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Abstract

Background: Protein-protein interactions (PPIs) are essential to most biological processes. Since bioscience has
entered into the era of genome and proteome, there is a growing demand for the knowledge about PPI network.
High-throughput biological technologies can be used to identify new PPIs, but they are expensive, time-consuming,
and tedious. Therefore, computational methods for predicting PPIs have an important role. For the past years, an
increasing number of computational methods such as protein structure-based approaches have been proposed for
predicting PPIs. The major limitation in principle of these methods lies in the prior information of the protein to
infer PPIs. Therefore, it is of much significance to develop computational methods which only use the information
of protein amino acids sequence.

Results: Here, we report a highly efficient approach for predicting PPIs. The main improvements come from the
use of a novel protein sequence representation by combining continuous wavelet descriptor and Chou’s pseudo
amino acid composition (PseAAC), and from adopting weighted sparse representation based classifier (WSRC). This
method, cross-validated on the PPIs datasets of Saccharomyces cerevisiae, Human and H. pylori, achieves an excellent
results with accuracies as high as 92.50%, 95.54% and 84.28% respectively, significantly better than previously
proposed methods. Extensive experiments are performed to compare the proposed method with state-of-the-art
Support Vector Machine (SVM) classifier.
(Continued on next page)
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Conclusions: The outstanding results yield by our model that the proposed feature extraction method combing
two kinds of descriptors have strong expression ability and are expected to provide comprehensive and effective
information for machine learning-based classification models. In addition, the prediction performance in the
comparison experiments shows the well cooperation between the combined feature and WSRC. Thus, the
proposed method is a very efficient method to predict PPIs and may be a useful supplementary tool for
future proteomics studies.

Keywords: Protein-protein interactions, Protein sequence, Continuous wavelet transform, Sparse representation
based classifier

Background
In this post-genomic era, protein, as the major compo-
nent of organism, is widely studied because of its im-
portant role in nearly all cell functions including DNA
transcription and replication, metabolic cycles, and sig-
naling cascades. Researches show that many functions of
complex biological systems seem to be more closely
determined by their interactions rather than their indi-
vidual components. Therefore, the protein-protein inter-
action networks have been dawning increasing research
attentions and interests. Moreover, the recent advance in
practical applications in drug discovery comes to be a
promotion factor for studies on PPIs which provides
great insights into mechanisms of human diseases. Ef-
forts have been devoted to the development of experi-
mental methods for detecting PPIs and constructing
protein interaction networks, such as yeast two-hybrid
(Y2H) [1, 2] screens, tandem affinity purification (TAP)
[3], mass spectrometric protein complex identification
(MS-PCI) [3] and other high-throughput biological tech-
niques for PPIs detection. However, experimental
methods are expensive, time-consuming and tedious.
Meanwhile experimentally identified PPIs are usually as-
sociated with high rates of both false positive and false
negative results. For the sake of detecting larger fraction
of the whole PPI network and utilizing the valuable and
vast biological data provided by experimental methods,
there is a growing need to develop computational
methods capable of identifying PPIs.
A number of computational approaches haven been

proposed for detecting PPIs based on various data types,
such as genomic information, protein domain and protein
structure information [4]. However, these methods are
limited by the need of prior information about proteins,
and the accuracies of them are sensitive to the reliability
of the prior information. In addition, the exponential
growth of newly discovered protein sequences is accumu-
lated in numerous different types of databases. Therefore,
it is significant to develop sequence-based PPI predicting
systems mining information directly from amino acid
sequences. Many researchers have engaged in trials to
establish sequence-based system for predicting PPIs and

have gained some preliminary result. To solve this prob-
lem, Zhou et al. [5] proposed an approach combing
support vector machine and local protein sequence de-
scriptors which account for the interactions between
sequentially distant amino acid residues. When applied to
predicting yeast PPIs, this method yielded a promising ac-
curacy of 88.56%. Najafabadi et al. [6] found similarity in
codon usage is a strong predictor for expressing proteins
and got a 75% increase in sensitivity in his experience
considering codon usage. Shi et al. [7] explored a kind of
descriptor named correlation coefficient transformation
and used support vector machine and this method ad-
equately considers the neighboring effect and the level of
correlation coefficient.
Computational systems for predicting pairwise protein

interactions usually rely on two main components: feature
extraction and machine learning model. Efficient feature
descriptors are capable of mining useful information and
normalizing different-length proteins to the same size.
Furthermore, effective feature extraction methods can lead
to an improvement in prediction performance. Until now,
a number of feature extraction approaches based on
protein sequence have been proposed and most of them
consider the sequence order effect. In fact, employing
graphic approaches to mine proteins’ information would
be of great novelty. In this work, we adopt a novel descrip-
tor named CW-LBP and show it is sufficient to reveal the
complicated relations between protein interactions and
their amino acid sequences. This sequence representation
first encodes the protein sequence as a numerical se-
quence by substituting each amino acid with a specific
proteins’ physicochemical property. Then, Meyer continu-
ous wavelet transformation is employed to represent a
protein sequence as an image. Finally, an image texture
descriptor, Local Binary Pattern Histogram Fourier
(LBP-HF) is used to extract features. In order to de-
scribe a protein in a discrete model which could pro-
vide comprehensive information, Chou’s pseudo amino
acid composition (PseAAC) is employed as another
kind of feature descriptor. PseAAC is a popular protein
descriptor using the first 20 factors to reflect compo-
nents of 20 conventional amino acid (AA) compositions
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and λ additional factors to reflect the influence of
sequence order.
As the second step of computational methods for

predicting PPIs, a wide range of machine learning
models have been applied in previous works. How-
ever, the popular classifiers such as SVM [8, 9] and
neural network [10] need much effort to adjust the
optimal parameters. Recently, Sparse Representation
based Classification (SRC) comes to be a new tech-
nique in study of face recognition for its excellent
ability against illumination variations, occlusions, and
random noise. Matching the feature descriptors ex-
tracted by the proposed graphic-based features (i.e.,
LBP-HF descriptors), SRC would be an ideal classifi-
cation model. As indicated in the study of [11],
Weighted Sparse Representation based Classifier
(WSRC), a variant of basic SRC, additionally consider
the local information of each training samples and
therefore have a strong classification ability surpassing
original SRC. In addition, WSRC needs little manual
invention to adjust the optimal parameters, which is a
significant character for the vast data volume of vari-
ous protein sequence sets. Thus, WSRC algorithm is
used as the machine learning tool to make the final
prediction based on the extracted feature sets.
In this study, we report a novel computational

method for predicting protein-protein interactions
based on amino acid sequences by using the classifier
of WSRC and the combined features consisting of
CW-LBP and PseAAC descriptors. Firstly, each pro-
tein is transformed into a CW image deriving from
amino acid sequence and then CW-LBP features are
extracted from these images using LBP-HF texture
descriptor. Secondly, for a more comprehensive repre-
sentation for protein sequences, we extracted the
Chou’s pseudo amino acid composition of each sample
and merged it with CW-LBP descriptor as the whole
feature set. By doing this, our feature representation
of one protein would own 216 dimensions of which
176 come from CW-LBP descriptor and 40 is the
Chou’s PseAA composition. Finally, WSRC is utilized
to deal with the classification. To evaluate the per-
formance, the proposed approach is applied to three
different PPI data sets: Saccharomyces cerevisiae,
Human, and H.pylori.

Results
Evaluation measures
To evaluate the performance of the proposed method,
we use five-fold cross validation and a couple of evalu-
ation measures such as the overall prediction accuracy
(Accu.), sensitivity (Sens.), precision (Prec.) and Matthews
correlation coefficient (MCC) in this study. These criteria
are defined as follows:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð1Þ

Sensitivity ¼ TP
TP þ FN

ð2Þ

PE ¼ TP
TP þ FP

ð3Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð4Þ

where true positive (TP) denotes the number of true
samples which are predicted correctly; false negative
(FN) is the number of true samples predicted to be non-
interacting pairs incorrectly; false positive (FP) is the
number of true non-interacting pairs predicted to be
PPIs falsely, and true negative (TN) is the number of
true non-interacting pairs predicted correctly. Further-
more, the receiver operating characteristic (ROC) curve
was also used to evaluate the performance of proposed
method. Summarizing ROC curve in a numerical way,
the area under an ROC curve (AUC) was computed. A
higher AUC value means a better result performed.

Assessment of prediction ability
For the sake of impartiality, we set the same correspond-
ing parameters (σ = 1.5, ε = 0.00005) for WSRC when we
explored using the proposed method to predict PPIs of
Saccharomyces cerevisiae and H.plpori dataset. In order
to minimize the overfitting of the prediction model and
test the robustness of the proposed method, 5-fold
cross-validation was used in our experiments. In 5-fold
cross-validation, dataset would be divided into five parts
which four of them are used for training and the rest
one of them is used for testing. By this way, five models
were generated from the original dataset.
The prediction results of SRC prediction models with

continuous wavelet features and PseAA composition are
shown in Table 1 and Table 2. For all five models of Sac-
charomyces cerevisiae dataset, the prediction accuracies
are ≥ 91.83%, the precisions are ≥ 95.01%, and the sensi-
tivities are 87.64%. For the five models of H.pylori

Table 1 5-fold cross validation result obtained in predicting
Yeast PPIs dataset

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

1 93.43 96.98 89.93 87.70 97.70

2 92.27 95.01 89.39 85.71 96.99

3 92.36 96.62 87.64 85.81 97.39

4 92.62 95.65 89.19 89.30 97.09

5 91.83 95.10 87.95 84.94 96.80

Average 92.50 ± 0.59 95.87 ± 0.89 88.82 ± 0.98 86.09 ± 1.02 97.20 ± 0.35
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dataset, the prediction accuracies are ≥ 83.30%, the preci-
sions are ≥ 78.25% and the sensitivities are ≥ 89.27%. In
order to better evaluate the practical prediction ability of
the proposed model, we also calculate the MCC and
AUC values (see Figs. 1 and 2). From Table 1 and
Table 2, it can be observed that the averages of MCC

and AUC score of Saccharomyces cerevisiae dataset are
86.09% and 97.20% respectively.
When predicting the PPIs of H.pylori dataset, the aver-

ages of MCC and AUC come to be 73.25% and 91.91%
(see Fig. 3). Further, we can see that our method
achieved a stable performance with the low standard
deviations of accuracy, precision, sensitivity, MCC and
AUC as 0.59%, 0.89%, and 0.98%, 1.02% and 0.35%
respectively.

Comparison with SVM-based method
Many machine learning models haven been proposed for
predicting the protein-protein interactions and one of
the most popular classifiers is support vector machine
(SVM). To further evaluate the proposed method, using
the same feature extraction method, we explored SVM
for predicting PPIs of Human dataset to compare with

Table 2 5-fold cross validation result obtained in predicting
H.pylori PPIs dataset

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

1 85.03 82.18 90.67 74.28 92.36

2 83.30 78.25 91.12 71.91 91.33

3 84.34 80.00 90.46 73.44 91.84

4 84.17 82.99 89.27 72.83 92.04

5 84.59 78.85 91.11 73.79 91.96

Average 84.28 ± 0.64 80.45 ± 2.07 90.54 ± 0.77 73.25 ± 0.92 91.91 ± 0.37

Fig. 1 The flowchart for the feature extraction process
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the performance of WSRC. Here, two parameters c and
g of SVM were optimized by using a grid search method.
Parameters c and g were set to be 10 and 15 respectively.
We also used 5-fold cross-validation in these experi-
ments. The results performed by WSRC and SVM are
shown in Table 3.
It can be observed that WSRC yielded good results

with averages of accuracy, precision, sensitivity and
MCC as high as 95.54%, 98.95%, 91.65% and 91.41%
respectively. When using SVM for the prediction, the av-
erages of accuracy, precision, sensitivity and MCC come
to be 88.13%, 88.75%, 86.06% and 79.00% respectively,
lower than the results from the WSRC-based model.
From the ROC curves of Fig. 4 and Fig. 5, we can see
that the average AUC score of WSRC model was
99.47%, higher than that of SVM model. In addition, it
can be noticed that the standard deviations of accuracy,

precision, sensitivity, MCC yielded by WSRC model are
as low as 0.32%, 0.25%, 0.74% and 0.58%, lower than
those of SVM model which are 1.09%, 0.98%, 1.97% and
1.71% respectively. Analyzing all these results, we con-
sider the proposed method based on WSRC is superior
to the SVM-based method.

Comparison with other methods
Many methods have been proposed for predicting PPIs.
Here, we compare the prediction ability of the SRC pre-
diction model using continuous wavelet transform de-
scriptors and PsaAA composition with the existing
methods. From Table 4, we can see the results of 5-fold
cross-validation from different methods on the Saccha-
romyces cerevisiae dataset. Most averages of accuracy,
precision and sensitivity yielded by other methods are
lower than the results yielded by the proposed method.

Fig. 2 ROC curves from proposed method result for Saccharomyces
cerevisiae PPIs dataset

Fig. 3 ROC curves from proposed method result for H.pylori PPIs dataset Fig. 4 ROC curves from proposed method result for Human PPIs dataset

Table 3 5-fold cross validation result obtained in predicting
Human PPIs dataset

Classification
model

Testing
set

Accu.(%) Prec.(%) Sen.(%) MCC(%)

WSRC 1 95.53 99.14 91.17 91.35

2 95.89 98.61 92.59 92.06

3 95.22 99.19 91.09 90.86

4 95.83 98.74 92.31 91.94

5 95.22 99.04 91.08 90.85

Average 95.54 ± 0.32 98.95 ± 0.25 91.65 ± 0.74 91.41 ± 0.58

SVM 1 87.68 87.60 85.64 78.26

2 87.56 88.04 85.18 78.10

3 87.68 88.66 86.14 78.38

4 90.07 89.54 89.31 82.05

5 87.63 89.92 84.05 78.23

Average 88.13 ± 1.09 88.75 ± 0.98 86.06 ± 1.97 79.00 ± 1.71
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Meanwhile, we can see that the proposed method is
more stable than other methods with relatively low
standard deviations of accuracy, precision, sensitivity
and MCC as 0.59%, 0.89%, 0.98% and 1.02% respectively.
The average results performed by other methods on
H.pylori dataset are shown in Table 5.

Discussion
In the proposed model, the protein features are ex-
tracted by using the transformations of numerical se-
quences, continuous wavelet and Local Binary Pattern
Histogram Fourier. (see Fig. 1) This feature extraction
method is mainly based on the assumptions that the
information of protein sequences can provide enough in-
formation for predicting protein-protein interactions
and the fact that the hydrophobicity character of protein
influences the protein interacting process. To retain
comprehensive information by feature extraction, there
are two kinds of descriptors, namely CW-LBP and
PseAAC, adopted to capture the continuous and discrete
information, respectively. In addition, in order to combine

with the CW-LBP feature well and to develop a prediction
model which need little manual intervention, the classifi-
cation method of weighted sparse representation-based
classifier is used to make the final prediction.
It is worthwhile to highlight several aspects of the pro-

posed approach based on the experiments results here.
(1) The outstanding prediction performance shows that
continuous wavelet transformation can cooperate well
with the Local Binary Pattern Histogram Fourier for
protein feature extraction. (2) The comparison result of
WSRC versus SVM demonstrates that WSRC can be
well combined with graph-based feature extraction
method and the use of CW-LBP may help WSRC give a
full play to its function. (3) It is worth noting that WSRC
could yield stable and satisfactory prediction perform-
ance by keeping the same parameters in all experiment.
Compared with other conventional classifiers including
SVM, WSRC has a valuable advantage that it doesn’t
need much manual intervention to adjust the optimal
parameters and therefore has great potential to be ap-
plied to the large-scale prediction for new PPIs. (4) It is
known that approaches using ensemble classifier usually
achieve more accurate and robust performance than the
methods using single classifier. However, using the single
classifier, our proposed model obtains good performance
similar to those obtained by the methods using ensemble
classifier such as boosting. From these comparisons, it is
demonstrated that the WSRC-based model combining
the continuous wavelet transform descriptor and PseAA
composition can improve the prediction accuracy com-
pared with current state-of-the-art classification mothods.

Conclusions
The growing demand for PPIs knowledge is promoting
the development of studies on computational methods
for predicting PPIs. In this paper, we propose a new PPIs
prediction model only using the information of protein
sequences. Since hydrophilic interaction plays an im-
portant role in the process of protein interactions, we
consider the hydrophobic property of amino acids in the

Fig. 5 ROC curves from SVM-based method result for Human
PPIs dataset

Table 4 Performance comparison of different methods on the Yeast dataset

Model Method Accu.(%) Prec.(%) Sen.(%) MCC(%)

Guos’ work [23] ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A

AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

Zhous’ work [5] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Yangs’ work [24] Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A

Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A

Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A

Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Proposed method WSRC 92.50 ± 0.59 95.87 ± 0.89 88.82 ± 0.98 86.09 ± 1.02
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process of feature extraction by transforming protein
sequences into numerical ones. We then adopted con-
tinuous wavelet descriptors and Chou’s pseudo amino
acid composition, which aims at capturing the con-
tinuous and discrete information from the hydropho-
bic sequences. Besides, weighted sparse representation
based classifier was used as the sample classification
model due to its advantages of low manual interven-
tion in parameter adjustion and good cooperation
with features.
Results obtained from our experiments have shown

that it is a good attempt to represent proteins using
graphic texture extraction approaches. Our proposed
method is feasible and effective. When performed on the
Saccharomyces cerevisiae, Human and H.pylori datasets,
the proposed method achieved promising results with
high average accuracies of 92.50%, 95.54% and 84.28%
respectively.

Methods
Gold standard datasets
We verify the proposed method on a high confidence
Saccharomyces cerevisiae PPIs data set. It is gathered
from publicly available database of interacting proteins
(DIP). We removed those protein pairs which have ≥40%
sequence identity or whose lengths are less than 50 resi-
dues. Consequently, we got the remaining 5594 protein
pairs which construct the positive data set. Besides, 5594
additional protein pairs whose sub-cellular localizations
are different were chosen to build the negative data set.
As a result, the whole data set consists of 11188 protein
pairs of which half are from the positive samples and
half are from the negative samples.
To demonstrate the generality of the proposed

method, we also verify our approach on two other
types of PPIs data sets. The first dataset is collected
from the Human Protein References Database (HPRD).
We removed those protein pairs which have ≥25% se-
quence identity. Finally, we used the remaining 3899
protein-protein pairs of experimentally verified PPIs
from 2502 different human proteins to comprise the
golden standard positive dataset. For golden standard

negative dataset, we then followed the previous work
[12] assuming the proteins in different subcellular
compartments do not interact with each other. By this
way, we finally obtained 4262 protein pairs from 661
different human proteins as the negative dataset. Con-
sequently, the Human dataset is constructed by 8161
protein pairs. The second PPI dataset is composed of
2916 Helicobacter pylori protein pairs (1458 interact-
ing pair and 1458 non-interacting pairs) as described
by Martin et al. [13].

Continuous wavelet transformation
Wavelets are very effective and popular descriptors for
all kinds of applications. Li et al. [14] firstly used wave-
lets features to descript protein sequence, which offer a
novel insight into mining proteins information. Compared
with Fourier transform, wavelet transform has a com-
pletely different merit function. It uses functions which
are localized in both the real and Fourier space while
Fourier transform decomposes the input signal into
sines and cosines. As an implementation of the wavelet
transform, continuous wavelet transform (CWT) use
arbitrary scales and almost arbitrary wavelets. Reinfor-
cing the traits due to the redundancy tends, continuous
analysis is often easier to interpret.
Since wavelet encoding could only deal with numerical

representation, we first encoded the protein sequence
substituting every amino acid with protein’s hydrophobi-
city index which is offered by AAindex dataset. Then,
based on these numerical sequences, we applied Meyer
continuous wavelet to produce proteins’ CW images. In
continuous wavelet transformation, a digital signal can
be decomposed into many groups of coefficients by
different scales. These groups of coefficients can repre-
sent characteristics in both time domain and frequency
domain. In this work, we considered 100 decomposition
scales using Meyer continuous transformation in the
feature extraction process. CWT can be formulized as
follow:

Wf a; bð Þ ¼

Z
f tð Þψ t−b

a

� �
dt

ffiffiffi
a

p ð5Þ

where a is the scale parameter and b is the shift factor;
ψ(t) is wavelet core; f(t) is the digital signal sequence;
and Wf(a,b) is the result of inner product operation
between f(t) and ψ(t).

Local binary pattern histogram fourier (LBP-HF)
Local binary pattern (LBP) is a particular case of the
Texture Spectrum model and a popular type of feature
used for classification in computer vision. This texture
descriptor computes specific values of each pixel based

Table 5 Performance comparison of different methods on the
H.pylori dataset

Model Accu.(%) Prec.(%) Sen.(%) MCC(%)

Phylogenetic booststrap [25] 75.80 80.20 69.80 N/A

HKNN [26] 84.00 84.00 86.00 N/A

Signature products [13] 83.40 85.70 79.90 N/A

Boosting [7] 79.52 81.69 80.37 70.64

Proposed method 84.28 80.45 90.54 73.25
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on the information of its neighborhood. In addition, re-
searches have pointed out that when combined with
the Histogram of oriented gradients (HOG) descriptor,
LBP would obtain an improvement of detection
performance on some datasets. LBP can be formulized
as follow:

LBP xc; ycð Þ ¼
Xp−1
m¼0

s in−icð Þ � 2n ð6Þ

s in−icð Þ ¼ 1 if in−ic≥0
0 if in−ic < 0

�
ð7Þ

where ic denotes to the value of the centered pixel while
in represents the neighbors’ values, P is the number of
neighboring pixels. Ahonen et al. [15] first proposed
Local Binary Pattern Histogram Fourier (LBP-HF). This
method first computes a LBP histogram and then uses
the discrete Fourier transform to construct rotationally
invariant features from the histogram. Since this method
only computes P-1 Fast Fourier Transforms of P points
from the LBP histogram, it has a lower overhead than
LBP histogram. Here (P = 16; R = 2) and (P = 8; R = 1).

Pseudo amino acid composition (PseAAC)
Due to the simplicity and effectiveness, the amino acid
composition model comes to be a popular feature de-
scription for detecting protein attributes. For the sake of
avoiding losing the sequenced-order information, Pseudo
Amino Acid Composition [16] has been proposed to add
additional values which can reflect the influence of se-
quence order. So PseAAC formed as this concatenation
has stronger representation ability beyond the traditional
AAC. Several studies [17] have shown that many useful
descriptors could be produced when Amino-Acid Se-
quence is coupled with other information related to the
physiochemical properties of amino acids. For this rea-
son, we applied hydrophobicity index of amino acids to
the producing of PseAAC descriptors. In this work, we
adopted Autocovariance (AC) approach method which
is one of the sequence-based variants of Chou’s pseudo
amino acid composition.
Given a protein sequence P = (p1, p2… pN) and fixing a

physicochemical property d, the 20 values of PseAAC
descriptor are composed of Amino-Acid Composition
(AA) which can be symbolized as follow:

AA ið Þ ¼ n ið Þ
N

; i∈ 1;…; 20½ � ð8Þ

where n(i) counts the number of occurrences of a given
amino acid in a protein sequence of length N.
The next 20 values of PseAAC descriptor are auto-

covariance descriptor which is ACd ∈ℜ20 +m and
symobolized as follow:

ACd ið Þ ¼
XN−iþ20

k¼1

value pk ; dð Þ−μdð Þ⋅ðvalue pkþi−20; d
� �

−μdÞ
σd⋅ N−iþ 20ð Þ i ∈ 21;…; 20þm½ �

ð9Þ
where value(i,d) is a function returning the value of
the property d for the amino acid i; μd and σd denote
the normalized mean and the variance of d on the 20
amino acids:

μd ¼ 1
20

X20
i¼1

value i; dð Þ ð10Þ

σd ¼ 1
20

X20
i¼1

value i; dð Þ−μdð Þ2 ð11Þ

Weighted sparse representation based classification
(WSRC)
Recently, sparse representation based classification
(SRC) algorithm has been developed and successfully
used for classification, becoming a hot topic of pattern
recognition and computer vision. Supposing that there is
a training sample matrix X∈Rd×n which represents n
training samples and d-dimensional feature vectors, SRC
assumes that there are sufficient training samples be-
longing to the kth class and makes up Xk ¼ lk1⋯lknk½ �
where li and nk denote the label of ith sample and the
sample number of kth class respectively. Thus, sample
matrix X could be rewritten as X = [X1…XK]. Given any
test sample y∈Rd, it can be approximately represented as
the linear combination of kth-class training samples:

y ¼ αk;1lk;1 þ αk;2lk;2 þ⋯þ αk;nk lk;nk ð12Þ

When represented as the linear combination of all the
training samples, y could be symbolized as follow:

y ¼ Xα0 ð13Þ
where α0 ¼ 0;⋯; 0; αk;1; αk;2⋯αk;nk ; 0;⋯; 0

� 	T
. Here,

since the nonzero entries in α0 are only associated with
the kth class, α0 would be sparse if the class number of
samples is large.
For SRC, many efforts are devoted to search a vector α

such that Eq. (9) is satisfied and the l 0-norm of α is
minimized. This can be described as:

α̂0 ¼ argmin αk k0 subject to y ¼ Xα ð14Þ

The formulation (10) is a NP-hard problem which can
be achieved but difficult to solve precisely [18]. However,
the theory of compressive sensing [19] reveals that if α is
sparse enough, we can solve the related convex l1-
minimization problem instead of solving the solution of
l0-minimization problem directly:
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α̂1 ¼ argmin αk k1 subject to y ¼ Xα ð15Þ

Dealing with occlusion, we can extend the Eq. (11) to
the stable l1-minimization problem:

α̂1 ¼ argmin αk k1 subject to y−Xαk k≤ε ð16Þ
where ε > 0 denotes to the tolerance of reconstruction
error. Eq. (12) can be solved via standard linear pro-
gramming methods [20].
After obtaining the sparsest solution α̂1, we can assign

test sample y to class k by the following rule:

min
k

rk yð Þ ¼ y−Xα̂k
1



 

; k ¼ 1…K ð17Þ

where Xα̂k
1 is the reconstruction which is constructed by

training samples of class k and K is the class number of
the whole samples. Given all this, traditional SRC repre-
sents a test sample as a sparse combination of training
sample and assigns it to the class which minimizes the
residual between itself and Xα̂k

1.
However, researches [21, 22] have shown that in some

case, locality structure of data is more essential than
sparsity. In addition, the traditional SRC fails to guaran-
tee to be local. To overcome this problem, weighted
sparse representation based classifier (WSRC) expands
SRC by combining the locality structure of data with
sparse representation. It is well-known that an appropri-
ate kernel function which maps the samples into a high
dimensional feature space by a nonlinear mapping can
change the samples’ distribution and make the samples
from one class more similar. For this reason, WSRC
evaluates the similarity of two samples by employing
Gaussian-kernel based distance which can be symbolized
as follow:

dG x; yð Þ ¼ e− x−yk k2=2σ2 ð18Þ
where x,y∈Rd denote two samples and σ is the Gaussian
kernel width. By doing this, WSRC penalizes the dis-
tance between a test sample and each training data and
preserves the similarity while seeking the sparse linear
representation. Given a test sample y and a training
sample matrix X, WSRC solves the following weighted
l1-minimization problem:

α̂1 ¼ argmin Wαk k1 subject to y ¼ Xα ð19Þ

and specifically,

diag Wð Þ ¼ dG y; x11
� �

;…; dG y; xknk

� �h iT
ð20Þ

where W is a block-diagonal matrix of locality adaptor,
which uses the Gaussian distances as the weights of
training samples; nk denotes the sample number of

training set in class k. Dealing with occlusion, we solve
the stable l1-minimization problem of Eq. (19) as follow:

α̂1 ¼ argmin Wαk k1 subject to y−Xαk k≤ε ð21Þ

where ε > 0 is the tolerance value.
The WSRC algorithm is summarized as follows:
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