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Abstract

Background: Gene Ontology (GO) is a collaborative project that maintains and develops controlled vocabulary

(or terms) to describe the molecular function, biological roles and cellular location of gene products in a hierarchical
ontology. GO also provides GO annotations that associate genes with GO terms. GO consortium independently and
collaboratively annotate terms to gene products, mainly from model organisms (or species) they are interested in.
Due to experiment ethics, research interests of biologists and resources limitations, homologous genes from different
species currently are annotated with different terms. These differences can be more attributed to incomplete
annotations of genes than to functional difference between them.

Results: Semantic similarity between genes is derived from GO hierarchy and annotations of genes. It is positively
correlated with the similarity derived from various types of biological data and has been applied to predict gene
function. In this paper, we investigate whether it is possible to replenish annotations of incompletely annotated genes
by using semantic similarity between genes from two species with homology. For this investigation, we utilize three
representative semantic similarity metrics to compute similarity between genes from two species. Next, we determine
the k nearest neighborhood genes from the two species based on the chosen metric and then use terms annotated
to k neighbors of a gene to replenish annotations of that gene. We perform experiments on archived (from Jan-2014
to Jan-2016) GO annotations of four species (Human, Mouse, Danio rerio and Arabidopsis thaliana) to assess the
contribution of semantic similarity between genes from different species. The experimental results demonstrate that:
(1) semantic similarity between genes from homologous species contributes much more on the improved accuracy
(by 53.22%) than genes from single species alone, and genes from two species with low homology; (2) GO
annotations of genes from homologous species are complementary to each other.

Conclusions: Our study shows that semantic similarity based interspecies gene function annotation from
homologous species is more prominent than traditional intraspecies approaches. This work can promote more
research on semantic similarity based function prediction across species.
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Background

Gene products, both proteins and RNAs, play crucial
functions in many if not all, life processes, such as
metabolism, signal transduction and hormonal regulation.
Comprehensively annotating their biological functions is
a crucial link in the development of drugs, vaccines , bio-

*Correspondence: gxyu@swu.edu.cn
College of Computer and Information Sciences, Southwest University,
Chongging, China

( ) BiolVied Central

chemicals and disease analysis [1-5]. However, rapidly
accumulated genomic and proteomic data result in a
continually expanding function-annotation gap for newly
discovered genes and their products, since it is time
consuming, expensive and low throughput to annotate
them by wet-lab techniques. Furthermore, the experimen-
tal ethics involving human and animals, research interests
of biologists and experimental techniques also bias the
functional annotations of genes [6-9]. Therefore, auto-
matically and efficiently annotating the functions of genes
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via computational techniques becomes one of the funda-
mental tasks in the post-genome era. To combat with this
task, some approaches utilize amino acids and structure
of proteins [10], some methods resort to protein-protein
interactions [11], some other techniques take advantage
of domains, motifs and pathways [12, 13]. More advanced
techniques integrate multiple types of biological data
or fuse predictions from multiple classifiers, which are
trained on heterogeneous biological data sources [14—18].

Gene Ontology (GO) is a widely used golden standard
for functional taxonomy in a species-neutral manner and
it aims to unify the representation of gene products func-
tions across different species [8, 19]. GO uses controlled
vocabulary to describe terms (each term corresponds to
a distinct function) and a direct acyclic graph (DAG) to
capture the hierarchical relationship between ontological
terms. For identification, each term is accompanied by an
alphanumeric symbol (i.e., GO:0008150 (biological pro-
cess)). If a gene is annotated with a term, then the gene
is also annotated with its ancestor terms via any path in
GO hierarchy. If a protein is not annotated with a term,
the protein should also not be annotated with any of its
descendant terms. This rule is recognized as true path
rule [19, 20].

Gene function prediction can be viewed as a classifica-
tion task with each function being viewed as a class label.
In this way, various classification techniques have been
applied to gene function prediction [2]. A protein engages
with several different biological activities and carries out
different functions. Recent techniques resort to multi-
label learning [21] and correlations among functional
labels for gene function prediction [13, 17, 18, 22]. Due to
resources limitations, experimental protocols and priority
of GO consortium, GO annotations of genes are incom-
plete [6-9, 23]. Given that, some approaches directly
target at replenishing missing annotations of incompletely
annotated genes [24—26].

Homologous species share a large portion of homol-
ogous genes and these genes have similar (or same)
functional annotations. Due to research interests and
particular types of experiments performed in different
model organisms, homologous genes in different species
are often annotated with different terms, and annotations
of these genes are found to be complementary for each
other [9]. Previous approaches often only use the homol-
ogy information from deoxyribonucleic acid sequences,
structure of proteins, pattern of interactions between
genes/proteins, and domain composition to transfer
annotations of annotated genes to un-annotated ones [27].
For example, Mitrofanova et al. [28] propose a Markov
random field based approach to predict gene function
that connects protein-protein interactions (PPI) networks
of two (or more) different species by using inter-species
sequence-homology information. This approach can only
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apply to a fixed number (<32) of structured GO terms,
and it only takes proteins annotated with these terms
into account and exclude a lot of proteins not annotated
with any of these terms. To overcome this issue, Benso
et al. [29] firstly defined an integrated similarity between
proteins using motifs and amino acids of proteins, and
then used this similarity to filter out false positive inter-
actions in PPI network. Next, they enriched the filtered
PPI network by adding interactions with annotated pro-
teins through sequence alignment, and assigned the most
probable terms to a protein by the terms annotated to its
interacting partners. However, it is difficult to specify a
suitable threshold to filter out false positive interactions
and to add uncovered interactions.

Some advanced techniques exploit the hierarchical
structure of GO and characteristics of GO annotations
for gene function prediction. For example, Valentini [20],
Barutcuoglu et al. [22] and Cesa-Bianchi et al. [17] firstly
trained a classifier for each term in the hierarchy, and
then made use of ontology structure to adjust the predic-
tions for these terms. Lord et al. [30] directly employed
the patterns of GO annotations of genes to predict gene
function.

Some recent approaches directly exploit semantic sim-
ilarity between genes from single species to predict gene
function. Semantic similarity is computed based GO
annotations of genes. It is found to be positively corre-
lated with the similarity derived from various biological
data and used to predict interactions between proteins
[26, 31-33]. Tao et al. [24] and Yu et al. [26] firstly
selected neighborhood genes of a gene using a prede-
fined semantic similarity, and then used the annotations
of these neighbors to predict missing annotations of the
gene. Given these successful applications and complemen-
tary GO annotations of genes from homologous species,
however, little work has been done to investigate semantic
similarity for inter-species gene function prediction.

In this paper, we investigate whether it is possible to
perform inter-species gene function prediction by directly
using the semantic similarity between genes from two
different species, which have homology to some extent.
For this purpose, we utilize several representative seman-
tic similarity metrics (i.e., term overlap (TO) [34], best
match average (BMA) [35] and simGIC [36]) to mea-
sure the semantic similarity between genes, and make
use of these metrics for semantic similarity based gene
function prediction. We study these metrics’ contribu-
tions on improving the accuracy of gene function pre-
diction for two homologous species (Human and Mouse).
In addition, we also include another two species, Danio
rerio and Arabidopsis thaliana, which have lower homol-
ogy with Human and Mouse. Our investigation dis-
closes that, interspecies gene function prediction using
semantic similarity between genes from homologous



Yu et al. BMC Systems Biology 2016, 10(Suppl 4):121

species (Human and Mouse) outperforms the counterpart
based on the semantic similarity between genes from sin-
gle species alone, and it also performs better than using
the semantic similarity between genes from two species
with low homology.

Methods

Our work is motivated by the observation that GO anno-
tations of genes are incomplete [7, 9] and genes from
homologous species should have a large portion of sim-
ilar GO annotations [8, 23]. However, because of exper-
imental ethics and protocols, and research interests of
biologists, homologous genes from different species cur-
rently are only annotated with some similar GO terms,
these genes are also annotated with different terms. These
different annotations provide complementary functional
clue for genes from another high homology species. For
example, as shown in Table S1 of Additional file 1,
Human hMAP4K2 (Mitogen activated protein kinase
kinase kinase kinases (MAP4K) are protein kinases that
participate in the MAP kinase signal transduction cas-
cade) shares 94% sequence identity with its ortholog
Map4k2 in Mouse [9]. The overlapped GO annotations
of these two proteins account for 81.19% of all the avail-
able annotations of these proteins by Jan-2014. hMAP4K3,
a paralog of hMAP4K2, has 76.24% overlapped annota-
tions with hMAP4K2. As more experimental evidences
available, some terms only annotated to hMAP4K2 are
also annotated to Map4k2, and vice versa. By Jan-2016,
as more evidences accumulated in the past two years, the
overlapped annotations between hMAP4K2 and MAP4K
increases to 98.11% , and that between hMAP4K2 and
hMAP4KS rises to 86.79%. GO annotations of these three
proteins by Jan-2014 and Jan-2016 are listed in Table S1 of
Additional file 1. In addition, the evidence sources of new
overlapped annotations from Jan-2014 to Jan-2016 are
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provided in Table S2 of Additional file 1. These observa-
tions indicate GO annotations of homologous genes from
two species with high homology are complementary for
each other.

Inspired by the aforementioned observation, we want
to synthesize the semantic similarity between genes from
single species and from two homologous species to pre-
dict additional annotations of genes. To better explain our
main idea, we provide an illustrative example in Fig. 1.
We can see from Fig. 1 that both a Human gene and a
Mouse gene are annotated with a set of similar terms.
Both of them also lack some annotations, respectively. The
Human gene should be additionally annotated with ‘GO:f’
and ‘GO:h; and the Mouse gene should be additionally
annotated with ‘GO: e, ‘GO:g’ and ‘GO: i’ By using the
semantic similarity between these two genes from Human
and Mouse, we can transfer available GO annotations of
the Human gene to the Mouse gene, and thus to replenish
the missing annotations of the latter one. Vice versa, we
can transfer annotations of the Mouse gene to the Human
gene. In this way, we can replenish missing annotations
of respective genes by utilizing semantic similarity and
complementary GO annotations of genes across species.

Semantic similarity

Semantic similarity has been widely studied, and various
methods have been proposed for quantifying the seman-
tic similarity between genes [32, 33]. These methods fall
into rough categories of term-based and entity-based. In
general, term-based approaches depend on comparing
and combining pairwise terms annotated to two respec-
tive genes, while entity-based approaches rely on com-
paring two sets of terms, each set is associated with a
gene [32]. As a node in GO DAG, each term not only
includes specific properties, but also connects with other
terms by edges with different relationships (is a, part of

Human
Gene

@
@

(b)

Fig. 1 GO annotations of a human gene a and a mouse gene b. GO terms in white ellipses are the currently available annotations of the gene, and
the terms in the gray ellipses are the missing annotations. The human gene should be annotated with ‘GO:f' and mouse gene missing annotations
of ‘GO:e’ and ‘GO:g". Annotations of these two genes are different but also complementary for each other
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and regulates). Therefore, there are two types of mea-
sures to calculate the similarity between terms in GO,
node-based and edge-based. Node-based measures rely
on the information of terms themselves, their ancestors,
or their descendants. These measures mainly utilize the
information content, which estimates a term’s specificity
by its frequency annotated to genes [37-39]. Edge-based
measures are mainly based on counting the number of
edges in the GO DAG between two terms. For exam-
ple, Pekar et al. [40] computed the proximity between
two terms by the length of path from their lowest com-
mon ancestor to the root term. Wang et al. [41] sug-
gested a hybrid measure that determines the proximity
of two terms based on the locations of these terms in
GO hierarchy and the relationships with their ancestor
terms.

Entity based semantic similarity metrics calculate sim-
ilarity between genes by comparing two sets of terms
annotated to two respective genes as a whole. Pesquita
et al. [32] suggested to divide these metrics into two cate-
gories: pairwise and groupwise. Pairwise metrics integrate
the proximity between pairwise terms using average [31],
maximum combination and best match average (BMA)
combination [42]. Groupwise metrics directly apply set,
graph, or vector based measures to compute the sim-
ilarity between two collections of terms. For example,
Mistry and Pavlidis [34] introduced a set based metric
called term overlap (70), which takes the ratio between
the number of shared annotations and minimum num-
ber of annotations of two genes. In graph-based metrics,
terms annotated to a gene can be represented by a sub-
graph of GO DAG, and graph comparing techniques are
used to measure the similarity between genes. For exam-
ple, simUI takes the ratio between the number of common
nodes of two subgraphs and the number of union nodes
of these two subgraphs [42]. simGIC is similar to simUI,
but it weights each term by information content of the
term [42]. Vector-based metrics represent the associations
between a gene and all terms as a vector, with each term
corresponding to an entry, and then calculate similarity
between genes using vector-based measures, i.e., cosine
similarity.

Three representative semantic similarity metrics (TO
[34], BMA and simGIC [42]) are adopted to investigate
interspecies gene function prediction based on semantic
similarity. BM A requires to specify the proximity between
pairwise terms and simGIC needs to pre-compute the
information content of a term. We choose Lin’s similar-
ity [43] to measure the proximity of pairwise terms for
its wide application and fixed scale (between 0 and 1).
Lin’s similarity evaluates the proximity of two terms
by the information of themselves and of their most
specific common ancestor in GO hierarchy. Its formal
definition is:
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’ 2% IC(ta)
tsim(ty, ta) = IC(t1) + IC(t) N

where t4 is the most informative common ancestor of

term #; and . IC(¢) is the information content of ¢ and
can be calculated as:

IC(t) = —log, p(2) )

where p(¢) is the frequency of ¢ annotated to a gene. Tao
et al. [24] and Teng et al. [44] suggested a ontology struc-
ture based manner to define the information content of ¢
by the number of its descendants in GO hierarchy, instead
of its frequency. The structure based information content
IC(2) is:

log, (1 + |desc(t)|)/T)
log,(1/T)

where |desct(t)]| is the set of descendant GO terms of ¢ and
T is the total number of terms.

ICs(t) = (3)

Given two genes i and j, their GO annotation sets are 7;
and 7}, respectively. BMA is given by the average proxim-
ity between each term in 7; and its most similar term in
7;. BMA provides a good balance between the maximum
and average approaches, since the latter two approaches
are inherently influenced by the number of terms being
combined [32]. The formal definition of BMA is:

1
simppa (i, ) = 5(AVGtl (MAX,tsim(t1,t2)+ @
AVGy, (MAX;, tsim(t1, t2))

where t; € Tty € 7T and tsim(t1,ty) is the semantic
similarity between t; and t. In this paper, we compute
tsim(ty, t2) using Lin’s similarity with IC(t) defined by
Eq. (2).

TO is a set-based metric [34], it is given by number
of terms shared by 7; and 7; divided by the minimum
cardinal of 7; and 7. Its formal definition is:

17N Til
min (T3, | ;1)
simGIC is a graph-based semantic similarity metric [25],
it is given by the sum of IC(#) of each ¢ in the intersection
of T; and 7T}, divided by the number of terms in the union
of 7; and 7;. Its formal definition is:
2 tering; 1C@)
ZteﬂuTj IC(®)
where IC(¢) can be calculated by Eq. (3) or Eq. (4), To

be different, we call simGIC based on ICs(¢) in Eq. (4) as
simGICs.

(5)

simto(i,)) =

(6)

simgrc(i,)) =

Gene function prediction using semantic similarity

Suppose there are two species, A® =[A], A3, -, A} ]€
RNs*T (s = 1, 2) be the gene-term association matrices for
genes from these two species, respectively. These N; genes



Yu et al. BMC Systems Biology 2016, 10(Suppl 4):121

are annotated with 7T different terms. A € R” repre-
sents the associations between the i-th gene and T terms.
Aj(t) = 1 means the gene is annotated with term £, and
A%(¢) = 0 indicates that it is unknown whether the gene
should be annotated with ¢ or not.

The semantic similarity between genes is found to be
positively correlated with the similarity derived from var-
ious types of genomic/proteomic data [31-33, 44, 45]. For
example, amino acids sequences, gene expression profiles,
protein-protein interactions. Tao et al. [24] and Yu et al.
[26] computed the semantic similarity between pairwise
genes from the same species and determined the k nearest
neighborhood genes based on the semantic similarity, and
then replenished novel annotations of a gene based on the
terms annotated to its neighbors. The probability of term
t ¢ 7T; annotated to the i-th gene is voted as follow:

1
Pty =2 3 At (7)
JENK(D)

where Ny (i) consists of k nearest neighbors of the i-th
gene from the same species. From Eq. (7), we can replen-
ish the missing annotation of the i-th gene if its neighbors,
who are annotated with ¢. Because of resource limitations,
priority of GO curators, experimental ethics and proto-
cols, the GO annotations of its neighborhood genes from
the same species may be shallow, incomplete and biased
[6, 8, 9]. Equation (7) only accounts for GO annotations of
genes from the same species, therefore it can only replen-
ish some missing annotations. On the other hand, GO
annotations of genes from homologous species may be
annotated with more comprehensive and specific terms.

It is recognized that homologous genes from different
species conserve a large portion of similar annotations
[8, 9, 46]. Motivated by this fact, we resort to semantic
similarity between genes from two species and to predict
missing annotations of genes by transferring annotations
of genes from two species, instead from single species they
belonging to. In this way, if a gene has a small semantic
similarity with genes from its own species, it still can have
high semantic similarity with genes from another species,
and these genes may be just annotated with the missing
terms of that gene. Given that, we integrate GO annota-
tions of two species and predict missing annotations of the
i-th gene as below:

Y 4G (8)

JENE, )

6 =
p(i, ) s

where N, kll (i) denotes the k; nearest neighborhood genes

of the i-th gene from its own species, N/fz (i) denotes the ko
nearest neighborhood genes from another species. k1 > 0,
ko > 0and kj + ko = k, this setting ensures neighborhood
genes from two species instead from single species, and is
consistent with Eq. (7). Our following experimental study
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shows that synergy the semantic similarity between genes
from two homologous species can more accurately predict
gene function than that from single species alone.

Results and discussion

Datasets and experimental setup

To comparatively study the contribution of integrating
semantic similarity between genes and GO annotations of
genes from two species, we conduct experiment on anno-
tations of genes from Human and Mouse. We downloaded
recent GO file [47] (access date: 2016-01-04) that con-
tains hierarchical relationships between GO terms. These
terms are organized in three sub-ontology, namely biolog-
ical process (BP), cellular component (CC) and molecular
functions (MF), the terms in each ontology form a DAG.
We downloaded historical GO annotation (GOA) file [48]
(archived date: 2014-01-20) for each species. GOA file
specifies which GO terms are annotated to a given gene
products, it follows a convention to annotate a gene with
appropriate and as well as specific terms. These annota-
tions are called direct annotations. We applied true path
rule to annotate all the ancestor terms of direct anno-
tations of a gene to the same gene. We then made use
of these annotations to predict GO annotations of genes.
Next, we updated the annotations of these genes using
recent GOA files (archived date: 2016-01-04) and utilized
updated annotations to assess the quality of prediction.
To avoid circular prediction, annotations with evidence
code ‘IEA’ (Inferred from Electronic Annotation), ‘NR’
(Not Recorded), ‘ND’ (No biological Data available), or
‘IC’ (Inferred by Curator) were excluded. Myers et al. [49]
suggested that terms annotated to too few genes are hard
to be validated by wet-lab experiments and of no interests
to biologists. Follow this suggestion, we excluded terms
annotated to no more than 3 genes in each species.

To investigate whether GO annotations from any
species contribute the same for interspecies gene function
prediction, we also downloaded GOA files of another two
species (Danio rerio and Arabidopsis thaliana) (archived
date: 2014-01-20), and processed available GO annota-
tions of these species in the same way as Human and
Mouse. The processed annotations of these four species
are revealed in Table 1. From the table, we can find that a
number of new annotations have been appended to genes
from each species since 2014, and each gene on average is
annotated with at least 4 terms.

To assess whether the semantic similarity defined by
annotations of genes from two homologous species can
improve the accuracy of gene function prediction than
that from single species alone, we firstly compute the
semantic similarity between genes from single species
by a specific metric (i.e., TO, simGIC, BMA), and then
employ Eq. (7) to predict functions of genes from the same
species. Similarly, we also compute the semantic similarity
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Table 1 Statistics of GO annotations of genes from four species
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) MF BP
Species figenes
history recent fiterms history recent dterms history recent fterms
Human 19158 231057 298776 1160 115066 153722 1999 745989 920663 8696
Mouse 21357 164539 291488 1193 95511 158471 2033 622591 933356 9304
Danio rerio 18776 27434 77539 627 24652 59710 1174 172557 301163 4382
Arabidopsis thaliana 24532 114777 150144 528 42720 64737 1189 197277 281562 3305

figenes is the number of genes in the recent GOA file (archived date: 2016-01-04), fiterms is the number of involved terms. ‘history’ is the number of GO annotations of genes
from historical GOA file (archived date: 2014-01-20), 'recent’ is the number of GO annotations of genes from recent GOA files

between genes from two species using the same metric
and then employ Eq. (8) to predict functions of genes from
two species. To balance the contribution of genes from the
same species and from another species, we set k; = 250,
ko = 250 and k = 500 for all the following experiments.

Evaluation metrics

Various evaluation metrics are used to assess the qual-
ity of gene function prediction [2, 25]. Since a gene is
often annotated with more than one terms, we adopt
three representative multi-label learning evaluation met-
rics [21]: MacroAvgF1, MicroAvgFl, RankLoss, and two
additional metrics Fmax [2] and RAccuracy [50]. The for-
mal definitions of these widely used metrics are detailed
in Additional file 1.

To maintain consistency with other evaluation metrics,
we report I-RankLoss. Thus, similar to other metrics, the
larger the value of I-RankLoss, the better the performance
is. We would like to remark that these metrics evaluate
the quality of function prediction from different aspects.
It is difficult for a method always performing better than
another one across all these metrics.

Prediction on archived GO annotations

In this section, we conduct experiments to comparatively
and quantitatively study the contribution of semantic
similarity between genes from single species, from two
species with high (or low) homology. Particularly, we per-
form intraspecies gene function prediction by computing
semantic similarity between genes from Human at first.
Then, we utilize annotations of k nearest neighborhood
Human genes of a Human gene to replenish missing anno-
tations of the gene as Eq. (7). Next, we use updated anno-
tations in the recent GOA file of Human to validate the
predictions. We label the intraspecies approach as H—H.
For brevity, hereinafter, H is short for Human species,
M is short for Mouse, D is short for Danio rerio and A
is short for Arabidopsis thaliana. Similarly, we perform
interspecies gene function prediction by using the same
semantic similarity metric between genes from Human
and another species. Then, we use the annotations of k1
nearest neighborhood genes from Human and k; nearest

neighborhood genes from another species to predict miss-
ing annotations of a Human gene, and validate the predic-
tions by annotations in recent GOA file of Human. We tag
these interspecies approaches as M+H—H, D+H—H and
A+H—H, respectively. In addition, we also direct use the
GO annotations of k nearest neighborhood Mouse (Danio
rerio or Arabidopsis thaliana) genes of a Human to predict
the missing annotations of the Human gene. We tag this
kind of approaches as M—H (D—H or A—H). Follow-
ing the same protocols, we conduct similar experiments
on Mouse for intraspecies and interspecies gene function
prediction. The recorded experimental results under dif-
ferent semantic similarity metrics are reported in Table 2
(BMA) and Table 3 (TO). The results with other semantic
similarities (simGIC and simGICs) are included in Table
S3 and Table S4 of Additional file 1.

From these tables, we can observe that M+H— H always
gets better results than H—H and M— H, irrespective of
the semantic similarity metrics (TO, BMA, simGIC and
simGICs). Taking evaluation metric RAccuracy in Table 2
for example, M+H—H on average improves H—H by
53.22% and M—H by 62.38%. M+H—H utilizes GO
annotations of Human and Mouse to compute the seman-
tic similarity between genes by a chosen metric, and then
uses the annotations of k nearest neighborhood genes
(including k; Human genes and k; Mouse genes) of a
Human gene to predict annotations of the gene. In con-
trast, H—H only employs semantic similarity between
genes from Human species, and the annotations of k near-
est neighborhood Human genes of a gene to predict GO
annotations of the target Human gene. M—H only uti-
lizes the annotations of k nearest neighborhood Mouse
genes of a Human gene to predict GO annotations of the
target Human gene. D+H— H always outperforms D—H
and A+H— H outperforms A— H. From this observation,
we can say GO annotations of genes from two differ-
ent species should work together for interspecies gene
function prediction.

D+H—H and A+H—H follow the same procedures
as M+H—H to predict GO annotations of genes from
Human, except they synergy GO annotations of Danio
rerio (or Arabidopsis thaliana) with those of Human.
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Table 2 Prediction on archived GOA files using BMA (see Eq. (4))

MicroAvgF1 MacroAvgF1 1-RankLoss Fmax RAccuracy
CC H—H 0.8328 0.7203 0.8780 0.8747 0.1542
M—H 0.8368 0.7125 0.8751 0.8750 0.1602
M+H—H 0.8586 0.7639 0.9808 0.8787 0.2844
D—H 0.8316 0.7197 0.8729 0.8738 0.1536
D+H—H 0.8524 0.7236 0.9068 0.8625 0.2530
A—H 0.8259 0.7068 0.8632 0.8532 0.1369
A+H—H 0.8363 0.7222 0.8797 0.8773 01717
M—M 0.7712 0.6084 0.8588 0.8571 0.1936
H—M 0.7676 06192 0.8580 0.8339 0.1864
H+M—M 0.8161 0.6590 0.9548 0.8637 0.3518
D—M 0.7718 06105 0.8416 0.8082 0.1868
D+M—M 0.8003 0.6160 0.8926 0.8315 0.2963
A—>M 0.7660 0.6341 0.8444 0.8404 0.1761
A+M—>M 0.7713 0.6143 0.8606 0.8523 0.1942
MF H—H 0.8523 0.8179 09192 0.8915 0.1416
M—H 0.8513 0.8170 0.9145 0.8905 0.1311
M+H—H 0.8692 0.8372 0.9720 0.9029 0.2399
D—H 0.8502 08174 09123 0.8909 0.1295
D+H—H 0.8668 0.8355 0.9523 0.8742 0.2259
A—H 0.8416 0.8207 0.8964 0.8968 0.0793
A+H—H 0.8490 0.8151 09116 0.8894 0.1227
M—M 0.7654 0.6849 0.8755 0.8656 0.1344
H—>M 0.7601 0.6821 0.8797 0.8545 0.1396
H+M—M 0.7784 0.7081 0.9248 0.8779 0.1801
D—>M 0.7607 0.6891 0.8592 0.8369 0.1287
D+M—M 0.7841 0.7072 0.9200 0.8580 0.2013
A—M 0.7534 0.6880 0.8553 0.8607 0.0876
A+M—M 0.7639 0.6716 0.8712 0.8551 0.1264
BP H—H 0.8373 0.7979 0.9507 0.8012 0.2044
M—H 0.8346 0.7943 0.9489 0.7981 0.1912
M+H—H 0.8450 0.8055 0.9690 0.8381 0.2421
D—H 0.8368 0.8027 0.9568 0.8031 0.2020
D+H—H 0.8368 0.7978 0.9496 0.8093 0.2018
A—H 0.8290 0.7903 0.9239 0.7799 0.1641
A+H—H 0.8325 0.7839 0.9308 0.7944 0.1809
M—M 0.7812 0.6965 0.9350 0.7905 0.1855
H—M 0.7842 0.6987 0.9401 0.7863 0.1965
H+M—M 0.7947 0.7134 0.9609 0.8270 0.2357
D—-M 0.7816 0.7036 0.9348 0.7885 0.1867
D+M—M 0.7830 0.7108 0.9423 0.7875 0.1923
A—>M 0.7768 0.6929 0.9027 0.75%4 0.1692
A+M—M 0.7779 0.6871 09183 0.7807 0.1733

H—H directly uses GO annotations of Human to predict annotations of Human genes. M—H only employs annotations of genes from Mouse to predict annotations of
Human genes. M+H—H uses GO annotations of genes from Mouse and Human to predict annotations of Human genes. D+H—H uses annotations of genes from Danio
rerio and Human to predict annotations of Human genes. A+H—H uses annotations of genes from Arabidopsis thaliana and Human to predict annotations of Human genes.
M—M, H+M—M, D+M—M and A+M— M follow the similar protocol, but predict annotations of Mouse genes. The data in boldface is the statistically significant best among
these comparing methods for a particular target species, and the significance is checked by paired t-test at 95% confidence intervals
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Table 3 Prediction on archived GOA files using TO (see Eq. (5))

MicroAvgF1 MacroAvgF1 1-RankLoss Fmax RAccuracy
CcC H—H 0.8374 0.7212 0.8968 0.8729 0.1773
M—H 0.8351 0.7241 0.8969 0.8743 0.1762
M+H—H 0.8586 0.7641 0.9771 0.8751 0.2845
D—H 0.8351 0.7322 0.8941 0.8693 0.1662
D+H—H 0.8512 0.7476 0.9422 0.8654 0.2469
A—H 0.8317 0.6982 0.8832 0.8860 0.1488
A+H—H 0.8366 0.7223 0.8962 0.8726 0.1732
M—M 0.7765 0.6075 0.8826 0.8526 0.2122
H—M 0.7805 0.6130 0.8836 0.8295 0.2166
H+M—M 0.8132 0.6547 0.9597 0.8665 0.3418
D—M 0.7726 06142 0.8659 0.8320 0.2092
D+M—M 0.7993 0.6357 0.9252 0.8384 0.2928
A—M 0.7758 0.6278 0.8700 0.8324 0.2105
A+M—M 0.7770 0.6088 0.8807 0.8447 0.2142
MF H—H 0.8569 0.8228 0.9293 0.8952 0.1687
M—H 0.8542 0.8213 0.9262 0.8941 0.1527
M+H—H 0.8711 0.8382 0.9763 0.9064 0.2510
D—H 0.8524 0.8348 0.9413 08717 0.1426
D+H—H 0.8606 0.8349 0.9588 0.8979 0.1901
A—H 0.8456 0.8225 09124 0.8941 0.1026
A+H—H 0.8535 0.8181 0.9260 0.8933 0.1489
M—M 0.7756 0.6946 0.8985 0.8692 0.1697
H—M 0.7804 0.6957 0.9096 0.8569 0.1677
H+M—M 0.7851 0.7104 0.9374 0.8806 0.2051
D—M 0.7695 06811 0.8963 0.8602 0.1538
D+M—M 0.7851 0.7082 0.9356 0.8731 0.2051
A—M 0.7635 0.6941 0.8816 0.8588 0.1249
A+M—M 0.7752 0.6840 0.8993 0.8616 0.1683
BP H—H 0.8460 0.8019 0.9605 0.8729 0.2472
M—H 0.8428 0.7998 0.9586 0.7818 0.2316
M+H—H 0.8500 0.8071 0.9745 0.8751 0.2664
D—H 0.8385 0.8036 0.9605 0.7901 0.2101
D+H—H 0.8443 0.8016 09613 0.7877 0.2387
A—H 08314 0.7943 09333 0.7591 0.1755
A+H—H 0.8389 0.7933 0.9520 0.7813 0.2120
M—M 0.7960 0.7101 09519 0.7813 0.2405
H—M 0.7980 0.7073 0.9532 0.7767 0.2481
H+M—M 0.8024 0.7163 0.9677 0.8244 0.2643
D—M 0.7886 0.7137 0.9508 0.7756 0.2129
D+M—M 0.7832 0.7059 0.9410 0.7765 0.2318
A—M 0.7795 0.7020 09158 0.7373 0.1791
A+M—M 0.7723 0.6923 0.9326 0.7716 0.2106

H—H directly uses GO annotations of Human to predict annotations of Human genes. M—H only employs annotations of genes from Mouse to predict annotations of
Human genes. M+H—H uses GO annotations of genes from Mouse and Human to predict annotations of Human genes. D+H—H uses annotations of genes from Danio
rerio and Human to predict annotations of Human genes. A+H—H uses annotations of genes from Arabidopsis thaliana and Human to predict annotations of Human genes.
M—M, H+M—M, D+M—M and A+M— M follow the similar protocol, but predict annotations of Mouse genes. The data in boldface is the statistically significant best among
these comparing methods for a particular target species, and the significance is checked by paired t-test at 95% confidence intervals
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These two approaches to M+H—H. D—H and A—H
follow the same protocols as M—H to predict GO anno-
tations of genes from Human, and they are outperformed
by M—H and sometimes by H—H. In actual fact, Tao
et al. [24] and Yu et al. [26] also adopt similar techniques
as H—H (or M— M) for intraspecies gene function pre-
diction. From these results, we can say that interspecies
gene function prediction based on semantic similarity
from two species with high homology is more promi-
nent than traditional intraspecies approaches. Compared
with Mouse, Danio rerio has lower homology (about 85%)
with Human, and Arabidopsis thaliana has even lower
homology with Human. Given that, M+H—H performs
better than D+H—H, and it performs even more better
than A+H—H. D+H— H also produces better results than
A+H—H. These results show that synergy GO annota-
tions of two species with high homology contributes much
more for interspecies gene function prediction than syn-
ergy GO annotations of two species with low homology.

From these tables, we can find A+H— H often produces
similar (or lower) results as H—H. The cause is that Ara-
bidopsis thaliana has the lowest homology with Human
among these species. The results on Mouse give the sim-
ilar observations and lead to the same conclusions. From
these comparisons, we can conclude that GO annotations
of two species with high homology are more complemen-
tary for each other than two species without such high
homology.

The largest improvement on RAccuracy is CC sub-
ontology, followed with MF sub-ontology and then BP
sub-ontology. The reason is that the number of involved
GO terms and annotations in CC, MF and BP increases
one by one, so the complementary effect of GO annota-
tions across species in CC is more prominent than that in
MEF and BP. Another interesting observation is that, irre-
spective of TO, BMA, simGIC and simGICs, M+H—H
obtains relatively close values for each evaluation met-
ric under every fixed setting. This observation strength-
ens that our conclusions are independent of the adopted
semantic similarity.

To check the difference between M+H—H and H—H,
D+H—H and A+H— H based on the results in Tables 2—3
and Tables S3-S4, we use Wilcoxon signed rank test
[51, 52] and find that M+H—H significantly performs
better than them with p value smaller than 10710, We
perform the same test to check the difference between
H+M—M, M—M, D+H—-M and A+H—M. We also
find H+M— M works significantly better than them with
p <1077,

To investigate the effect of GO annotations across sub-
ontology, we further combine GO annotations in CC, MF
and BP together for function annotation prediction using
genes from single species (Human or Mouse) or from two
species, and then follow the same protocol as in previous
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experiments to evaluate the predictions on Human (or
Mouse) genes for each sub-ontology. The recorded results
using semantic similarity BMA are reported in Table 4.
The results using the semantic similarity TO are included
in Table S4 of the Additional file 1.

From the these tables, we can find an interesting obser-
vation is that H—H in Table 4 (and Table S4) has larger
values on these evaluation metrics than its counterpart
in Tables 2—-3 and Tables S3—S4. This observation sug-
gests that shared GO annotations in one sub-ontology
give clues of shared GO annotations in another sub-
ontology. That is because the molecular function, biologi-
cal roles and cellular location of gene products have some
correlations. For this reason, the improvement between
M+H—H and H—H is smaller than that in Tables 2-3.
One exceptional observation is that MacroAvgF1 is signifi-
cantly reduced in CC and MF sub-ontology in Table 4. The
reason is that BP sub-ontology have more general terms
than that other sub-ontology. These general BP terms are
annotated to much more genes than specific (or sparse)
terms, so they often rank ahead of the terms in CC and
MF sub-ontology, and are more likely being predicted as
missing annotations of a gene by Eq. (7) or (Eq. (8)).

Overall, M+H— H significantly outperforms H—H and
M—H, and H+tM—M works much better than M—M
and H— M, by Wilcoxon signed rank test with p < 10710,
These superior results again corroborate the effectiveness
of semantic similarity based interspecies gene function
prediction by synergy GO annotations of genes from
homologous species.

To further study that GO annotations of genes from two
species with high homology are more complementary for
each other than two species without such high homol-
ogy, we conduct additional experiments on annotations
of Yeast, Fly and Human using the similar protocol as in
previous experiments. The results under different seman-
tic similarity metrics are include in Tables S10(TO) and
Table S11(BMA) of Additional file 1. From these tables, we
can observe that F+Y—Y and Y+F— F always achieve bet-
ter result than H+F—F and H+Y—Y, since Fly and Yeast
share larger homology than that between Human. In sum-
mary, these comparative studies further confirm that it
is more prominent to perform semantic similarity based
interspecies gene function prediction across species with
high homology than that with low homology.

Prediction on simulated missing annotations

In this section, we perform simulated experiments by ran-
domly masking a fixed number (g=1, 2, 3) annotations
of a gene, and take these masked annotations as missing
annotations of the gene. Next, we follow the similar pro-
cedure as in the previous experiments to replenish these
missing annotations. From Fig. 1, we can see the terms
annotated to a gene form a hierarchy by themselves. In
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Table 4 Prediction on archived GOA files using BMA (see Eq. (6)) by combining the GO annotations in CC, MF and BP together and
then evaluating in each sub-ontology

MicroAvgF1 MacroAvgFi1 1-RankLoss Fmax RAccuracy
cC H—H 0.8700 04416 0.9682 0.8619 0.2057
M—H 0.8550 04407 09310 0.8551 0.1963
M+H—H 0.8765 0.4451 0.9791 0.9006 0.2457
D—H 0.8543 04372 0.9387 0.8610 0.1626
D+H—H 0.8666 04412 0.9652 0.8773 0.1852
A—H 0.8424 04388 0.8862 0.8595 0.1428
A+H—H 0.8673 04358 09518 0.8761 0.1895
M—M 0.8193 04430 0.9487 0.8481 0.1556
H—M 0.8155 04416 0.9475 0.8514 0.1582
H+-M—M 0.8256 0.4507 0.9692 0.8795 0.1853
D—M 0.8085 04433 0.9289 0.8490 0.1446
D+M—M 0.8170 04474 0.9460 0.8560 0.1452
A—M 0.7963 04258 09121 0.8160 0.1157
A+M—M 08162 04377 0.9241 0.8385 0.1410
MF H—H 0.8539 04287 0.9569 0.8394 0.1983
M—H 08514 04282 0.9468 0.8352 0.1721
M+H—H 0.8606 0.4312 0.9721 0.8785 0.2349
D—H 08513 04232 0.9507 0.8290 0.1358
D+H—H 0.8532 04294 0.9540 0.8451 0.1945
A—H 0.8435 04217 0.9060 0.8049 0.0921
A+H—H 0.8453 04239 0.9394 0.8187 0.1508
M—M 0.7980 04015 0.9426 0.8066 0.1528
H—M 0.7963 0.3927 0.9246 0.8001 0.1501
H+M—M 0.8078 0.4090 0.9672 0.8629 0.1937
D—M 0.7596 0.3936 0.9096 0.7748 0.1108
D+M—M 0.7989 04053 0.9427 0.8216 0.1563
A—M 0.7452 0.3883 0.8856 0.7528 0.0815
A+M—M 0.7949 0.3984 09274 0.7829 0.1395
BP H—H 0.8376 0.7977 0.9522 0.8023 0.2058
M—H 0.8320 0.7861 0.9267 0.8134 0.1791
M+H—H 0.8450 0.8055 0.9694 0.8390 0.2421
D—H 0.8374 0.7917 09513 0.8041 0.1948
D+H—H 0.8370 0.7978 0.9502 0.8098 0.2032
A—H 0.8248 0.7840 0.8998 0.8119 0.1433
A+H—H 0.8322 0.7830 09328 0.7941 0.1796
M—M 0.7814 0.6968 0.9372 0.7916 0.1864
H—M 0.7892 0.6884 0.9384 0.7901 0.1897
H+M—M 0.7949 0.7132 0.9611 0.8276 0.2363
D—M 0.7829 0.6999 0.9364 0.7853 0.1818
D+M—M 0.7820 0.7033 0.9365 0.7910 0.1883
A—M 0.7694 0.6897 0.9023 0.7769 0.1417
A+M—M 0.7779 0.6874 0.9199 0.7822 0.1732

H—H directly uses GO annotations of Human to predict annotations of Human genes. M—H only employs annotations of genes from Mouse to predict annotations of
Human genes. M+H—H uses GO annotations of genes from Mouse and Human to predict annotations of Human genes. D+H—H uses annotations of genes from Danio
rerio and Human to predict annotations of Human genes. A+H—H uses annotations of genes from Arabidopsis thaliana and Human to predict annotations of Human genes.
M—M, H+M—M, D+M—M and A+M— M follow the similar protocol, but predict annotations of Mouse genes. The data in boldface is the statistically significant best among
these comparing methods for a particular target species, and the significance is checked by paired t-test at 95% confidence intervals
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the masking process, any leaf term in the hierarchy can
be masked (or removed), once the descendant terms of
a non-leaf term are all masked, then itself can also be
masked. All these masked terms are viewed as simulated
missing annotations of the gene. To avoid random effect
of masked GO annotations, we repeat the experiments
10 times for each setting of g. The results (average of 10
independent repetitions and the standard deviation) are
reported in Table 5 using semantic similarity BMA in CC
sub-ontology and Table 6 in MF sub-ontology. Additional
results with respect to other semantic similarities between
genes are included in Tables S5-S9 of the Additional file 1.
In these tables, the results in bold font are statistically bet-
ter than their counterparts, according to pairwise ¢-test at
95% significance level.

From these tables, we can see M+H—H also achieves
better results than H—H, and H+M—M outperforms
M— M, irrespective of the sub-ontology, the setting value
of g and the adopted semantic similarity. These results
again support our motivation to synergy GO annotations
and semantic similarity between genes from two homol-
ogous species, instead from single species. The improve-
ment of M+H—H to H—H is more obvious than that
on archived GO annotations as reported in the previous
section. The cause is that the actual missing annotations
of a gene often correspond to descents of several (or
only one) terms annotated to the gene, instead of all the
terms [26]. In contrast, our simulated experiment equally
masks all leaf terms in the self-formed hierarchy of the
gene. From the self-formed hierarchy of a gene and true
path rule, we can see the masked terms of a gene are
corresponding to specific terms, which are annotated to
fewer genes than their ancestor terms. MacroAvgFl1 is
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biased toward specific terms, MicroAvgF1 is biased toward
non-specific terms, so the improvement of MicroAvgF1 is
more significant than that of MacroAvgF1 in the simulated
experiments.

In the end, we have to remark that GO annotations of
gene products in recent GOA files are still not complete,
all the reported results are conservative, since a predicted
annotation not appear in the GOA file should not sim-
ply be taken as a false positive prediction. This predicted
annotation may be lack of experimental evidences, or not
curated by GO consortium, and thus it is not included into
the GOA file by now. We also want to note that the stud-
ied semantic similarity based interspecies gene function
prediction can only apply to genes with some annotations.
Similar to other techniques, interspecies gene function
prediction may result in over-annotated terms to genes.
One possible way to mitigate this issue is to integrate with
more biological data and work together with other tech-
niques [53—55]. Synergy multiple types of biological data
from different species, ontology hierarchy and semantic
similarity to further boost the performance of interspecies
gene function prediction is an interesting future pursue.
We believe our work can prompt more work on semantic
similarity based gene function prediction across species,
especially for the species with high homology.

Conclusions

In this paper, we investigate the possibility of predicting
GO annotations of gene products across species using
semantic similarity between genes. For this purpose, we
adopt three widely used semantic similarity metrics and
collect GO annotations of four species (Human, Mouse,
Danio rerio and Arabidopsis thaliana). Our extensive

Table 5 Prediction on simulated missing GO annotations under BMA in CC sub-ontology

m MicroAvgF1 MacroAvgF1 1-RankLoss Fmax RAccuracy

1 H—H 96.03+0.09 86.84+0.19 96.49+0.02 95.36+0.09 17.12£1.89
M+H—H 96.77+0.01 86.861+0.23 97.20+0.01 95.55+0.01 32.551+0.16
M—M 95.48+0.04 86.19+0.22 93.83+£0.01 94.98+0.04 1222+0.73
H+M—M 96.57+0.06 86.33+0.26 97.23+0.26 95.15+0.06 33.28+1.11

2 H—H 89.09+0.02 67.85+0.37 86.95+0.06 87.84+0.02 23.04£0.17
M+H—H 90.8210.02 68.47+0.37 90.54+0.05 88.84+0.02 35.24+0.13
M—M 87.31£0.06 66.78+£0.48 82.46+0.04 85.95+0.06 16.69+041
H+M—M 90.53+0.01 67.231+0.52 91.431+0.03 88.16+0.01 37.84+0.10

3 H—H 82.54+0.06 53.68+0.25 79.52+0.02 81.76+0.06 25.08+0.27
M+H—H 85.87+0.05 54.78+0.27 86.17+0.09 83.74+0.05 39.384+0.20
M—M 81.45+0.05 52.84+0.55 76.54+£0.07 77.69+£0.05 24.71£0.19
H+M—M 84.02+0.10 53.831+0.56 82.41+0.12 79.60+0.10 35.13+0.41

g is the number of simulated missing annotations of a gene. H—H directly uses GO annotations of Human to predict annotations of Human genes. M+H—H uses GO
annotations of genes from Mouse and Human to predict annotations of Human genes. M—M and H+M— M follow the similar protocol, but make prediction for Mouse
genes. The data in boldface is the statistically significant best among these comparing methods for a particular target species, and the significance is checked by paired t-test

at 95% confidence intervals
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Table 6 Prediction on simulated missing GO annotations under BMA in MF sub-ontology

q MicroAvgF1 MacroAvgF1 1-RankLoss Fmax RAccuracy

1 H—H 91.71£0.02 82.31£0.22 90.98+0.13 91.37£0.02 10.56£0.21
M+H—H 93.70+0.02 82.33+0.21 96.91+0.03 93.87+0.02 32.30+0.26
M—M 92.01+0.10 80.50+0.41 93.0440.02 92.71£0.10 7.85£1.15
H+M—M 93.09+0.02 80.60+0.40 96.78+0.03 93.2740.02 19.59+0.21

2 H—H 80.69+0.05 5731£041 80.40£0.17 80.04+0.05 25.1240.21
M+H—H 83.56+0.03 57.81+0.44 89.24+0.04 85.04+0.03 36.25+0.11
M—>M 79.0240.01 54.82+£041 7843£0.02 79.26£0.01 15.78+0.05
H+M—M 83.03+0.03 55.31+0.44 87.89+0.04 82.83+0.03 31.86+0.11

3 H—H 70.09+0.03 40454042 68.16£0.03 70.32+0.03 23.70+0.08
M+H —H 74.76+0.04 41.37+0.39 80.44+0.04 76.58+0.04 35.62+0.11
M—M 68.89+0.08 39.27£0.25 65.40+£0.10 68.25+0.08 20.59+0.21
H+M—M 73.68+0.04 40.18+0.33 76.63+0.07 72.9910.04 32.81+0.09

q is the number of simulated missing annotations of a gene. H—H directly uses GO annotations of Human to predict annotations of Human genes. M+H—H uses GO
annotations of genes from Mouse and Human to predict annotations of Human genes. M—M and H+M— M follow the similar protocol, but make prediction for Mouse
genes. The data in boldface is the statistically significant best among these comparing methods for a particular target species, and the significance is checked by paired t-test

at 95% confidence intervals

experimental results show that interspecies gene func-
tion prediction using GO annotations of two highly
homologous species is more prominent than that of two
species without such high homology. Our investigation
shows GO annotations of two homologous species are
complementary for each other. However, for two species
with low homology, it is not helpful to synergy their GO
annotations for interspecies gene function prediction.

There are several avenues for future work. Adaptive set-
ting k1 and ky can further improve the accuracy of inter-
species gene function prediction. Synergy the semantic
similarity with other biological data can enhance func-
tional association coherency between genes and thus to
boost the prediction accuracy. Designing more advanced
semantic similarity metric that takes into account incom-
plete and shallow annotations of genes is another interest-
ing future pursue.

Additional file

Additional file 1: Supplementary file of ‘Interspecies gene function
prediction using semantic similarity’. This PDF file includes achieved GO
annotations of hMAP4K2, hMAP4K2 and Map4k2 from Jan-2014 to
Jan-2016, definition of evaluation metrics, and additional experimental
results mentioned in the main text.
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