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Abstract

Background: Extracting drug-disease correlations is crucial in unveiling disease mechanisms, as well as discovering
new indications of available drugs, or drug repositioning. Both the interactome and the knowledge of disease-
associated and drug-associated genes remain incomplete.

Results: We present a new method to predict the associations between drugs and diseases. Our method is based
on a module distance, which is originally proposed to calculate distances between modules in incomplete human
interactome. We first map all the disease genes and drug genes to a combined protein interaction network. Then
based on the module distance, we calculate the distances between drug gene sets and disease gene sets, and take
the distances as the relationships of drug-disease pairs. We also filter possible false positive drug-disease
correlations by p-value. Finally, we validate the top-100 drug-disease associations related to six drugs in the
predicted results.

Conclusion: The overlapping between our predicted correlations with those reported in Comparative
Toxicogenomics Database (CTD) and literatures, and their enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways demonstrate our approach can not only effectively identify new drug indications, but also provide
new insight into drug-disease discovery.
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Background
Drug development is expensive, time consuming and
has a high risk of failures. On average, it now takes
around 14 years [1] and $800 ~ $1000 million to bring a
single drug to market [2]. To overcome these problems,
more and more researchers have focused on inferring
drug-disease relationships by computational approaches,
commonly referred to as “Drug Repositioning” or “Drug
Repurposing”. Drug repositioning is the application of
known drugs and compounds to new indications (i.e.,
new diseases) [3]. Using drug repositioning, pharmaceut-
ical companies have achieved a number of successes, for

example Pfizer's Viagra in erectile dysfunction [4] and
Celgene's thalidomide in severe erythema nodosum
leprosum [5].
With the dramatic expansion of large-scale genomic,

transcriptomic and proteomic data, computational ap-
proaches to predict new drug-disease associations have
become one of the leading ways. For example, in 2016,
Huang et al. [6] developed a novel pipeline of drug repo-
sitioning to analyze four lung cancer microarray data-
sets, enriched biological processes, potential therapeutic
drugs and targeted genes for non-small cell lung cancer
(NSCLC) treatments. They integrated two approaches:
machine learning algorithms and topological parameter-
based classification. Zheng et al. [7] proposed a novel
weighted ensemble similarity (WES) algorithm to predict
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the drug-target direct interactions, which provided a po-
tential in silico model for drug repositioning and discov-
ery. Wang et al. [8] developed a new strategy in 2015,
which integrated two types of drug repositioning methods.
Based on integration of chemical, gene and disease net-
works, Cheng et al. [9] inferred chemical hazard profiles,
identified exposure data gaps, and incorporated genes and
disease networks into chemical safety evaluations. With
increasing evidence in genetic and molecular biology, we
find most diseases reflect the interaction of multiple mo-
lecular components [10–13]. Therefore, we should con-
sider the relevant interactions of disease-associated genes
in the context of the human interactome [14–17], which
point out the therapeutic importance of modules. In 2016,
Luo et al. [18] utilized some comprehensive similarity
measures and Bi-Random walk (BiRW) to develop a
method named MBiRW to identify potential novel indica-
tions for a given drug. Yu et al. [19] proposed a method
based on known protein complexes to infer drug-disease
associations in 2015. PREDICT (PREdicting Drug IndiCa-
Tions) [20] is based on the observation that similar drugs
are indicated for similar diseases, and utilizes multiple
drug–drug and disease–disease similarity measures for
the prediction task.
However, high-throughput methods currently include

less than 20% of all potential pairwise protein interac-
tions in the human cell [21–26], which means that we
seek to discover drug and disease associations relying on
interactome maps that are 80% incomplete. Additionally,
the gene lists of diseases and drugs remain incomplete
[21–26]. Because of the incompleteness of the interac-
tome and the limited knowledge of disease- and drug-
associated genes, it is not clear if the available data have
sufficient coverage to map out modules associated with
each disease and each drug. Therefore, in order to iden-
tify the location of disease modules within the incom-
plete interactome, Menche et al. [27] presented a new
module distance and used the overlap between the mod-
ules to predict disease-disease relationships. The module
distance can be extended to address other questions at
the forefront of network medicine. Furthermore, it dis-
criminates known drug-disease pairs from unknown
drug-disease pairs better than most of the existing
similarity-based methods, such as the shortest path dis-
tance between their targets in the interactome, common
targets, chemical similarity, etc. [28]. Hence based on
the module distance [27], we propose a new network-
based framework to extract drug-disease correlations.
First, we map all the disease- and drug-associated genes
to a combined protein interaction network. Then based
on the module distance [27], we calculate the distances
between each pair of drug gene set and disease gene set,
and take the distances as the relationships of drug-
disease pairs. We also filter possible false positive drug-

disease correlations by p-value. Finally, we validate the
top-100 drug-disease associations related to six drugs in
the predicted results. The overlapping between our pre-
dicted correlations with those reported in Comparative
Toxicogenomics Database (CTD) [29] and literatures,
and their enriched KEGG pathways [30, 31] demonstrate
our approach can effectively identify new drug indica-
tions. Furthermore, it can offer new insight into drug
discovery.

Methods
Datasets
Drug and target data
Drugs and their corresponding targets are downloaded
from KEGG database [30, 31] and DrugBank [32]. We
combine two datasets and get 3,613 drugs, 1,504 targets,
and 11,170 drug-target pairs. Each drug is represented
by its KEGG Drug ID and each target is represented by
its Entrez gene ID.

Disease and gene data
Diseases and their related genes are downloaded from
KEGG database. In this study, we focus on cancers, so
we get 55 cancer diseases, 2,255 associated genes, and
3,800 disease-gene pairs in all. Diseases are represented
by its KEGG Disease IDs and genes are represented by
Entrez gene IDs.

Human interaction network data
We download a complete and currently feasible interac-
tome from ref. [27], which combines seven different in-
teractions. Their details are shown in the supplementary
files of ref. [27]. The combined network is scale-free,
which includes 13,460 human proteins and 141,296
unique pairwise binary interactions. It is well connected
and has small mean clustering coefficient and short
shortest path [27]. Its topological properties are shown
in Table 1.

Benchmark of drug-disease associations
All the known associations between chemicals (or
equivalently, drugs) and disorders or its descendants are
got from Comparative Toxicogenomics Database (CTD)

Table 1 Network topological properties of the combined
interaction network

Number of nodes 13,460

Number of edges 141,296

Mean degree 21

Mean clustering coefficient 0.17

Mean shortest path 3.6

Max diameter 12
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in May 2014 as our benchmark [29]. CTD contains two
kinds of chemical–disease associations: curated and in-
ferred. Curated associations are extracted from the pub-
lished literature by CTD biocurators and inferred
associations are established via CTD–curated chemical–
gene interactions. In our study, we extract both curated
and inferred associations, which can help researchers
develop hypotheses about environmental diseases and
their underlying mechanisms.

Functional enrichment analysis
In order to validate our method further, we utilize the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) to perform functional enrichment
analysis [33, 34] on the gene sets of predicted drug-
disease pairs. With the genes as inputs, we observe the
overlapping of enriched KEGG pathways between drugs
and diseases. With Benjamin multiple testing correction
method [35], the enrichment p-value is corrected to
control family-wide false discovery rate under certain
rate (e.g. ≥ 0.05).

Compute distance between modules
The disease- or drug-associated genes interacting with
each other suggests that they tend to cluster in the same
neighborhood of the interactome and form a disease
module or a drug module, a connected subgraph that
contains all molecular mechanisms of a disease or a
drug. Therefore, the accurate evaluation of relationships
between disease modules and drug modules is a very

important step to identify potential drug-disease associa-
tions. Because the interactome remains incomplete,
Menche et al. [27] proposed a new definition of module
distance in 2015. Here, it is named as Module Distance
for convenience. Given two modules marked as A and B,
the Module Distance between them is defined as sAB [27]:

sAB≡ < dAB > −
< dAA > þ < dBB >

2
ð1Þ

< dAA > represents mean shortest distance between each
node and all the other nodes within module A. < dBB >
represents mean shortest distance between each node
and all the other nodes within module B. < dAB > repre-
sents mean shortest distance between nodes within
module A and nodes within module B.
A simple example for calculating the distance between

two disease modules A and B is shown in Fig. 1 [27]. In
Fig. 1, the four nodes within disease module A, {a, b, c,
d}, are labeled by blue and the other five nodes within
disease module B, {c, e, f, g, h}, are labeled by red. For
node a in module A as an example, its shortest distances
to b, c and d are 1, 2 and 5 respectively, so its shortest
distance with all the other nodes within module A is 1.
Similarly, the shortest distances of b, c and d in module
A are 1, 1 and 3 respectively (see Fig. 1). Therefore,
the mean shortest distance within module A, <dAA>, is
(1 + 1 + 1 + 3)/4 = 2/3. In this way, the shortest distance in
module B, <dBB>, is (1 + 1 + 1 + 2 + 2)/5 = 7/5. Then we
calculate the mean shortest distance between modules A

Fig. 1 An example for calculating the distance between disease module A and B [27]. Blue and red nodes represent nodes belonging to module
A and module B respectively. Node c is a shared node of modules A and B
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and B, <dAB>. Firstly, the shortest distances for all the
node pairs between module A and module B are calcu-
lated. As shown in Fig. 1, node a in module A is closest
to node c in module B, so the shortest distance between
node a and module B is 2. In the same way, the mean
shortest distance between modules A and B, <dAB>, can
be got and shown in Fig. 1. Finally, according to formula
(1), the distance between modules A and B, sAB, is calcu-
lated and its value is negative. The reason is that module
A and module B share a common node c.

Construct drug-disease associations based on Module
Distance scores
Based on Module Distance, we calculate the distances
between 55 cancer modules and 3,594 drug modules.
First, all the genes related to drugs and diseases are
mapped to the combined protein network. For each drug
and each disease, their related genes form a drug module
and a disease module respectively. Then, using the for-
mula (1), we can calculate the distance between each
drug-disease module pair. Finally, in order to make the
distances score be proportional to the drug-disease cor-
relations, we process the distance scores as follows. At
the beginning, we turn all distances into positive by add-
ing the minimum distance score to each distance, and
then we get their reciprocals. At last, we use maximum-
minimum to normalize all the distances. Consequently,
the larger the distance score, the more related between
drug and disease. Eventually, we obtain (55 × 3594)

disease-drug associations. In order to obtain more
meaningful results and filter possible false positive corre-
lations, we will filter the distances by p-value in the fol-
lowing section.

Filter drug-disease distances by p-value
Based on the combined protein interaction network,
we generate 10,000 random networks which keep the
degrees of nodes in the original network. Then in each of
the random networks, we calculate the distances between
drug modules and disease modules by using Module
Distance (see formula (1)). Finally, for each one in
55 × 3594 disease-drug associations, we can get its corre-
sponding p-value. We discard all the edges whose p-values
are not lower than 0.01. As a result, we obtain 3,027
drug-disease associations and they are presented in
Fig. 2.

Results and discussion
CTD benchmark verification
We rank the 3,027 remained drug-disease associations
in descending order on the basis of their scores. Accord-
ing to the definition of the distance between a drug-
disease pair, the drug-disease pairs with higher scores
are what we need. In order to analyze our results more
targeted and find more valuable associations, we focus
on the top-100 drug-disease associations for further
analysis by CTD benchmark. Their scores are more
than 0.67.

Fig. 2 Disease-drug associations after filtering by p-value (p-value≤ 0.01). Red circular and green triangle nodes represent diseases and
drugs respectively
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For the top-100 drug-disease relationships, they relate
to 6 drugs and 35 diseases in all. Their connected net-
work shown in Fig. 3 is a drug-disease bipartite graph
with 100 links between 6 drugs and 35 diseases. The
green triangle nodes represent drugs and the red circle
nodes represent diseases. From Fig. 3, we find D09539
(drug name: Gabapentin enacarbil), D00750 (drug name:
Levamisole hydrochloride) and D02315 (drug name:
Oleic acid), are associated with 35, 27 and 18 diseases
respectively. The other three drugs, D00226 (drug name:
Amifostine), D01993(drug name: Polidocanol), and D07564
(drug name: Allopurinol), are associated with the remained
20 associations. Table 2 gives the summary information
of the six drugs based on CTD, including the number
of existing diseases (represented by Ne), the number of
predicted diseases (represented by Np) and the percen-
tage, i.e. Ne/(Ne +Np).
In Table 2, we can find in the top-100 results, the 10

associations related to D00226 and 5 ones related to
D07564 are all found in CTD database, i.e. their percent-
ages are 100%. In a certain degree, the exciting results
show the reliability of our algorithm. For D01993, it only
relates to three diseases in CTD database: “Dermatitis,
Allergic Contact”, “Facial Dermatoses” and “Hand Derma-
toses”, so it is hard to find its existing diseases. The reason
may be the interactome and the drug gene list remain
incomplete and biased toward much-studied drugs genes
and drug mechanisms. Furthermore, for D09539, D00750
and D02315, there is a total of 80 associations in the
top 100 relationships related to them. Therefore, in the
following sections, we will make a further analysis on
D09539, D00750 and D02315 and their related diseases
one by one.

For the first drug D09539 (drug name: Gabapentin
enacarbil), its connections with related diseases are
shown in Fig. 4. In the following figures, Figs. 4, 5 and 6,
green triangle nodes represent drugs, gray hexagonal
nodes represent existing diseases in CTD and red circular
nodes represent predicted related diseases. There are 35
diseases connected to D09539 (Gabapentin enacarbil) and
26 of them are recorded in CTD database. The percentage
reaches up to 74.3%. Therefore, the remaining 9 diseases
are likely to be related to D09539 (Gabapentin enacarbil).
They may be new indications of Gabapentin enacarbil or
its side effects.
The second drug D00750 (drug name: Levamisole

hydrochloride) is connected to 27 diseases and their
connections are shown in Fig. 5. By verifying in CTD
database, we find 18 of 27 diseases are known associa-
tions with Levamisole hydrochloride and only 9 diseases
are newly predicted results. The prediction accuracy is
more than 50%, i.e. 66.7%. We estimate that Levamisole
hydrochloride may treat some of the nine predicted dis-
eases or cause some of them.
Figure 6 shows the associations of the third drug

D02315 (drug name: Oleic acid) and its related disease.
In the same way, we use CTD benchmark to analyze our
results. We find 18 diseases are related to Oleic acid: 6
of them are predicted ones and the other 12 diseases
have been recorded in CTD database. The percentage
also reaches up to 66.7%. No matter what kind of rela-
tionship between Oleic acid and the six new diseases,
the results are helpful in drug discovery and disease
treatment.
Through analyzing our results based on CTD bench-

mark, we find the prediction accuracies of three drugs

Fig. 3 The top-100 predicted drug-disease relationships. The green triangle nodes represent drugs and the red circular nodes represent diseases
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(D09539, D00750 and D02315) are all relatively high,
more than 50%. On the other hand, the facts indicate
that those diseases having no records in CTD are likely
to be the new indications of drugs. Therefore, in the fol-
lowing section, we will use KEGG functional enrichment
analysis and literature mining to further verify the reli-
ability of our predicted potential associations.

KEGG pathway functional enrichment analysis and
literature verification
In the above section, the top-100 results are validated by
CTD benchmark. We mainly analyze three drugs, whose
associated diseases are 80% of the top-100 results. After
our analysis, we obtain 9, 9 and 6 potential diseases for
D09539 (drug name: Gabapentin enacarbil), D00750
(drug name: Levamisole hydrochloride) and D02315
(drug name: Oleic acid) respectively. Their details are
shown in Table 3. We perform KEGG pathway enrich-
ment analysis on the target sets of drugs and their related

diseases with the functional annotation tool of DAVID
[33, 34]. If a drug has overlapped KEGG pathways with a
disease, the drug and the disease may have great relevance.
The drug can probably treat or cause the disease through
acting on the overlapping pathways. For DAVID, EASE
Score, a modified Fisher Exact P-Value, is used as a
threshold for gene-enrichment analysis [35]. It ranges
from 0 to 1. When Fisher Exact P-Value is 0, it represents
perfect enrichment. We set it as 0.01.

Fig. 4 D09539 (drug name: Gabapentin enacarbil) and its related
diseases. Green triangle node represents drug D09539, gray
hexagonal nodes represent known related diseases in CTD and red
circular nodes represent new predicted related diseases

Fig. 5 D00750 (Levamisole hydrochloride) and its related diseases.
Green triangle node represents drug D00750, gray hexagonal nodes
represent known related diseases in CTD and red circular nodes
represent new predicted related diseases

Fig. 6 D02315(Oleic acid) and related disease network. Green
triangle node represents drug D02315, gray hexagonal nodes
represent known related diseases in CTD and red circular nodes
represent new predicted related diseases

Table 2 The summary information of D09539, D00750 and
D02315 based on CTD

KEGG
DrugID

The number of
existing diseases (Ne)

The number of
predicted diseases (Np)

The percentage
(Ne/(Ne + Np)

D09539 26 9 74.3%

D00750 18 9 66.7%

D02315 12 6 66.7%

D00226 10 0 100%

D07564 5 0 100%

D01993 0 5 0
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Gabapentin enacarbil (KEGG DrugID: D09539) is a pro-
drug for the anticonvulsant and analgesic drug gabapentin
[36]. It is used for treating restless leg syndrome (RLS)
and postherpetic neuralgia (PHN) [37, 38]. Although the
exact mechanism of action of gabapentin in RLS and PHN
is unknown, it is presumed to involve the descending
noradrenergic system, resulting in the activation of spinal
alpha2-adrenergic receptors. There are five caners, H00025
(Penile cancer), H00028 (Choriocarcinoma), H00016
(Oral cancer), H00041 (Kaposi's sarcoma) and H00047
(Gallbladder cancer), have overlapped KEGG pathways
with Gabapentin enacarbil (shown in Table 3 marked as
boldface). "MAPK signaling pathway" is their overlapped
pathway (shown in Table 4 marked as boldface), which
has been found related to multiple human diseases, in-
cluding cancer [39]. In fact, Gabapentin enacarbil was
denied approval by the U.S. Food and Drug Administra-
tion (FDA) in February 2010, citing concerns about pos-
sible increased cancer risk shown by some animal studies.
KEGG enrichment analysis shows that four caners still
have no overlapping with Gabapentin enacarbil (D09539)
and also have not found relationships through literature
mining. The reason is possible that the studies on these
four diseases are still very limited.
For the remaining two drugs Levamisole hydrochlo-

ride (D00750) and Oleic acid (D02315), they have no over-
lapped KEGG pathways with their related diseases
because the two drugs have no related KEGG pathways.
Levamisole is a drug used to treat parasitic worm infec-
tions [40]. It has also been studied as a method to stimu-
late the immune system as part of the treatment of cancer
[41]. Its nine related diseases are all cancers. Furthermore,

studies demonstrate that the role of levamisole immuno-
therapy is as an adjuvant to radiotherapy in Oral cancer
[42, 43]. For Malignant melanoma, the degree of improve-
ment experienced by the patients that were treated by
levamisole is of sufficient magnitude to warrant further
investigation of this dose of levamisole as adjuvant treat-
ment in patients with melanoma [44]. The results of Pulay
and Csömör [45] and reference to pertinent literature
indicate the possible effects of levamisole are discussed,
as well as possibilities and place of the drug in the therapy
of cervical cancer.
The last drug Oleic acid is a common monounsatu-

rated fat that occurs naturally in various animal and
vegetable fats and oils. Monounsaturated fat has been
related to decreased low-density lipoprotein (LDL) chol-
esterol [46], so Oleic acid may be effective for the
hypotensive (blood pressure reducing) [47]. Shannon et
al. [48] found Monounsaturated fatty acids and the
alpha-linolenic:eicosapentaenoic ratio were associated
with reduced risk of prostate cancer. However, oleic and
monounsaturated fatty acid levels in the membranes of
red blood cells are associated with increased risk of
breast cancer [49], although the consumption of oleate
in olive oil is associated with a decreased risk of breast
cancer [50].

Conclusions
Because of the incompleteness of protein interactomes
and the limited knowledge of disease genes and drug
genes, we propose a new method based on a distance
between two modules to predict drug-disease associ-
ation. The distance is named Module Distance for con-
venience, which is originally defined to solve the
incompleteness of human interactome. First, we project
disease genes and drug genes to a combined protein
interaction network respectively. Then based on Module
Distance, we calculate the distances between drug genes
and disease genes, and make a further processing to the
distances before being the relationships of drug-disease
pairs. Also, we filter possible false positive drug-disease
correlations by p-value. Finally, we validate the top 100

Table 3 Three drugs, their corresponding targets and related diseases

Drugs Gabapentin enacarbil
(D09539)

Levamisole hydrochloride
(D00750)

Oleic acid
(D02315)

Targets of Drug 55799; 781; 9254; 93589 1136; 251 51228; 5375

Related Diseases Penile cancer;
Choriocarcinoma;
Malignant pleural mesothelioma;
Oral cancer;
Ewing's sarcoma;
Chronic myeloid leukemia;
Alveolar rhabdomyosarcoma;
Kaposi's sarcoma;
Gallbladder cancer

Prostate cancer;
Choriocarcinoma;
Ewing's sarcoma;
Oral cancer;
Malignant pleural mesothelioma;
Laryngeal cancer;
Chronic myeloid leukemia;
Malignant melanoma;
Cervical cancer

Prostate cancer;
Acute myeloid leukemia;
Glioma;
Penile cancer;
Choriocarcinoma;
Oral cancer

Boldface diseases represent they have overlapped KEGG pathways with drugs

Table 4 Gabapentin enacarbil and its related KEGG pathways

Drug D09539(Gabapentin enacarbil)

Pathways Related to Drug Arrhythmogenic right ventricular
cardiomyopathy (ARVC)
Cardiac muscle contraction
Hypertrophic cardiomyopathy (HCM)
Dilated cardiomyopathy
MAPK signaling pathway

Boldface pathway represents overlapped one
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associations related to six drugs by CTD benchmark.
Three main drugs are further analyzed by KEGG pathway
enrichment and literature mining, because they are related
to 80 associations. The experimental results are encour-
aging. Both the positive and negative associations can
be predicted. Our study offers opportunities for future
toxicogenomics and drug-disease discovery.
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