs/compounds including bioactiv-
ity data where available. The data has been collected from
23 public databases and integrated to provide a 'one-stop
shop’ for identifying tool compounds for genes or finding
all known targets of a drug. In total, 383 genes were iden-
tified to have associations with selumetinib. We gave an
initial rank to 41,872 genomic features based on whether
its annotated genes have a known association with selu-
metinib. For 1105 features with annotated genes having
association with selumetinib, we set their ranks as 553,
and for others, we set the ranks as 21,489.
The SKI and SIS procedure were used for variable se-

lection, respectively. The top 100 features were selected
and SCAD was used to fit the final model. In other stud-
ies, external information (e.g., biological relevance) are
used to judge whether the variables identified are accur-
ate. Since here we already used this knowledge in SKI, it
is unfair to judge the results by this criteria. So we used
leave-out-out cross validation (LOOCV) to compare the
prediction squared error of these two methods.
The average of α estimated in SKI was 0.382, indicat-

ing that the prior known associated genes are very in-
formative in variable selection. In Fig. 2, we showed the
LOOCV prediction square error of two methods. In
general SKI methods outperforms SIS in terms of small
prediction error. The median (mean) prediction square
errors are 0.324 (0.828) and 0.158 (0.397) for SIS and
SKI, respectively. By integrating prior known informa-
tion, SKI selects the variables more accurately.
We also investigated the features identified by these

two methods. Those features identified by SKI proced-
ure, with known association with selumtinib ahead, are
summarized in Table 3. The mean absolute value of
marginal correlation for all variables is 0.056, while this
number increases to 0.225 for variables with previous
known association. Despite the fact that genes with
known association with selumtinib were highly enriched
in the top of the ranked list generated by marginal
correlations, only one variable, mutation of BRAF, could
be recruited by using common marginal correlation
based screening methods when top 100 variables were
selected. But by applying the SKI procedure, we rescued
17 variables whose marginal correlations are not high
enough, but supported by external knowledge in our
final model.

Discussion and conclusions
In a typical omics study such as gene expression analysis
or GWAS, a common scenario is that first a candidate
list is generated based on some statistical test procedures
(e.g., t-test for case-control study), and biomarkers are
selected for downstream analysis or validation based on
expert domain knowledge. In this study, we developed a
variable selection framework, screening with prior know-
ledge integration (SKI), to integrate two steps into one
statistical framework. Inspired by sure independence

Fig. 2 Boxplot of squared error for selumtinib response prediction
using two methods. Whiskers indicate min/max, upper box limit
75% percentile, low box limit 25% percentile and line the median

The Author(s) BMC Systems Biology 2016, 10(Suppl 4):118 Page 462 of 548



screening (SIS) method, we break the procedure into
two stages: first a geometric average combining the mar-
ginal information and external information together is
used first to reduce the huge number of parameters to a
relative small number; and then a more sophisticated
methods such as LASSO are used to refine the model.
The rationale of SKI is to increase the sample size

while limiting the noise by selecting a proper α. Incorp-
orating external knowledge could lead to more stable re-
sults since the prior knowledge is drawn from long-time
accumulated studies, and thus rescue the signals over-
whelmed by random artifacts in the data at hand. The
knowledge relevance is evaluated by carefully selecting α
to avoid arbitrariness. The similar idea could be found in
machine learning techniques such as weighted ensemble
predictors [36].
The proposed approach is general and is not limited

to any specific type of prior knowledge as long as the
variables could be ranked based on some external
criteria. In this study, we showed an application example
in drug response prediction. Since the only input for our
method is a pre-ranked feature list, it could be easily
modified to accommodate other applications. Though,
the method was developed for knowledge integration, it
is suitable for data integration. In our simulation, we
showed if the data heterogeneity is strong, the

performance of the proposed method is even better than
analysis by dataset pooling.
Bergersen et al. has proposed a weighted LASSO

(wLASSO) procedure with data integration, which
shared a similar idea of our approach [37]. However,
there are three major differences between SKI and
wLASSO. First, wLASSO incorporates the external
information in the penalty terms of LASSO, making it
similar to adaptive LASSO. Users have to carefully select
the weight terms since it will affect the model fitting
directly. Our rank based method is introduced in the
screening procedure; it only promotes variables into the
model, but will not affect the final model fitting. Second,
our approach is more general for knowledge integration.
It is difficult to generate a weight function for some ab-
stract biological and medical knowledge, but it is always
feasible to give a priority. Finally and the most import-
antly, one of the purposes to design sure independence
screening is to accelerate the data analysis. The
computing of complexity is O(np) smaller than LASSO’s
complexity, which is O(npmin{p,n}). SKI enjoys the same
advantage as SIS in terms of low computing complexity
when dealing with ultra-high dimensional datasets.
SIS has extended to more generalized fields such as

generalized linear models, additive models, cox models,
and model-free feature selections. In this study, we only
discuss the linear and generalized linear model. But, as a
screening-based method, SKI is apparently flexible to ex-
tend to more generalized fields, too. On the other hand,
Li et al. proposed a variant methods, robust rank correl-
ation screening (RRCS) method, which is based on the
Kendall τ correlation coefficient between response and
predictor variables rather than the Pearson correlation
of SIS [38]. They showed the RRCS procedure could be
more robust against outliers and influence points in the
observations. It is also feasible for us to implement an
RRCS-based SKI by replacing the Pearson marginal
correlation by Kendall’s marginal correlation, which will
be the focus of future work.
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Table 3 18 variables selected by SKI procedure when top 100
variables were selected, whose association with selumetinib
could be found in database

Gene Symbol Probe ID Type RSIS
a RSKI

b

BRAF NA Mut 4 1

ADCK3 56997_at Exp 172 5

TESK1 7016_at Exp 194 6

DCLK2 166614_at Exp 196 8

TNIK 23043_at Exp 206 9

NUAK2 81788_at Exp 209 10

ERBB3 2065_at Exp 328 14

PRKCD 5580_at Exp 338 15

MYLK 4638_at Exp 479 20

MAP3K1 4214_at Exp 502 21

ULK3 25989_at Exp 519 23

FGFR1 2260_at Exp 556 25

SNRK 54861_at Exp 582 26

RPS6KA3 6197_at Exp 623 29

STK10 6793_at Exp 691 31

MAPK9 5601_at Exp 756 34

TAOK3 51347_at Exp 761 35

PIK3CB 5291_at Exp 764 36
aRSIS: rank by marginal correlation
bRSKI: rank by prior knowledge integrated

The Author(s) BMC Systems Biology 2016, 10(Suppl 4):118 Page 463 of 548

http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-4
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-4


Availability of data and materials
The drug response data that support the findings of this study are available
from Broad-Novartis Cancer Cell Line Encyclopedia. These datasets were derived
from the following public domain resources: https://portals.broadinstitute.org/
ccle/home.

Authors’ contributions
CL: designed statistical methods, performed the simulation analysis, analyzed
the data, and drafted the manuscript. JJ and JG collected the data and
implemented the coding. ZY helped in designing the statistical methods. TW
helped in designing the statistical methods, performed the simulation analysis,
and helped in writing the manuscript. HL designed the scope of the work,
oversaw the whole project, and finalized the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Bioengineering, University of Illinois at Chicago, Chicago, IL,
USA. 2SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University,
Shanghai, China. 3Department of Bioinformatics and Biostatistics, College of
Life Science, Shanghai Jiao Tong University, Shanghai, China. 4Center for
Biomedical Informatics, Shanghai Children’s Hospital, Shanghai, China.

Published: 23 December 2016

References
1. Pepe MS, et al. Phases of biomarker development for early detection of

cancer. J Natl Cancer Inst. 2001;93(14):1054–61.
2. Doecke JD, et al. Blood-based protein biomarkers for diagnosis of Alzheimer

disease. Arch Neurol. 2012;69(10):1318–25.
3. Zheng B, et al. A three-gene panel that distinguishes benign from

malignant thyroid nodules. Int J Cancer. 2015;136(7):1646–54.
4. Gu JL, et al. Multiclass classification of sarcomas using pathway based

feature selection method. J Theor Biol. 2014;362:3–8.
5. Cheang MC, et al. Basal-like breast cancer defined by five biomarkers has

superior prognostic value than triple-negative phenotype. Clin Cancer Res.
2008;14(5):1368–76.

6. Parker JS, et al. Supervised risk predictor of breast cancer based on intrinsic
subtypes. J Clin Oncol. 2009;27(8):1160–7.

7. Sim SC, et al. A common novel CYP2C19 gene variant causes ultrarapid
drug metabolism relevant for the drug response to proton pump inhibitors
and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13.

8. Aslibekyan S, et al. A genome-wide association study of inflammatory biomarker
changes in response to fenofibrate treatment in the Genetics of Lipid Lowering
Drug and Diet Network. Pharmacogenet Genomics. 2012;22(3):191–7.

9. Frueh FW, et al. Pharmacogenomic biomarker information in drug labels
approved by the United States food and drug administration: prevalence of
related drug use. Pharmacotherapy. 2008;28(8):992–8.

10. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc
Natl Acad Sci U S A. 2003;100(16):9440–5.

11. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using
false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–75.

12. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B Methodol. 1996;1:267–88.

13. Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc.
2006;101(476):1418–29.

14. Fan J, Li R. Variable selection via nonconcave penalized likelihood and its
oracle properties. J Am Stat Assoc. 2001;96(456):1348–60.

15. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature
space. J R Stat Soc Ser B (Stat Methodol). 2008;70(5):849–911.

16. Tibshirani RJ. Univariate shrinkage in the Cox model for high dimensional
data. Stat Appl Genet Mol Biol. 2009;8(1):1–18.

17. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and
lung cancer subtype analysis. Bioinformatics. 2009;25(22):2906–12.

18. Aure MR, et al. Identifying in-trans process associated genes in breast
cancer by integrated analysis of copy number and expression data. PLoS
One. 2013;8(1):e53014.

19. Akavia UD, et al. An integrated approach to uncover drivers of cancer. Cell.
2010;143(6):1005–17.

20. Costello JC, et al. A community effort to assess and improve drug sensitivity
prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.

21. Consortium, C.-D.G.o.t.P.G. Identification of risk loci with shared effects
on five major psychiatric disorders: a genome-wide analysis. Lancet.
2013;381(9875):1371–9.

22. Consortium, C.-D.G.o.t.P.G. Genetic relationship between five psychiatric
disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.

23. Kim J-D, et al. GENIA corpus-a semantically annotated corpus for bio-
textmining. Bioinformatics. 2003;19 suppl 1:i180–2.

24. Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information
retrieval to biological discovery. Nat Rev Genet. 2006;7(2):119–29.

25. Roider HG, et al. Drug2Gene: an exhaustive resource to explore effectively
the drug-target relation network. BMC Bioinf. 2014;15(1):1.

26. Candes E, Tao T. The Dantzig selector: statistical estimation when p is much
larger than n. Ann Stat. 2007;35:2313–51.

27. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R
Stat Soc Ser B (Stat Methodol). 2005;67(2):301–20.

28. Le Cessie S, Van JC. Houwelingen, Ridge estimators in logistic regression.
Appl Stat. 1992;41:191–201.

29. Zheng Y, et al. PGS: a tool for association study of high-dimensional microRNA
expression data with repeated measures. Bioinformatics. 2014;30:btu396.

30. Song R, Huang J, Ma S. Integrative prescreening in analysis of multiple
cancer genomic studies. BMC Bioinf. 2012;13(1):168.

31. Little AS, et al. Tumour cell responses to MEK1/2 inhibitors: acquired
resistance and pathway remodelling. Biochem Soc Trans. 2012;40(1):73–8.

32. Dry JR, et al. Transcriptional pathway signatures predict MEK addiction and
response to selumetinib (AZD6244). Cancer Res. 2010;70(6):2264–73.

33. Bid HK, et al. Development, characterization, and reversal of acquired
resistance to the MEK1 inhibitor selumetinib (AZD6244) in an in vivo model
of childhood astrocytoma. Clin Cancer Res. 2013;19(24):6716–29.

34. Tentler JJ, et al. Identification of Predictive Markers of Response to the
MEK1/2 Inhibitor Selumetinib (AZD6244) in K-ras-Mutated Colorectal Cancer.
Mol Cancer Ther. 2010;9(12):3351–62.

35. Barretina J, et al. The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7.

36. Zhou Z-H, Wu J, Tang W. Ensembling neural networks: many could be
better than all. Artif Intell. 2002;137(1):239–63.

37. Bergersen LC, Glad IK, Lyng H. Weighted lasso with data integration. Stat
Appl Genet Mol Biol. 2011;10(1):1–29.

38. Li G, et al. Robust rank correlation based screening. Ann Stat. 2012;40(3):1846–77.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Systems Biology 2016, 10(Suppl 4):118 Page 464 of 548

https://portals.broadinstitute.org/ccle/home
https://portals.broadinstitute.org/ccle/home

	Abstract
	Background
	Results
	Conclusion

	Background
	Method
	Sure independence screening
	Screening with prior knowledge integration
	Estimation of α
	Extension: iterative SKI

	Results
	Simulations
	Real application: drug response analysis

	Discussion and conclusions
	Acknowledgements
	Declarations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

