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Abstract

Background: Although there have been many studies revealing that dynamic robustness of a biological network is
related to its modularity characteristics, no proper tool exists to investigate the relation between network dynamics
and modularity.

Results: Accordingly, we developed a novel Cytoscape app called MORO, which can conveniently analyze the
relationship between network modularity and robustness. We employed an existing algorithm to analyze the
modularity of directed graphs and a Boolean network model for robustness calculation. In particular, to ensure the
robustness algorithm’s applicability to large-scale networks, we implemented it as a parallel algorithm by using the
OpenCL library. A batch-mode simulation function was also developed to verify whether an observed relationship
between modularity and robustness is conserved in a large set of randomly structured networks. The app provides
various visualization modes to better elucidate topological relations between modules, and tabular results of
centrality and gene ontology enrichment analyses of modules. We tested the proposed app to analyze large
signaling networks and showed an interesting relationship between network modularity and robustness.

Conclusions: Our app can be a promising tool which efficiently analyzes the relationship between modularity and
robustness in large signaling networks.

Keywords: Cytoscape app, Boolean network, Network robustness, Modularity, Centrality, Gene-ontology, Parallel
computation, OpenCL

Background
Network modularity represents the degree to which a
network is divided into modules of separate community
structures. A highly modularized network has dense
connectivity between the nodes within each module but
sparse connectivity between the nodes of different mod-
ules. Many plugins based on the Cytoscape platform [1]
have been developed for modularity analysis in biological

networks. For example, clusterMaker [2] implemented
several clustering algorithms such as k-means, k-
medoid, SCPS, and AutoSOME to visualize a structure
of modules within biological networks. GIANT [3] was
proposed to investigate topological or functional rela-
tionships in a metabolic network by performing a clus-
tering analysis and a functional cartography of nodes.
Another well-known plugin is NeMo [4], which can
identify diverse network communities by means of a
neighbor-sharing score based on a hierarchical agglom-
erative clustering method. These plugins have a limita-
tion, though, in that they focus only on the structural
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analysis of a network and its visualization, without any
consideration of dynamics analysis. This restricts their
use to undirected networks such as protein–protein net-
works, or to analysis of directed networks that ignores
the direction information.
Herein we note previous studies showing that

dynamical behaviors, particularly robustness, of bio-
logical networks can be highly affected by their modular-
ity characteristics. For instance, a recent study reported
that a modular organization of cancer signaling net-
works is associated with the patient survivability, which
suggests a relationship between modularity and network
robustness [5]. Also, the robustness against state pertur-
bations of a human signaling network was negatively
correlated to network modularity [6]. Modular stabiliz-
ing in protein–protein interaction networks can be
recombined to create highly robust chimeric proteins in
evolution [7]. It has been also argued that modularity
reduces robustness against mutation in metabolic net-
works [8]. Because of the importance of network
modularity and robustness, there is a pressing need to
develop a tool that can analyze both simultaneously. Ac-
cordingly, we devised a novel Cytoscape app called
MORO that can analyze a relationship between dynam-
ical robustness and structural modularity in biological
networks represented by directed graphs. In addition, to
make it possible to analyze very large-scale networks, we

implemented the robustness computation portion of the
app as a parallel algorithm by using the OpenCL library.
It was also designed to efficiently visualize how the de-
tected modules are located relative to each other. Fur-
thermore, it elucidates analysis results of centrality and
gene ontology (GO) enrichment of modules. Moreover,
it provides a batch-mode simulation function to validate
whether a result observed in a biological network is con-
sistently conserved in many randomly organized net-
works. In this study, we tested our app in a case study
investigating large-scale signaling networks and observed
that modularity and robustness are negatively correlated,
similar to previous findings [6]. It was verified by means
of batch-mode simulation that these findings hold in
random networks. Moreover, we found some GO terms
which are differently enriched between the largest mod-
ule and the rest of the modules, and it was shown that
the module size is positively correlated with five central-
ity values. In summary, our app can efficiently analyze
the relationship between modularity and robustness in
large signaling networks.

Methods
Figure 1 illustrates the main process of our app. Firstly,
a directed network is loaded for analysis. Next, the app
computes the modularity and robustness of the network.
In particular, the robustness algorithm was implemented

Fig. 1 The overall process to analyze the relationship between the network robustness and modularity in MORO. After a directed network is
loaded for analysis, the network modularity and robustness are calculated. In particular, the time consuming part is processed in parallel by using
multi-core CPU or GPU. The analysis result can be checked by three types of visualization modes and a summary table. The centrality values and
GO analysis of modules are additionally provided
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in parallel computation by using the OpenCL library.
The results can be visualized in three modes: a detailed
visualization mode, a brief visualization with absolute re-
lations, and a brief visualization with relative relations.
Also, the results can be summarized in tables that in-
clude centrality and gene ontology analyses. Details of
this process are given in the following subsections.

Network modularity
Given a network represented by a directed graph
G(V, A) where V and A are the sets of nodes and in-
teractions, respectively, we employ the modularity
measure introduced in a previous study [9]. A parti-
tion P = {V1, V2,…, VM} of V is a set of nonempty
disjoint subsets of V that covers V (i.e. Vi ∩ Vj =∅ for
all i, j ∈ {1, 2,…,M} and i ≠ j, and Ui = 1

M Vi = V). Then,

the modularity of the partition M(P) is defined as M

Pð Þ ¼
XM

i¼1

ωV iV i

ω
−
ωin
V i
ωout
V i

ω2
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, where ωV iV i is the

number of interactions whose starting and ending
nodes are both included in module Vi, ωout

V i
, and ωin

V i

are the numbers of interactions whose starting or
ending nodes only, respectively, are included in mod-
ule Vi, and ω is the total number of interactions in
the network. Then, the modularity of the network is
defined as M(G) =maxP M(P). However, it is difficult
to obtain the optimal partition. In our app, the
modularity value of a network is averaged over 30 tri-
als by using an optimization algorithm proposed in a
previous study [10].

Robustness dynamics in a Boolean network model
A Boolean network model has been used to examine
robustness-related dynamics of signaling networks and
has been employed to investigate the dynamics of
various biological networks [11–17]. A Boolean network
is represented by a directed graph G(V, A) where V =
{v1, v2, …, vN} is a set of Boolean variables and A is a set
of ordered pairs of Boolean variables called directed
links. Each vi ∈V has a value of 1 (‘on’) or 0 (‘off ’) that
represents the state of the corresponding element. A di-
rected link (vi, vj) has a positive (‘activating’) or negative
(‘inhibiting’) relationship from vi to vj. In this model,
each state s(t) = (v1(t), v2(t),…, vN(t)) at time t transits to
the next state s(t + 1) according to the set of update rules
F = {f1, f2,…, fN}, i.e., s(t + 1) = F(s(t)), where we randomly
choose either a logical conjunction or disjunction for fi
with a uniform probability distribution. For instance, if a
Boolean variable v has a positive relationship from v1, a
negative relationship from v2 and a positive relationship
from v3, then the conjunction and disjunction update
rules are v t þ 1ð Þ ¼ v1 tð Þ∧v2 tð Þ∧v3 tð Þ and v t þ 1ð Þ ¼ v1

tð Þ∨v2 tð Þ∨v3 tð Þ, respectively. In the case of the conjunc-
tion, the value of v at time t + 1 is 1 only if the values of
v1, v2 and v3 at time t are 1, 0 and 1, respectively. A state
of G is defined as a vector of values v1 through vN. A
state trajectory starts from an initial state s(0) and even-
tually converges to either a fixed-point or limit-cycle at-
tractor. Because these attractors can represent diverse
biological network behaviors such as multistability,
homeostasis, and oscillation, a change in the converging
attractor can be interpreted as a loss of robustness. We
denote the attractor converged to starting from an initial
state s(0) by 〈s〉. The network is considered to be robust
against mutation at vi if 〈s〉 is equal to svi

� �
, where vi

¼ ¬við Þ indicates the state perturbation of s subjected to
vi. This concept to measure robustness has been widely
used [18–20]. More specifically, the robustness of a net-
work γ(G) is defined as follows:

γ Gð Þ ¼ 1
N⋅ Sj j

X

s∈S

XN

i¼1

I sh i ¼ svi
� �� �

;

where S is the set of whole states (i.e. S = 2N), and I(⋅)
is an indicator function. Because |S| is a very large num-
ber, we used a sample subset ~S⊆S with ~S

�� �� ¼ 2N instead
of S to calculate γ(G). Given a partition P = {V1,V2,…, VM},
we employed the in-module and out-module robust-
ness of a module Vi, γin(Vi), and γout(Vi), respectively,
defined in [6] as follows:

γin V ið Þ ¼ 1
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where
Y

V i
sh i represents a projection operator to

extract the partial attractor of a given subset Vi V from
an attractor 〈s〉, and H(〈s〉, 〈s ′ 〉) denotes a similarity
measure between two attractors 〈s〉 and 〈s ′ 〉. More par-
ticularly, given 〈s〉 = s0→ s1→… → sl − 1 and s′

� � ¼ s′0→

s′1→… →s′
l′−1

(1 ≤ l ≤ l′ is assumed without loss of gener-

ality), H(〈s〉, 〈s′〉) is defined as follows:
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where h is the Hamming distance (i.e. the number of dif-
ferent bits between two binary sequences). Then, the in-
module and out-module robustness of a network, γin(Vi)
and γout(Vi), respectively, are defined as follows:

\ \
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γ in Gð Þ ¼ 1
M

XM

i¼1

γin V ið Þ

and

γout Gð Þ ¼ 1
M

XM

i¼1

γout V ið Þ

Parallel computation of robustness
In our app, we employed a Boolean network model to
compute robustness. In particular, we further calculated
in-module and out-module robustness which represent
how much the module subject to a perturbation and the
groups of other modules, respectively, are robust against
the perturbation. Unfortunately, it is very time-consuming
to compute robustness. To reduce the running time, we
implemented the robustness calculation part of the app as
a parallel algorithm by using the OpenCL library (see
Additional file 1: Text S1).

A batch-mode simulation on random Boolean networks
We developed a function for a batch-mode simulation
on random Boolean networks (RBNs) to examine if a
finding in biological networks holds in RBNs or not
similarly in a previous study [12, 19, 21–26]. The batch-
mode simulation requires two steps for configuring pa-
rameters. The first step is to select an RBN generation
model from among five models: Barabási-Albert (BA)
model [27], Erdős-Rényi (ER) model [28], an Erdős-
Rényi variant model [29] and two shuffling models [23,
30, 31], and the second step is to set the number of
considered initial-states and the type of update-rule
schemes (see the subsection “Robustness dynamics in a
Boolean network model” for details). Once computations
of modularity and robustness are completed, all results
are saved in a resulting file, “net_based_result.txt” which
describes modularity and robustness results of each RBN
(see Additional file 1: Text S2).

Visualization of relations between modules
Our app provides three types of visualizations to show
the relationship between modules. The first type is a
detailed visualization mode in which all nodes and inter-
actions of the loaded network are shown and the nodes
are grouped into modules placed by using the Cytoscape
group attributes layout. The second type is a brief
visualization mode with absolute relations, in which a
group node corresponds to a detected module and the
weight of a link between group nodes denotes the num-
ber of interactions between a pair of modules. The last
mode is the same as the second mode except that the
weight of a link denotes the ratio of the number of

interactions between a pair of modules to the maximal
possible number of interactions between them, that is w/
(n1n2), where w is the number of actual interactions be-
tween the pair of modules, and n1 and n2 are the num-
bers of nodes included in each of the modules.

Module centrality and GO analyses
Many previous studies have shown that the centrality
properties of genes/proteins in biological networks are
strongly related to their functional roles in a topological
or dynamical sense. To extend this concept to module-
based centrality analysis, we implemented a function to
examine five centrality measures including degree [32],
closeness [33], betweenness [34], stress [35] and eigen-
vector [36] of modules (see Additional file 1: Text S3). Be-
sides, we developed a GO analysis function to compare
the functional difference between two groups of modules.
To this end, we first identify two groups of genes by
selecting some modules of interest. Then, Entrez gene id
is mapped to UniProtKB by utilizing the web service at
http://www.uniprot.org/ [37], and all relevant GO terms
are extracted by using the web service at http://www.ebi.a-
c.uk/QuickGO/ [38]. Finally, GO terms which are most
differently enriched between the two gene groups are
listed in a table or exported into a text file.

Results and discussion
In this section, we tested MORO with two large-scale
signalling networks, the canonical cell signaling network
(STKE; http://stke.sciencemag.org) and the human signal
transduction network (HSN; http://www.bri.nrc.ca/wang)
which consist of 754 proteins and 1624 interactions, and
5443 genes and 37,663 interactions, respectively.

Analysis of modularity and robustness
The analysis and visualization results of the STKE and
HSN networks are shown in Fig. 2 and Additional file 2:
Figure S1, respectively. In particular, Fig. 2(a) and in
Additional file 2: Figure S1(a) explain various summarized
results including the number of modules, modularity,
robustness, in-/out-module robustness, and centrality
values. Specifically, the number of modules were 16 and
22, the modularity values were 0.72825 and 0.54534, and
the robustness values were 0.67721 and 0.75400 in the
STKE and HSN networks, respectively. By selecting the
visualization option, we can observe the relation between
the detected modules in three different modes: a detailed
mode (Fig. 2(b) and in Additional file 2: Figure S1(b)), a
brief mode with absolute relations (Fig. 2(c) and in
Additional file 2: Figure S1(c)), and a brief mode with rela-
tive relations (Fig. 2(d) and in Additional file 2: Figure
S1(d)). In the detailed mode, each module is represented
by a circular group of genes and all interactions between
the genes are presented in the network. In other words,
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Fig. 2 (See legend on next page.)
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the visualized network is actually same with the first given
network except that the genes belonging to a same mod-
ule are located close to each other. On the other hand,
each module is represented by a single node and a relation
between modules is represented by a directed link in both
of the brief modes. The only difference between the two
brief modes is that the weight of a link means the number
of interactions between a pair of modules in the brief
mode with absolute relations, whereas it means the ratio
of the number of interactions between a pair of modules
to the maximal possible number of interactions between
them. By properly specifying the appearance ratio param-
eter which is defined the ratio of the number of interac-
tions to be visible over the total number of interactions
between modules, we can retrieve more reduced informa-
tion about the brief relations between modules. For ex-
ample about the STKE network, Fig. 2(e) and (f) shows
the visualization results reduced from Fig. 2(c) and (d), re-
spectively, by specifying the appearance ratio to 0.3. Then,
we can identified which module is strongly interacting
with or isolated from other modules (see Additional file 2:
Figure S1(e) and (f) for the result of the HSN network).
To validate effectiveness of our app, we also conducted

the same case study about large-scale signaling networks
as in a previous study [6] which reported that the net-
work modularity tends to be negatively correlated to the

robustness against state perturbations. To reproduce
such a negative relationship between network modularity
and the robustness in this study, we generated 6400 ran-
dom Boolean networks and computed the robustness
and the modularity of each network by using MORO.
We note that this extensive simulation could be con-
ducted in a practical time by the parallel implementation
of main functions in MORO. As a result, we could
observe the same negative relationship between the
modularity and the robustness, consistent to the result
in [6] (see Additional file 2: Figure S2(a)). In addition,
we observed that the results of STKE and HSN are very
close to the trend line of the random Boolean networks.
Moreover, we could also observe that the in-module
robustness is clearly negatively correlated with the network
modularity (Additional file 2: Figure S2(b)), whereas the
out-module robustness is not (Additional file 2: Figure
S2(c)). In addition, the in-module robustness was positively
correlated with the network robustness (Additional file 2:
Figure S2(d)), whereas the out-module robustness was not
(Additional file 2: Figure S2(e)). As explained in the
previous study, we could also conclude that the negative re-
lationship between network robustness and modularity is
mainly caused by the relationship between in-module ro-
bustness and network modularity through intensive simula-
tions using our app.

(See figure on previous page.)
Fig. 2 Analysis results of the STKE network by MORO. a A summary table. Modularity and robustness results in module and network levels are
listed in the upper and the lower tables, respectively. b Result of the detailed visualization mode. We found a total of 16 modules each of which
is represented by a circular list of genes. c-d Results of the brief visualization mode with absolute and relative relations, respectively. Each module
is represented by a single group node whose radius is proportional to the number of nodes belonging to the module. The weight of a link
denotes the number of interactions between the corresponding pair of modules and the ratio of the number of interactions between a pair
of modules to the maximal possible number of interactions between them in (c) and (d), respectively. e-f The reduced visualization results.
They are subnetworks induced from (c) and (d), respectively, by removing all links except about 30% of links with the highest weight values
(This is performed by specifying the appearance ratio parameter in MORO)

Table 1 Running time of MORO

Number of considered initial-states (S) Single CPU (A) Multi-core CPU (B) Speedup (A/B) GPU (C) Speedup (A/C)

HSN network

50 467:00:15 00:10:13 2744 00:09:58 2925

100 934:52:07 00:20:01 5488 00:19:16 5850

150 1401:47:01 00:30:39 8232 00:28:75 8775

200 1869:03:03 00:40:52 10976 00:38:38 11700

1000 9345:16:06 03:24:33 54880 03:11:01 58500

STKE network

50 01:22:50 00:00:06 825 00:00:13 380

100 02:45:00 00:00:10 990 00:00:24 412

150 04:07:15 00:00:14 1060 00:00:35 424

200 05:30:00 00:00:18 1100 00:00:46 430

1000 27:30:00 00:01:27 1137 00:03:40 450

A total of running time to compute robustness and modularity is compared among single-CPU, multi-core CPU, and GPU options. Time is formatted as hh:mm:ss
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Time performance analysis
To show the computational cost of MORO, we exam-
ined the running time in calculating robustness and
modularity in the HSN and STKE networks. We tested
the app on a system with an NVIDIA GeForece GTX
680 GPU with 1536 processor at 1GHz, seven-core
Intel(R) Core i7-4770 K CPU 3.50 GHz, and 16 GB of
memory. Table 1 shows the result. In case of the HSN

network, the speedup by the GPU-based parallel compu-
tation over the single-CPU was slightly greater than that
by multi-core CPU, and both speedups were propor-
tional to the number of considered initial states. On the
other hand, it is interesting that the speedup by multi-
core CPU was greater than that by GPU, and both were
not proportional to the number of initial states in case
of the STKE network. We infer that the analysis of the

Fig. 3 Changes of module centrality values against the module size in the STKE network. a-e Results with respect to degree, closeness,
betweenness, stress, and eigenvalue. The module size which is defined as the number of nodes belonging to the module showed positive
relationships with all module centrality measures. The correlation coefficients in (a)-(e) were 0.75339, 0.564168, 0.599553, 0.657316, and 0.511411,
respectively, with all p-value < 10−4

Table 2 GO analysis in the HSN network

Category GO Terms The largest module The rest of genes P-value

No. of genes % No. of genes %

Cellular component Cytoplasm 161 20.33 767 16.49 0.00794

Nucleus 230 29.04 531 11.42 0

Protein complex 26 3.28 83 1.79 0.0054

Molecular Function Protein binding 249 31.44 1115 23.97 0.00001

Metal ion binding 85 10.73 351 7.55 0.00227

Nucleotide binding 58 7.32 234 5.03 0.00814

DNA binding 127 16.04 150 3.23 0

Biological Process Gene expression 40 5.05 139 2.99 0.00263

Viral process 38 4.80 132 2.84 0.00338

Regulation of transcription, DNA-templated 115 14.52 177 3.81 0

GO terms which are significantly enriched between the largest module and the rest of modules are listed. All P-values are calculated by using a z-test
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STKE network was terminated before the parallel com-
putation power is fully utilized due to the relatively small
size of the network. Taken together, we can efficiently
analyze the relation between robustness and modularity
in large-scale networks by parallel computation with two
options, multi-core CPU and GPU.

Module centrality analysis
After we obtain the modular structure of a network, we
can analyse the centrality of modules based on the brief
mode visualization result. Specifically, we consider a
module network where a node and a link represent a
module and the set of interactions between a pair of
modules, respectively. Then, we can examine five well-
known centrality values such as degree, closeness,
betweenness, stress, and eigenvector in the module net-
work. In this case study, we examined the change of the
centrality values against the module size, which is de-
fined by the number genes belonging to a module, in the
STKE (Fig. 3) and HSN (Additional file 2: Figure S3)
networks. It is interesting that all centrality measures or
all except closeness showed the positive relations with
the module size in the STKE and HSN networks, re-
spectively. In other words, the module was likely to be
more central as the module size gets larger. To investi-
gate if this property is reserved in random networks, we
generated two groups of 100 random networks by shuf-
fling interactions of the STKE and HSN networks while
preserving a degree distribution, and examined the
change of the centrality values against the module size
(see Additional file 2: Figures S4 and S5). Similar to
the result in the signaling networks, the module size
was positively correlated with the centrality values in
the random networks. This suggests that the hub
modules might play an important role in the commu-
nity network [39–41]. Additionally, we examined the
relationship between the in-/out-module robustness
and the module centrality values in the STKE and
HSN networks (see Additional file 2: Figures S6 and
S7). Unlike the relation with the module size, the in-/
out-module robustness was not significantly correlated
with the centrality values. In other words, the central-
ity of modules cannot indicate the in-/out-module ro-
bustness in the signaling network.

GO analysis
It is possible to analyze GO enrichment [42] by using
MORO. To show this function, we first specified two
groups of genes, which consist of the genes in the largest
module (1042 genes) and the rest of genes (4401 genes),
respectively, in the HSN network. Table 2 shows all GO
terms which were more enriched in the largest module
than in the others: cytoplasm, nucleus, and protein com-
plex in cellular component terms; protein, metal ion,

nucleotide, and DNA bindings in molecular function
terms; gene expression, viral process, and regulation of
DNA-templated transcription in biological processes
terms. As a result, MORO can provide the useful infor-
mation about GO analysis between any two groups of
modules.

Conclusions
Many recent reports have reported that robust behavior
against mutations might be correlated to the modular-
ity of a signaling network. Motivated by these results,
we developed a novel Cytoscape app called MORO,
which can analyze the relationship between network ro-
bustness and modularity. We implemented it in parallel
by using the OpenCL library to allow application to
very-large-scale networks. In addition, our app can pro-
vide information about topological relations between
modules by means of various visualization modes and
centrality analysis. MORO includes also five centrality
measures which can examine how centrally each mod-
ule is positioned in terms of relations among the mod-
ules. Moreover, it can conveniently analyze the gene
ontology enrichment of modules only if Entrez id of
gene is given. A batch-mode simulation function was
also included to allow verification of whether a finding
is a design principle of random networks. In the future,
MORO will be extended to consider various types of
mutations such as a knockout and edge mutation, and
to analyze publicly-available signaling networks repre-
sented by ordinary differential equations by devising a
conversion method from continuous models to Boolean
networks.

Additional files

Additional file 1: Text S1. Parallel robustness computation based on
the OpenCL. Text S2. Output file by the batch-mode simulation on RBNs.
Text S3. Centrality measures. (PDF 753 kb)

Additional file 2: Figure S1. Analysis results of the HSN network by
MORO. Figure S2. Correlations between the modularity and robustness
of 6,400 random Boolean networks where the number of nodes is 50
and the number of interactions is in the range of [49, 2031]. Figure S3.
Changes of module centrality values against the module size in the HSN
network. Figure S4. Changes of module centrality values against the
module size in STKE-shuffled random networks. Figure S5. Changes of
module centrality values against the module size in HSN-shuffled random
networks. Figure S6. Correlation between module centrality values and
in-/out-module robustness in the STKE network. Figure S7. Correlation
between module centrality values and in/out-module robustness in the
HSN network. (PDF 1052 kb)
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