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Abstract

Background: Despite the increasing availability of high performance computing capabilities, analysis and
characterization of stochastic biochemical systems remain a computational challenge. To address this challenge, the
Stochastic Parameter Search for Events (SParSE) was developed to automatically identify reaction rates that yield a
probabilistic user-specified event. SParSE consists of three main components: the multi-level cross-entropy method,
which identifies biasing parameters to push the system toward the event of interest, the related inverse biasing
method, and an optional interpolation of identified parameters. While effective for many examples, SParSE depends
on the existence of a sufficient amount of intrinsic stochasticity in the system of interest. In the absence of this
stochasticity, SParSE can either converge slowly or not at all.

Results: We have developed SParSE++, a substantially improved algorithm for characterizing target events in terms
of system parameters. SParSE++ makes use of a series of novel parameter leaping methods that accelerate the
convergence rate to the target event, particularly in low stochasticity cases. In addition, the interpolation stage is
modified to compute multiple interpolants and to choose the optimal one in a statistically rigorous manner. We
demonstrate the performance of SParSE++ on four example systems: a birth-death process, a reversible isomerization
model, SIRS disease dynamics, and a yeast polarization model. In all four cases, SParSE++ shows significantly improved
computational efficiency over SParSE, with the largest improvements resulting from analyses with the strictest error
tolerances.

Conclusions: As researchers continue to model realistic biochemical systems, the need for efficient methods to
characterize target events will grow. The algorithmic advancements provided by SParSE++ fulfill this need, enabling
characterization of computationally intensive biochemical events that are currently resistant to analysis.

Keywords: Stochastic simulation, Parameter estimation, Rare event, Optimization, Stochastic event, Stochastic mass
action kinetics

Background
The ever-increasing computational capacity of modern
computer architectures [1–5] has enabled the simulation
of realistic biochemical models with thousands of reac-
tions [6–8]. Despite this capability, computational analysis
of stochastic biochemical systems remains a challenge, as
techniques like parameter estimation and sensitivity anal-
ysis typically require the simulation of multiple ensembles
of hundreds to thousands of system trajectories. Most
existing parameter estimation algorithms for biochemical
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systems identify one or more sets of reaction rate parame-
ters giving rise to trajectories that closely mimic observed
data [9–15]. In contrast, Stochastic Parameter Search for
Events (SParSE) [16] was developed to efficiently sample
biochemical reaction rate parameter values that confer a
user-specified target event with a given probability and
error tolerance. Its conception was inspired by acknowl-
edging the usefulness of such an event-based approach to
parameter estimation. As executing SParSE with differ-
ent initial conditions will identify non-overlapping sets of
parameter values that satisfy the target event equally well
(the “solution hypersurface”), these results can be used
to evaluate various cost functions for scientific and eco-
nomic purposes. For example, many intervention strate-
gies exist in malaria control: mass drug administration,
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mass screen and treat, focal mass drug administration,
and snowball reactive case detection [17]. Knowing all
combinations of system parameters in an epidemiologi-
cal model that result in eradication of malaria is extremely
beneficial for making the most cost-effective policy deci-
sions. Similarly, learning different parameter combina-
tions that result in cell polarization in amechanisticmodel
of the yeast Saccharomyces cerevisiae can aid in our under-
standing of cell polarization in other organisms as well as
contribute new insights to yeast polarization [18]. In gen-
eral, SParSE outputs from the solution hypersurface may
be filtered using user-defined cost functions or constraints
to further refine the event characterization.
SParSE is comprised of three main components:

the multi-level cross-entropy (CE) method, exponential
parameter interpolation, and the inverse biasing method
(see below for details) [16]. As introduced in [19], per-
formance of the multi-level CE method depends on the
existence of a sufficient amount of intrinsic stochastic-
ity in the system of interest. For systems with low levels
of intrinsic stochasticity (even for a subset of reactions),
the multi-level CE method can exhibit slow convergence
properties, especially when initial parameter values are
far from the solution hypersurface. Furthermore, exper-
iments conducted in [16] demonstrated that the accu-
racy of exponential interpolation significantly decreases
when parameter estimates rapidly pass through the solu-
tion hypersurface. Taken together, these two limitations
greatly hamper our ability to characterize target events in
important classes of stochastic systems.
To overcome these limitations, we developed SParSE++,

a substantially improved algorithm for characterizing tar-
get events in terms of system parameters. SParSE++
makes use of several algorithmic improvements to SParSE
that lead to faster and more accurate performance, partic-
ularly in the presence of low intrinsic system stochasticity.
SParSE++ utilizes a novel method called cross-entropy
leaping (CE leaping) that accelerates the convergence rate
of the multi-level CE method. Upon detecting slow con-
vergence, CE leaping uses past parameter estimates to
intelligently “leap" forward in parameter space rather than
continue using the standard CE method. Furthermore, we
have defined special leaping cases to improve accuracy in
situations when parameter estimates rapidly pass through
the solution hypersurface. Finally, SParSE++ features a
more robust parameter interpolation method that further
accelerates the algorithm convergence rate. To demon-
strate superior performance of SParSE++, we apply the
method to the three example systems featured in [16]: a
birth-death process, a reversible isomerizationmodel, and
a system exhibiting SIRS disease dynamics. In addition, we
include an eight-reaction model of yeast polarization fea-
tured in [13, 20]. In each example, SParSE++ shows sub-
stantially improved computational efficiency over SParSE,

with the largest efficiency improvements resulting from
analysis of events with the strictest error tolerances.

Methods
The algorithms developed in this work make use of
Gillespie’s stochastic simulation algorithm (SSA) [21]—a
Monte Carlo simulation method that produces exact tra-
jectories of a well-stirred system obeying the chemical
master equation (CME). Such systems can be described
in the following manner. Given a biochemical system
consisting of N molecular species {S1, · · · , SN } and M
reaction channels {R1, · · · ,RM}, let Xi(t) denote the pop-
ulation of Si at time t, x(t) ≡ (X1(t), · · · ,XN (t)) the state
vector at time t, and x0 ≡ x(t0) the population at ini-
tial time t0. The time evolution of x(t) in a fixed volume
at constant temperature is governed by sequences of two
random variables: τ , the time elapsing between the cur-
rent and next reaction firings, and j′, the index of the next
reaction firing at time t + τ . After each selection of τ and
j′, x(t) advances by x(t + τ) = x(t) + ν j′ , where ν j ≡
[ ν1j, · · · , νNj], and j ∈ {1, · · · ,M} is the state change (sto-
ichiometry) vector. Each component in the state change
vector, νij, denotes the change in population Xi induced by
single firing of reaction Rj.
Sampling τ and j′ requires computation of reaction

propensity functions, aj(x, k), where k represents the
system reaction rates (k1, · · · , kM), defined such that
aj(x, k)dt is the probability that one Rj reaction occurs in
the next infinitesimal time interval [ t, t+dt). Denoting the
propensity sum as a0(x, k) ≡ ∑M

j=1 aj(x, k), each time to
the next reaction τ is exponentially distributed with mean
1/a0(x, k), and each index of the next reaction j′ is cate-
gorically distributed with probability aj(x, k)/a0(x, k), j ∈
{1, · · · ,M}.
Our goal in simulating system trajectories is to charac-

terize the probability of reaching a target event E before
some final time tf . Thus, during simulation we update
each trajectory’s state until either tf is reached or the tar-
get event E occurs (denoted by stopping time T ). After
simulatingNS trajectories, the Monte Carlo estimate for E
can be expressed as

p̂(x0, k, E ; tf ) = 1
NS

NS∑

i=1

[
I{f (xi(T i|k))∩E}

]
, (1)

where f (xi(T i|k)) is the value of the event function
f (·) evaluated on the ith trajectory at times T i ≡
{t0, ti1, · · · , tiNTi−1 , Ti} (tik is the firing time of the kth reac-
tion and NTi is the number of reaction firings occurring
in the ith trajectory) simulated with reaction rates k. Two
requirements for f (·) are that it takes the system state as
an input and can be used to evaluate the distance between
this state and E . The indicator function I{f (xi(T i|k))∩E} thus
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returns a value of 1 if the distance between f (xi(T i|k)) and
E is zero and 0 otherwise.

SParSE—stochastic parameter search for events
In this section, we briefly describe the original SParSE
algorithm. We refer the reader to [16] for details con-
cerning the algorithm. The objective of SParSE is to find
reaction rates k∗ that satisfy

∣
∣PE − p̂(x0, k∗, E ; tf )

∣
∣ ≤ εPE , (2)

where PE and εPE are the user-defined target probability
of observing event E by time tf and user-defined absolute
error tolerance, respectively. Starting with γ 0 ≡ 1 and
k0, SParSE advances the system toward E by iteratively
updating k(l) by

k(l)
j = k(l−1)

j × γ
(l)
j , j ∈[ 1, · · · ,M] . (3)

The multi-level cross-entropy (CE) biasing parameters
γ (l) are computed by

γ
(l)
j =

∑′
inij

∑′
i
∑NTi

k=1

[
aj(xi(tik), k(l−1))τik

] , (4)

where nij is the total number of times reaction j fires in
the ith trajectory,

∑′
i iterates only over the subset of NS

trajectories that return 1 for I{f (xi(T i|k))∩E}, k indexes the
NTi reaction firings occurring in the ith trajectory, and tik
and τik represent the absolute time and time elapsed since
the last firing for the kth reaction firing in the ith trajectory.
Computation for γ (l) and k(l) terminates when Eq. (2) is
satisfied, or when l ≥ L for some L ∈ N (10 by default).
Besides the multi-level CE method, SParSE is com-

prised of two other components: exponential parameter
interpolation and the inverse biasing method. Both the
multi-level CE and the inverse biasing methods proceed
by picking a set of intermediate events ξ that are close to
E and reachable with the current reaction rates. SParSE
chooses ξ at each iteration by selecting the top 	ρNS

simulated trajectories that evolve farthest in the direction
of E . The values of ρ are chosen based on the distance
between the current estimate and PE . Denoting the dis-
tance as δ(k) ≡ PE − p̂(x0, k(l−1), E ; tf ), ρ is chosen
by
For sgn(δ(k)) == φtype

ρ(δ) =
⎧
⎨

⎩

[0.005, 0.01] if 0.4 < |δ|
[0.01, 0.05, 0.1] if 0.2 < |δ| ≤ 0.4
[0.05, 0.1, 0.2] otherwise

(5)

For sgn(δ(k)) �= φtype (i.e., over-perturbation)

ρ(δ) =
⎧
⎨

⎩

[ 0.01, 0.015] if 0.4 < |δ|
[0.05, 0.1, 0.15] if 0.2 < |δ| ≤ 0.4
[0.1, 0.15, 0.2] otherwise,

(6)

where φtype is 1 if f (x0) ≤ E and -1 otherwise. In the
above two cases, sgn(δ(k)) �= φtype corresponds to the
case where the current reaction rates over-perturb the
system with respect to PE . The conventional multi-level
CE method cannot be used here, as the top trajectories
evolving in the direction of E surpass the target event
more than the desired amount. These trajectories, how-
ever, can be used to reverse the direction of bias (thus
the term inverse biasing). Instead of terminating a sim-
ulated trajectory when E is reached (as is done in the
multi-level CE method), we run all NS trajectories until
tf and record the maximum values reached in the direc-
tion of the target event. These values are then used in
Eq. (6) to determine intermediate target events. As with
Eq. (5), the smaller the distance, the less extreme inter-
mediate events are chosen to avoid excessive biasing. The
inverse of the biasing parameters corresponding to these
events are then multiplied by the current reaction rates
to compute the next estimates p̂. While inverse biasing
effectively reverses the direction of bias in the case of over-
perturbation, estimates computed in this way may not
be accurately characterized by exponential interpolation.
Thus, we choose more conservative ρ values for inverse
biasing than for the multi-level CE method.
For target events that require high accuracy (i.e., small

user-defined error tolerance), the multi-level CE method
may ‘step over’ k∗, resulting in both under- and over-
perturbing γ values. In this case, SParSE performs fine-
tuning by exponential interpolation, which computes
parameters q and r that satisfy

min
qj ,rj

(
(p̂(·) × NS) − qj × exp

{
rj × γ

(0,·)
j

})
, j = {1, · · · ,M},

(7)

where γ (0,·) are the values of the past multi-level CE
method biasing parameters normalized with respect to
γ 0. Denoting k(l) as the reaction rates for the current iter-
ation of SParSE, each γ

(0,l)
j can be expressed as k(l)

j /k0j .
The resulting estimate from employing γ (0,l) is denoted
p̂(l). Since interpolation is initiated only after both under-
and over-perturbing estimates are obtained, γ (0,·) is guar-
anteed to have at least two entries. When there are more
than five entries, SParSE picks the five estimates closest to
PE while requiring that both under- and over-perturbed
values are present. Once the optimal exponential curve
in Eq. (7) is found, SParSE returns up to seven sets of
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candidate biasing parameters. Three of the seven corre-
spond to estimates that are slightly less than PE × NS,
one corresponds to the exact value, and the rest to esti-
mates slightly greater than PE × NS. Interpolation starts
with the candidate set from the exact target value, and it
shifts to over- or under-perturbing parameters depending
on the resulting estimate. For example, if the resulting esti-
mate is greater than PE × NS + εPE , SParSE chooses the
next under-perturbing biasing parameters to compute the
next estimate. SParSE assumes failure in interpolation and
exits if it is unable to find k∗ in a user-defined number of
iterations, I , which is set to 3 by default.

Accelerating convergence with cross-entropy leaping
We now describe the enhancements made to create
SParSE++, a substantially improved algorithm for identi-
fying k∗ for a given event and target probability. The first
enhancement introduces cross-entropy (CE) leaping, an
algorithmic technique enabling accelerated convergence.
Given a set of initial reaction rates, the SParSE conver-

gence rate depends on the intrinsic stochasticity of the
system with respect to the target event, which we simply
refer to as ‘stochasticity’ in the remainder of this section.
Denoting ξmax

i as the value of f (xi(t|k(l))) closest to E
reached by the ith trajectory, the next intermediate events
ξ are chosen as the closest 	ρNS
 values of ξmax

i to E ,
where ρ is chosen by (5) or (6) and i ∈ {1, · · · ,NS}. For
systems and target events exhibiting low stochasticity, the
variance among the ξmax

i values is small. As a result, even
small values of ρ will generate subsequent intermediate
events that are very close to current ones, causing SParSE
to converge slowly, if at all.
To accelerate convergence for low stochasticity cases,

we developed a method called cross-entropy (CE) leap-
ing that computes γ using exponential extrapolation from
past biasing parameters and probability estimates. Start-
ing with l = 1, SParSE++ records p̂(x0, k(l), E ; t) and initi-
ates CE leaping if neither of the following two conditions
are true:

1. Inequality (2) is satisfied. In this case the objective of
SParSE++ is met, and the algorithm exits,

2.
{
p̂ · NS ≤ PE · NS · 0.01, forPE ≤ 0.5
p̂ · NS ≤ (1 − PE) · NS · 0.01, for0.5 < PE

}

Condition 2 is enforced to ensure the signal from k(l) is
reliable; at least 1% of the fraction of trajectories equal to
PE (or 1−PE ) are required in order to qualify for leaping.
SParSE++ repeatedly clears the memory of past estimates
until two qualifying probability estimates are observed
consecutively, at which point Algorithm 1 is executed to
determine leaping eligibility and magnitude.
Here, input variables p̂ and γ denote consecutive

probability estimates and their corresponding biasing

Algorithm 1 Cross Entropy Leaping
1: η∗ ← PE · NS
2: leapth ← PE · NS · 0.01 for PE ≤ 0.5; leapth ← (1 −

PE ) · NS · 0.01 otherwise
3: leapprojs ←[ 50, 20, 5]
4: leapfactors ←[ 7, 5, 3]
5: ηp̂ ← p̂ · NS
6: if len(p̂) == 2 then
7: meanstep ← |ηp̂(2) − ηp̂(1)|
8: else
9: meanstep ← |ηp̂(3)−ηp̂(2)|+|ηp̂(2)−ηp̂(1)|

2
10: end if
11: distmin ← min(|η∗ − ηp̂|)
12: ηmin ← element inηp̂that corresponds todistmin

13: stepproj ←
⌊

distmin
meanstep

⌋

14: argmaxi∈{1,2,3}
(
leap(i)

projs | stepproj ≤ leap(i)
projs

)

15: if � i then
16: leapind ← 1
17: else if i == 3 then
18: Does not qualify for leaping. Return γ CE = 
0 and

exit.
19: else
20: leapind ← i + 1
21: end if
22: ηCE ← ηmin + sgn (η∗ − ηmin) · meanstep ·

leapfactors(leapind)
23: if ηCE over-perturbs then
24: ηCE ← η∗
25: end if
26: Execute exponential interpolation for ηCE to obtain

γ CE

27: return γ CE

parameters, respectively. CE leaping utilizes the mean rate
of convergence calculated from p̂ to determine how far
in biasing parameter space to leap forward (Line 13).
To compute the convergence rate of the first probability
estimate, we include the estimate computed immediately
before the first eligible p̂ when possible. The only instance
when this cannot be done is when two eligible values from
p̂ are the very first two estimates computed for a given k0.
The states from which CE leaping are triggered can

vary greatly. For example, the distance to the target prob-
ability PE , rate of change in p̂, and the magnitude of
PE can all differ substantially, even for the same sys-
tems using different values of k0. The amount of leaping
used should thus depend on all of these factors, in order
to avoid grossly over-perturbing the system. To handle
different rates of convergence, two pre-defined variables
leapprojs and leapfactors are used to adjust the amount of
leaping based on the average change in p̂ ·NS (meanstep)
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and the minimum distance to the target event probabil-
ity (distmin). The largest leaping multiplier (7 from Line 4)
is chosen when the estimated number of steps to reach
PE (stepproj; Line 13), is greater than 50 (Line 3). In con-
trast, when stepproj is less than 5 the standard multi-level
CE method is used instead of CE leaping. The value for
stepproj is computed assuming linear convergence with
rate meanstep. As this assumption may not be valid for
certain systems and target event functions f (x), leaping
multipliers (leapfactors in Line 4) are chosen conservatively
to prevent over-perturbation.
When CE leaping is triggered, SParSE++ skips the com-

putation of intermediate target events and their associated
biasing parameters, as γ (l) is set to γ CE.

Special leaping cases
The CE leaping algorithm is designed to accelerate the
rate of convergence of the multi-level CE method when it
is stuck on a “plateau” in parameter space. The opposite
scenario can also pose a problem to SParSE—in a “steep”
region of parameter space, themulti-level CEmethodmay
pass through the solution hypersurface too quickly. This
can lead to erroneous interpolants or even solution diver-
gence when computed estimates do not meet the thresh-
olds required for interpolation and leaping. Three cases
of this scenario are identified and handled in SParSE++.
Starting from the least severe instance and moving to
the most severe, we explain each case in detail. As with
CE leaping, new biasing parameters are computed from
past estimates; thus, description of the second stage of
the multi-level CE method (i.e., γ computation based on
intermediate target events) is omitted below.

Last leaping prior to interpolation
In a quickly-changing parameter region, SParSEmay enter
the interpolation stage with as few as two estimates, one
on either side of PE . Even when more than two esti-
mates exist, their values may be far from PE if only two
iterations of the multi-level CE method are run prior to
interpolation. Lack of p̂ values near PE can significantly
degrade interpolation quality. This case can be avoided
by first obtaining another estimate near PE . To do this,
SParSE++ computes an additional estimate prior to enter-
ing the interpolation stage using γWA, the values of which
are generated using Algorithm 2.
Here NS and PE denote the total number of simu-

lated trajectories and the user-defined target probability,
respectively. The least under- and over-perturbing bias-
ing parameters (γ u and γ o) are guaranteed to exist, since
Algorithm 2 is run immediately prior to the interpolation
stage, which is only triggered when both under- and over-
perturbing estimates have been computed. The weights
wu and wo for γ u and γ o reflect how close p̂u and p̂o
are to PE . Supposing p̂u is closer to PE than p̂o, then δu

Algorithm 2 Leaping with weighted average
1: γ u ← least under-perturbing biasing parameters

from past simulations
2: p̂u ← past estimate corresponding to γ u

3: ηu ← p̂u · NS
4: δu ← PE · NS − ηu

5: γ o ← least over-perturbing biasing parameters from
past simulations

6: p̂o ← past estimate corresponding to γ o

7: ηo ← p̂o · NS
8: δo ← ηo − PE · NS
9: wu ← δo

δo+δu

10: wo ← δu

δo+δu

11: γWA ← γ u · wu + γ u · wo

12: return γWA

(the distance between PE and p̂u) will be smaller than δo.
Since wu is defined as δo normalized by the total distance,
wu will be greater than wo. Thus, the weighted averaging
method gives more weight to biasing parameters from the
better estimate. When characterizing target events with
a larger error tolerance, the final leaping performed with
γWA may satisfy Eq. (2) and thus eliminate the need to run
interpolation.

Leaping on low-signal region
Near a quickly-changing region of parameter space, one
iteration of SParSE++ can alter biasing parameters so
much that the next estimate does not qualify for inter-
polation or CE leaping. In this case, the multi-level CE
method may take many iterations to escape this “low-
signal” region. Algorithm 2 can also be used to improve
performance in this case, provided that all three of the
following conditions are met:

1. At least three previous estimates exist
2. At least one estimate is located on either end of PE
3. At least one estimate on one side of PE is eligible for

interpolation, and every estimate on the other side
does not qualify

The last condition corresponds to the case where esti-
mates on one side of PE contain a sufficient signal for
interpolation, while estimates on the other side do not.
We note that although Algorithm 2 is executed both
here and in the previous special case, the conditions
that trigger the algorithm as well as its purpose are very
different. In the previous section, Algorithm 2 is used
to compute an estimate close to the target probability
before beginning the interpolation stage. Here, the same
method is used to escape a low-signal region in an efficient
manner.
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Bisection to obtain sufficient signal
The final case occurs when all past estimates exhibit
insufficient signal for interpolation. Although expected
to occur rarely, the multi-level CE method can produce
estimates that either reach the target event too few or
too many times. If the corresponding under- and over-
perturbation are severe, these estimates will not be con-
sidered for CE leaping or interpolation.When all recorded
estimates do not meet the interpolation threshold yet
exist on both sides of the target event probability PE ,
SParSE++ executes bisection on previous biasing parame-
ters in an attempt to move the system closer to PE . Using
Algorithm 3, we compute the biasing parameters with
bisection, γ BS.

Algorithm 3 Special case leaping with bisection
1: p̂u ← least under-perturbing biasing parameters from

past simulations
2: γ u ← biasing parameters corresponding to p̂u
3: p̂o ← least over-perturbing biasing parameters from

past simulations
4: γ o ← biasing parameters corresponding to p̂o

5: γ BS ← γ u+γ o

2
6: return γ BS

Unlike Algorithm 2, we do not measure distances of p̂u
and p̂o with respect to PE . Since these estimates exhibit
insufficient signal, their distances to the target event prob-
ability do not contain useful information for computing
weights of γ u and γ o.
We note that this final case was not observed in any of

the examples evaluated in the next section. However, the
event functions used with the four example systems are
simply the states of a single species. For more complicated
event functions, we expect this case to occur more fre-
quently, and Algorithm 3 will thus reduce the incidence of
solution divergence.

Improved interpolation
Exponential interpolation in SParSE plays an integral
role when the multi-level CE method alone is unable to
deliver the target event probability with acceptable preci-
sion. Once both under- and over-perturbed estimates are
observed that do not satisfy the desired probability range
(PE ± εPE ), SParSE employs exponential interpolation on
previous estimates to compute candidate biasing param-
eters. Acknowledging that the computed interpolant may
still not produce an estimate within the required accu-
racy, SParSE returns up to seven sets of biasing parameters
that correspond to slightly perturbed target event prob-
abilities. Using these candidate parameter sets, SParSE

computes the first new estimate using the biasing param-
eters corresponding to the exact target event probability
PE . If the estimate is too high (PE + εPE < p̂), SParSE
picks a set of candidate biasing parameters corresponding
to the least under-perturbing probability to compute the
next estimate. If the estimate is too low (p̂ < PE − εPE ),
SParSE picks the least over-perturbing probability instead.
This process continues until k∗ is found or no more can-
didate biasing parameters remain, whichever occurs first.
The default limit on the number of interpolation rounds is
set to 3 (i.e., up to 21 candidate biasing parameter sets are
computed). If the algorithm does not find γ ∗ at the end of
the third round of interpolation, SParSE assumes failure
to converge and exits.
The motivation behind working with multiple candi-

date biasing parameter sets in the SParSE interpolation
stage is that the candidate set corresponding to PE may
not produce a sufficiently accurate estimate, whereas a set
corresponding to interpolant values near PE might. Thus,
SParSE has as many as six alternate biasing parameter sets
to be chosen should the first set fail to satisfy Eq. (2). We
note that this approach is only helpful if γ ∗ falls within the
range of candidate biasing parameter values. In the worst
case when this is not true, SParSEmust run four additional
SSA ensembles to produce an estimate before computing
a new interpolant.
SParSE++ greatly improves the efficiency in this worst

case scenario by modifying the process of exponential
interpolation. First, it computes up to three different
exponential interpolants: one as in SParSE, one without
the farthest under-perturbing γ (when more than two
under-perturbed estimates exist), and one without the
farthest over-perturbing γ (when more than two over-
perturbed estimates exist). For each reaction, SParSE++
then chooses the interpolant with the highest R2 statis-
tic. R2 statistics are commonly used to assess goodness
of fit of statistical models to observed data [22]. For our
purposes, the R2 value, which is between 0 and 1, indi-
cates the fraction of the total variance of output (p̂) that is
explained by variation in input (γ ). Computing the three
interpolants and their corresponding R2 statistics incurs a
negligible computational cost, as no additional SSA sim-
ulations are required. Pseudocode for computing the next
reaction rates using SParSE++ exponential interpolation
is listed in Algorithm 4.
Unlike in SParSE, the chosen interpolant in SParSE++

returns only a single set of biasing parameters correspond-
ing to the exact value of PE , and new interpolants are only
computed if the corresponding estimate does not satisfy
Eq. (2). The computational cost of repeatedly generating
new interpolants and R2 scores in each stage is trivial com-
pared to the cost of simulating a single SSA trajectory
for most systems. If the projected biasing parameters γ̄

from Algorithm 4 are out of range for any reaction Rj, a
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weighted average is used to replace γ̄j, where the weights
are normalized distances betweenPE and estimates corre-
sponding to the least under- and over-perturbing biasing
parameter sets for Rj.

Algorithm 4 Exponential Interpolation of Biasing
Parameters
1: η∗ ← PE · NS
2: p̂hist ← up to 4 past estimates closest PE with at least

one element in either side of PE
3: ηhist ← p̂hist · NS
4: γ hist ← biasing parameters corresponding to p̂hist

normalized with respect to k0
5: for all j ∈ 1, · · · ,M do
6: solve for qj and rj in y = rjx + qj, where x ←

γ hist
(·,j) and y ← log

(
ηhist

)

7: γ̄j ← (
log (η∗) − qj

)
/rj

8: if ∃ more than one under-perturbing data then
9: solve for ruj and quj in y = ruj x + quj , with most

under-perturbing data removed
10: γ̄ u

j ←
(
log (η∗) − quj

)
/ruj

11: end if
12: if ∃ more than one over-perturbing data then
13: solve for roj and qoj in y = roj x + boj , with most

over-perturbing data removed
14: γ̄ o

j ←
(
log (η∗) − qoj

)
/roj

15: end if
16: γ̄j ← choose the candidate biasing parameters with

highest R2 score
17: γ

up
j ← least under-perturbing in γ hist

j
18: δ

up
j ← η

up
j · PE

19: γ
op
j ← least over-perturbing in γ hist

j
20: δ

op
j ← η

op
j · PE

21: δtotj ← δ
up
j + δ

op
j

22: wup
j ← δ

op
j /δtotj

23: wop
j ← δ

up
j /δtotj s

24: if γ̄j < 1 then
25: if γ̄j < γ

up
j then

26: γ̄j ← γ
up
j · wup

j + γ
op
j · wop

j
27: end if
28: else
29: if γ̄j > γ

op
j then

30: γ̄j ← γ
up
j · wup

j + γ
op
j · wop

j
31: end if
32: end if
33: k̄j ← γ̄j · k0j
34: end for
35: return k̄

Results and discussion
In this section we compare the performance of SParSE++
to that of SParSE using the same three models—a birth-
death process, a reversible isomerization model, and a
susceptible-infectious-recovered-susceptible (SIRS) dis-
ease transmission system—described in [16], as well as an
additional eight-reaction system modeling yeast polariza-
tion [20]. For the first three models, all possible combina-
tions ofPE ∈ {0.40, 0.60, 0.80} and εPE ∈ {0.01, 0.05, 0.10}
are analyzed by simulating ensembles ofNS = 5×104 tra-
jectories. For the birth-death process, we also simulated
an ensemble of NS = 2 × 105 for PE = 0.010 and εPE =
0.001 in order to illustrate the robustness of SParSE++ on
a low probability target event. Similarly, we explored the
high probability target event PE = 0.95 and εPE = 0.005
with the reversible isomerization model using ensemble
size NS = 105. Lastly, the yeast polarization model is
studied with PE = 0.60, εPE = 0.01, and NS = 5 × 104.
In order to minimize output differences resulting from

stochasticity (as opposed to methodological differences),
we used the same random number generator seeds and
initial reaction rates for SParSE and SParSE++. For fair-
ness of comparison, we treat each of the following
computations as a single iteration: estimation using the
multi-level CE method, computing biasing parameters for
intermediate events, estimation using interpolation, and
estimation using any type of leaping (CE, weighted aver-
age, and bisection). Although the exact costs of these
computations differ depending on the values of reac-
tion rates and the type of simulations (e.g., computa-
tion of intermediate events without over-perturbation is
often cheaper than with over-perturbation), the complex-
ity in terms of the number of trajectories simulated is
the same, i.e., O(NS). Overall, this procedure ensures
that the net computational gain or loss in terms of
the total number of trajectories generated is properly
quantified. Using this measure we define gaini(%) :=
No. Iterations SParSE−No. Iterations SParSE++

No. Iterations SParSE × 100 to assess the
performance of SParSE++ compared to SParSE for a spe-
cific combination of PE and εPE values. The numerator is
the difference between the number of iterations employed
by the two methods, while the denominator is the total
number of iterations SParSE required. This fraction is
multiplied by 100 to create a percentage. Similarly, we
define gaint(%) := SparSE runtime−SparSE++ runtime

SparSE runtime × 100
for comparison of absolute runtime (in seconds). Both
variables gaini and gaint measure the relative computa-
tional ‘gain’ from using SParSE++ over SParSE. All simu-
lations were run on Intel® Xeon® CPU E5-2620 v2 at 2.10
GHz workstation with 16 GB RAM, 64-bit Windows 10
Enterprise OS, using Matlab and its Parallel Computing
Toolbox™.
Lastly, we note that SParSE++ achieved 100% success

on all examples tested and therefore omit explicitly listing
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the success rate in any of the tables. For examples where
SParSE observed failure [16], we examine the role of
new features in SParSE++ that enabled the algorithm to
successfully converge to the solution hypersurface.

Birth-death process
Our first example is the birth-death process, which is
defined as follows:

∅ k1→ S, 1.0 ≤k1 ≤ 1.7

S k2→ ∅, 0.0125 ≤k2 ≤ 0.025,

with x0 =[ 40] and E the population of S reaching 80
before tf = 100. Table 1 summarizes the results for the
10 test cases. We note that SParSE++ attained 100% con-
vergence as well as significant computational gains for
problems that required high accuracy. Figure 1 illustrates
ensemble results from running SParSE (a) and SParSE++
(b) for PE = 0.60 and εPE = 0.01, a problem specification
on which SParSE++ achieved the highest computational
savings, with gaini = 48.5% and gaint = 46.6%. For
the 30 initial reaction rates, SParSE computed a total of
166 estimates (332 iterations), whereas SParSE++ com-
puted only 122 estimates (171 iterations). We can see that
the estimate density in Fig. 1a is higher than (b) near
the solution surface (thin area between two green dashed
lines), indicating the improved efficiency of SParSE++.
The difference of 161 iterations is equivalent to a savings
of over 8 × 106 simulated trajectories.

Table 1 Results of SParSE and SParSE++ applied to the
birth-death process

PE εPE
Tot. Iter. Tot. Iter. Time (s) Time (s) No. Gain No. Loss

SParSE SParse++ SParSE SParSE++

0.40

0.01 293 175 1139.0 684.9 119 1

0.05 189 139 685.1 517.4 53 3

0.10 139 121 476.2 457.6 21 3

0.60

0.01 332 171 1128.7 602.2 161 0

0.05 175 141 539.5 500.1 38 4

0.10 129 120 378.3 421.6 9 0

0.80

0.01 242 186 728.8 629.8 60 4

0.05 139 137 449.9 480.8 3 1

0.10 110 110 342.2 382.7 2 2

0.010 0.001 279 244 3943.5 3656.6 44 9

The first column denotes the target probability, the second column absolute error
tolerance, the third column the total number of SParSE samples computed for the
30 initial parameter sets, the fourth column the total number of SParSE++ samples
computed for the 30 initial parameter sets, the fifth the total number of iterations
gained by running SParSE++ compared to SParSE, and the sixth the total number of
iterations lost by running SParSE++ compared to SParSE. NS = 5 × 104 for all
configurations except PE = 0.01, where NS = 2 × 105

Roh and Eckhoff [16] reports that two of the thirty
SParSE samples, k03 =[ 1.606 0.0140] and k027 =
[ 1.684 0.0148] (subscript representing the index of ini-
tial reaction rates), failed to converge in the interpolation
stage for PE = 0.60 and εPE = 0.01. The reason for
the failure in both cases is due to the poor agreement
between past parameter estimates and their correspond-
ing exponential interpolants. Specifically, the parameters
computed by the inverse biasing method over-perturbed
the system and yielded an estimate far from PE . Figure 2a
summarizes the progression of SParSE with k03 . Qualita-
tively, the behavior with k027 is similar and is thus omit-
ted from illustration. Each over-lapping rectangular pair
lists the reaction rates at stage l (noted as superscript)
and its corresponding estimate p̂(l). The large amount of
change in p̂(2) (highlighted in red in the Figure) from p̂(1)

despite the absolute magnitude of change in k(2) being
similar to the iteration prior indicates that the proba-
bility shifts rapidly around k(2). Because p̂(2−4) are far
from PE and γ (2−4) are obtained by the inverse biasing
method, the resulting interpolant is poor and SParSE is
unable to find k∗. This problem is resolved in SParSE++
by applying weighted average leaping prior to entering
the interpolation stage. Instead of continuing with the
remaining biasing parameter candidates as in SParSE,
i.e., computing p̂(3−4), SParSE++ stops the multi-level CE
method, as both under- and over-perturbing estimates
are obtained. Using the biasing parameters computed in
Algorithm 2, SParSE++ places the third estimate p̂(3) at
0.587, near PE = 0.60 (Fig. 2b). When the SParSE++
interpolation stage begins, the interpolant without the
most under-perturbing estimate is chosen, as its R2

score is highest. The removal of this outlier significantly
improves the interpolant quality, and SParSE++ reaches
the solution hypersurface in the first interpolation stage
(i.e., k∗ ← k(4)).

Reversible isomerization model
Our second example is a reversible isomerization model,
which is defined as follows:

A k1→ B, 0.1 ≤k1 ≤ 0.3

B k2→ A, 0.3 ≤k2 ≤ 1.0,

with x0 =[ 100 0], i.e., all molecules are initially in the A
form. The target event E is set to the population of isomer
B reaching 30 before tf = 10.
Results from 10 test cases are given in Table 2. Although

SParSE achieved 100% convergence for the first nine cases,
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Fig. 1 Ensemble result comparison between SParSE a and SParSE++ b performance for birth-death process with PE = 0.60 and εPE = 0.01. For
given thirty initial reaction rates, SParSE required 166 estimates while SParSE++ required 122

one of the 30 reaction rates for PE = 0.95 failed to con-
verge [16]. In contrast, SParSE++ attained perfect conver-
gence for all 10 test cases, required many fewer iterations
than SParSE on average, and achieved up to 34.7% in gaini
(PE = 0.60, εPE = 0.01) and 59.5% in gaint (PE =
0.40, εPE = 0.01). The largest gaini achieved for a sin-
gle set of initial reaction rates is 9 iterations; two reaction
rates (k05 =[ 0.2494 0.6709] and k026 =[ 0.2559 0.3858])
accomplished this for PE = 0.60 and εPE = 0.01.
For each of these two sets, SParSE required 9 iterations
of interpolation before reaching the solution hypersur-
face. The reason SParSE employed such a high number
of interpolations is the same reason the two reaction
rates from the birth-death process failed to converge: past
estimates from the inverse biasing method did not form
an exponential trend. Running Algorithm 2 in SParSE++
eliminated this problem and required one and zero

iterations of interpolation for k026 and k05 , respectively.
Figure 3 compares the states at which interpolation is
initialized for the two methods with k026. Sub-figures (a)–
(c) illustrate three successive interpolants computed by
SParSE, while sub-figure (d) illustrates the behavior of
SParSE++. When exponential interpolation is initiated for
the first time (Fig. 3a), we see that past estimates do not
form a smooth trend that can be well-characterized by
a single exponential function. After exhausting all candi-
date biasing parameters from the first interpolant, another
interpolation is initiated (Fig. 3b), this time exhibiting a
much smoother trend and narrower range of estimates
(i.e., η values are much closer to η∗ = PE · NS). However,
the candidate biasing parameters from the second inter-
polation stage still over-perturbed the system more than
the allowed error tolerance εPE = 0.01, and a third
interpolation stage was required. The first candidate from

Fig. 2 Flow chart of SParSE simulation on the birth-death process with PE = 0.60, εPE = 0.01, and k0 = [1.6058 0.01401] for SParSE (a) and
SParSE++ (b)
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Table 2 Results of SParSE and SParSE++ applied to the reversible
isomerization model

PE εPE
Tot. Iter. Tot. Iter. Time (s) Time (s) No. Gain No. Loss

SParSE SParse++ SParSE SParSE++

0.40

0.01 299 208 3133.8 1269.3 93 2

0.05 210 172 1758.9 1144.3 40 2

0.10 175 164 1549.3 1042.6 15 4

0.60

0.01 349 228 2634.2 1266.6 125 4

0.05 233 187 1762.5 1055.7 46 0

0.10 188 175 1510.8 941.4 17 4

0.80

0.01 319 247 2199.7 1384.6 74 2

0.05 227 206 1415.7 1054.3 24 3

0.10 190 188 1330.9 979.2 7 5

0.95 0.005 316 306 3539.8 2678.5 25 15

Column identities match those of Table 1. NS = 5 × 104 for all configurations
except PE = 0.95, where NS = 105

the third interpolant satisfied Eq. (2), and SParSE found
k∗ after computing a total of 9 estimates from interpo-
lation. In contrast, SParSE++ converged to the solution
hypersurface with the first candidate biasing parameters
from interpolation (Fig. 3d). Although the range of η in

(d) is similar to that of SParSE in (b) when interpolation
is initiated, the range used to compute the final inter-
polant is similar to that of SParSE in (c). This is because
the interpolant yielding the highest R2 score was obtained
by removing the most over-perturbing parameters. Fur-
thermore, this removal was possible because the estimate
computed with biasing parameters from weighted aver-
age leaping is very close to, but slightly above, the target
probability.

SIRS disease transmission system
Our third example is a Susceptible-Infectious-Recovered-
Susceptible (SIRS) disease transmission system, which
consists of the following three reactions:

S + I β→ 2I, 0.005 ≤β ≤ 0.150

I γ→ R, 0.50 ≤γ ≤ 4.0

R ω→ S, 0.10 ≤ω ≤ 3.0,

with x0 =[ 100 1 0], where x =[ S I R]. This model
describes an epidemiological compartment where mem-
bers of S become infected by members of I, who recover

Fig. 3 Interpolation comparison between SParSE and SParSE++ for the reversible isomerization model with PE = 0.60, εPE = 0.01, and
k0 =[ 0.2559 0.3858]. Sub-figures a-c display three successive interpolation attempts made by SParSE, where the solution hypersurface is reached
by the ninth candidate biasing parameter set. Sub-figure d represents interpolation by SParSE++, whose first output successfully finds k∗ . Blue and
green circles denote counters (p̂ · NS) from past biasing parameters for R1 and R2, respectively. Blue and green dashed lines represent interpolants
corresponding to past counters. Yellow horizontal line is the target counter (PE · NS). Red triangles represent counters corresponding to candidate
biasing parameters
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from the infection at rate γ and transition to R. Once
recovered, members of R lose immunity at rate ω, and this
transition from recovered to susceptible replenishes the
population of S. The target event for this system is set to
the population of I reaching 50 before tf = 30. Unlike the
two previous examples, this model contains a non-linear
reaction R2, and there is no closed-form solution for com-
puting k∗. Therefore we use the same numerical solution
obtained using the SSA in [16] to evaluate accuracy of
SParSE and SParSE++ estimates.
Table 3 summarizes the results of nine standard test

cases. The biggest gaini of 38.7% originates from PE =
0.40 and εPE = 0.01, where SParSE++ utilized 206 fewer
iterations (equivalent to savings of 1.03 × 107 trajecto-
ries). This is the largest gain among all examples in terms
of the number of iterations saved. The substantial gain
stems from a combination of the new features offered in
SParSE++. To illustrate this point, we pick initial reac-
tion rates that required more than 20 SParSE iterations to
reach k∗ and evaluate the corresponding performance of
SParSE++ (Table 4). For each initial set of reaction rates
(k0), SParSE iterations are divided into computation of
intermediate events (IE), biasing parameters for IE (γ ),
inverse biasing from over-perturbation (OP), and interpo-
lation (Interp). The final column (Tot) contains the sums
of iterations for the given reaction rates k0. For SParSE++
results, we also add the number of iterations due to leap-
ing (Leap). Figure 4 displays the eight reaction rates in
a probability plot with the solution hypersurface (cyan
mesh).
From Table 4 and Fig. 4, we see that some initial reac-

tion rates are not far from PE = 0.40 in absolute distance
(e.g., p̂0 = 0.64 and p̂0 = 0.74). This illustrates that the
initial distance from PE cannot be reliably used to predict
the speed of SParSE convergence to the solution hypersur-
face; if the initial estimate lies in a low-variance parameter

Table 3 Results of SParSE and SParSE++ applied to SIRS disease
dynamics

PE εPE
Tot. Iter. Tot. Iter. Time (s) Time (s) No. Gain No. Loss

SParSE SParse++ SParSE SParSE++

0.40

0.01 532 326 4252.9 3687.7 208 2

0.05 424 294 3602.8 3310.3 136 6

0.10 386 247 3247.4 2863.8 141 2

0.60

0.01 328 212 826.6 589.8 117 1

0.05 201 180 518.3 512.3 26 5

0.10 178 156 477.2 469.0 22 0

0.80

0.01 309 306 608.9 598.1 16 13

0.05 231 221 490.9 510.9 10 0

0.10 183 180 399.2 436.5 3 0

Column identities match those of Table 1. NS = 5 × 104 for all configurations

region, the multi-level CE method may take many iter-
ations to reach k∗. We also note that the occurrence
of over-perturbation alone is not highly correlated with
the speed of convergence in SParSE. Three of the eight
sets did not show any over-perturbation yet converged
slowly to the solution hypersurface. The same holds for
the number of interpolations; half of the eight reaction
rates employed either 0 to 1 interpolation iterations to find
k∗ (Table 4). These varying behaviors demonstrate that no
single modification to the SParSE algorithm would have
significantly accelerated the convergence rates for all eight
worst-case examples; rather, a collection of enhancements
like those implemented in SParSE++ is required.
Table 4 shows that SParSE++ performed significantly

better than SParSE for all eight of the initial reaction rates
(Gain). For each simulation, SParSE++ saved 6 to 35 iter-
ations, with an average savings of 18 iterations. We see
that at least one of the leaping methods was employed
in all eight SParSE++ simulations; Table 5 further char-
acterizes those events. For each set of initial reaction
rates, we list the number of leaping events employed
by CE leaping (CE), weighted average leaping prior to
interpolation (WAInterp), weighted average leaping in a
low-signal region (WALowSig), and bisection (Bisect). The
final two columns sum the total numbers of leaping events
(Tot) and iterations saved using SParSE++ over SParSE
(Gain). Runs for all eight sets of reaction rates employed
at least one round of CE-leaping, with the four slowest-
converging runs employing two rounds. This illustrates
the importance of CE leaping to convergence rate acceler-
ation. Only one run utilized low-signal weighted average
leaping (k0 =[ 0.081 1.07 2.28]), and none utilized bisec-
tion. This behavior is expected, as these two methods are
designed to handle uncommon yet challenging scenarios
of rapidly changing low-signal parametric regions. Lastly,
we note that only SParSE++ run on the first reaction rate
set required interpolation (Table 4); for the remaining
runs, applying leaping methods eliminated the need for
interpolation.
We note that the use of leaping often yields slightly

different points in the solution hypersurface than those
identified without any leaping methods. Figure 5 com-
pares the estimate progression of SParSE and SParSE++
for k0 =[ 0.079 1.59 2.42], which corresponds to the
initial reaction rates requiring the greatest number of
SParSE iterations to converge (row 1 in Table 4). In this
instance, SParSE ran the multi-level CE method exclu-
sively until the very last iteration, at which point it iden-
tified k∗

SParSE =[0.065 2.29 2.02] using interpolation. In
contrast, SParSE++ employed three rounds of leaping and
three rounds of interpolation in addition to themulti-level
CE method and obtained k∗

SParSE++ =[ 0.064 2.22 1.92].
We see from Fig. 5 that the first two estimates are almost
identical between the two methods. This is expected,
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Table 4 Detailed results of SParSE and SParSE++ applied to SIRS disease dynamics on eight initial reaction rates (column 1) that
exhibited slowest SParSE convergence

SParSE SParSE++

k0 p̂0 IE γ OP Interp Tot IE γ OP Leap Interp Tot Gain

[ 0.079 1.59 2.42] 0.80 20 17 17 1 55 4 3 3 3 3 16 39

[ 0.081 1.07 2.28] 0.87 18 16 16 0 50 4 3 3 5 0 15 35

[ 0.067 3.96 2.37] 0.00 17 6 0 5 38 12 11 0 2 0 25 13

[ 0.064 3.31 1.71] 0.00 13 12 0 5 30 10 9 0 3 0 22 8

[ 0.035 1.22 2.38] 0.64 11 8 8 2 29 5 4 4 2 0 15 14

[ 0.040 3.59 1.52] 0.00 13 12 0 3 28 11 10 0 1 0 22 6

[ 0.080 2.08 2.22] 0.74 11 8 8 1 28 3 2 2 1 0 8 20

[ 0.031 3.16 1.84] 0.00 11 10 0 6 27 9 8 0 1 0 18 9

Initial probability estimate, number of intermediate event (IE) computations, number of biasing parameter computations, number of over-perturbation (OP) stages, and
number of interpolation stages for SParSE simulations are given in columns 2-6, respectively. Column 7 contains the total number of SParSE iterations (row sum) for the initial
rate in column 1. SParSE++ statistics are listed in columns 8 to 13, including the number of times the leaping method was used in column 11. The number of iterations saved
by employing SParSE++ over SParSE is given in column 14 (difference between columns 7 and 13)

since both methods used the multi-level CE method
to compute these estimates. However, SParSE++ initi-
ates CE leaping on the third estimate upon detection of
slow convergence. As a result, the third SParSE++ esti-
mate is positioned close to but slightly below the ninth
SParSE estimate. The fourth and fifth SParSE++ estimates
closely parallel the 10th and 11th SParSE estimates, after
which SParSE++ again employs CE leaping for the final
estimates.

Yeast polarization
For our final example, we modified a model of the
pheromone-induced G-protein cycle in Saccharomyces
cerevisiae given in [20] in a similar fashion as [13] so that
it does not start in nor reach stochastic equilibriumwithin
tf = 10. Our modified system consists of seven species

x =[R L RL G Ga Gbg Gd] and is characterized by the
following eight reactions:

∅ k1→ R 0.30 ≤ k1 ≤ 0.90

R k2→ ∅ 0.0005 ≤ k2 ≤ 0.0015

L + R k3→ RL + L 0.0025 ≤ k3 ≤ 0.0075

RL k4→ R 0.015 ≤ k4 ≤ 0.045

RL + G k5→ Gα + Gβγ 0.0003 ≤ k5 ≤ 0.0030

Gα
k6→ Gd 0.05 ≤ k6 ≤ 0.15

Gd + Gβγ
k7→ G 0.0003 ≤ k7 ≤ 0.0008

∅ k8→ RL 0.001 ≤ k8 ≤ 0.150,

Fig. 4 Visualization of the target event probability for SIRS model. Solution hypersurface is represented by cyan mesh grid. Eight sets of initial
reaction rates that correspond to the slowest convergence in SParSE are represented by red squares
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Table 5 Detailed breakdown of SParSE++ applied to SIRS disease
dynamics leaping usage on eight initial reaction rates that
exhibited slowest SParSE convergence

SParSE++ Leaping Usage

k0 CE WAInterp WALowSig Bisect Tot Gain

[ 0.079 1.59 2.42] 2 1 0 0 3 39

[ 0.081 1.07 2.28] 2 1 2 0 5 35

[ 0.067 3.96 2.37] 2 0 0 0 2 13

[ 0.064 3.31 1.71] 2 0 0 0 2 8

[ 0.035 1.22 2.38] 1 1 0 0 2 14

[ 0.040 3.59 1.52] 1 0 0 0 1 6

[ 0.080 2.08 2.22] 1 0 0 0 1 20

[ 0.031 3.16 1.84] 1 0 0 0 1 9

Columns 2-5 list the number of times CE leaping, weighted average (WA) leaping
prior interpolation, WA leaping on one-sided low signal region, and the bisection
method were employed, respectively, for k0 in column 1. The total number of
leaping methods employed for each initial set of reaction rates is given in column 6.
Lastly, the number of iterations saved by running SParSE++ over SParSE is listed in
column 7

with x0 =[ 70 4 0 100 0 0 0]. In this yeast polarization
process, the subunit Gβγ is thought to play an important
role of signaling for the downstream Cdc42 cycle. Here we
aim to discover reaction rates that yield target event E of
X(Gbg) reaching 80 by tf = 10 with probability PE = 0.60
and error tolerance εPE = 0.01.
Aggregated results from employing SParSE and

SParSE++ on thirty initial reaction rates are given in
Table 6. SParSE++ achieved gaini of 19.5% and gaint of
21.7%. We note that SParSE++ either outperformed or
performed equally well as SParSE for all sets of initial
reaction rates except for two, where it had a loss of
only one iteration. Distribution of gain and loss in the
number of total iterations per initial reaction rates is

shown in Fig. 6. We see from this figure that twelve of
thirty sets (40%) performed equally well with SParSE++
as with SParSE. Upon further inspection, we discovered
that these twelve sets required the least number of
interpolations (either 0 or 1) using SParSE. All other
sets required a nonzero number of interpolations (1 to
5). For 28 out of 30 initial reaction rates, SParSE++ did
not require any interpolation; weighted average leaping
prior to interpolation carried the system to the solution
hypersurface within the error tolerance of 0.01. We also
note that SParSE++ required at most two leapings for any
given set of initial reaction rates, where the majority of
leaping was initiated prior to interpolation rather than
from slow convergence. For systems that suffer from low
stochasticity and thus slow convergence to the target
event, we expect higher gains in efficiency from employ-
ing SParSE++. A list of all 30 initial reaction rates and the
number of iterations required for each set by both SParSE
and SParSE++ are given in Additional file 1: Appendix
Section C.
In order to identify possible linear relationships among

different reaction rate parameters that correspond to the
solution hypersurface, we computed correlation coeffi-
cients between each pair of reactions for all k∗ values
from SParSE++ simulations (30 data points). We observed
two correlations which were greater than 0.70 in magni-
tude: between reactions R1-R8 and R3-R5. Table 7 displays
details from running the correlation analysis. Both iden-
tified pairs are involved in controlling the population of
species RL. Since the ligand (L) population is constant in
our model, the population of RL plays a crucial role in
production of Gβγ . The presence of too many molecules
of RL would result in over-perturbation, while too few
would result in under-perturbation with respect to the

Fig. 5 Visualization of SParSE and SParSE++ estimates converging to k∗ for k0 =[ 0.079 1.59 2.42]. Blue squares represent SParSE++ estimates, two of
which are obtained from biasing parameters computed with CE leaping. Red squares represent SParSE++ estimates
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Table 6 Results of SParSE and SParSE++ applied to the yeast
polarization system

PE εPE
Tot. Iter. Tot. Iter. Time (s) Time (s) No. Gain No. Loss

SParSE SParse++ SParSE SParSE++

0.60 0.01 343 275 13219.6 10350.1 69 1

Column identities match those of Table 1. NS = 5 × 104

target probability (PE = 0.60). The negative correlation
coefficient value for R3-R5 (r = −0.76) implies that when
k3 is set to a large value to produce many RL molecules,
SParSE++ reduces the value of k5 to compensate for the
increase in population, and vice versa. For R1-R8 (r =
0.71), when k1 is high andmany molecules of species R are
produced, these molecules interact with L to produce RL.
The resulting over-population is controlled by simultane-
ously increasing the degradation rate of species RL (k8).
Reactions R1, R2, R3, R4, and R8 all directly participate in
controlling the populations of the R and RL species. Run-
ning the correlation analysis identified two key reaction
pairs that SParSE++ jointly perturbed to confer the target
event of Gβγ reaching a population of 80 by tf = 10. Such
insights into the yeast polarization system may be useful
for guiding future experiments in a laboratory setting.

Conclusions
We have developed SParSE++, a substantially more com-
putationally efficient enhancement of SParSE for identi-
fying parameter configurations that confer a user-defined
probabilistic event. SParSE++ features novel parameter

Fig. 6 Distribution of number of iterations gained by using SParSE++
over SParSE for the yeast polarization process with PE = 0.60 and
εPE = 0.01. A total of 30 data points are displayed. Themagenta bar
represents two instances of a loss of one iteration, while the
remaining blue bars represent either no change or gains of iterations

Table 7 Results from applying correlation analysis on SParSE++
output of the yeast polarization model

R3-R5

r Lower Bound Upper Bound p-value

-0.76 -0.88 -0.55 1.0e-6

R1-R8

r Lower Bound Upper Bound p-value

0.71 0.48 0.85 9.4e-6

The first column denotes the correlation coefficient, the second column a lower
bound from a 95% confidence interval, the third column an upper bound, and the
last column the corresponding p-value

leaping methods for accelerating convergence as well as
a more principled interpolation approach. Each class of
leaping methods in SParSE++ has a set of prerequisite
conditions. When these conditions are met, the algorithm
“leaps" through parameter space, resulting in a marked
reduction of the number of iterations required for con-
vergence. This cross-entropy leaping approach, based on
exponential extrapolation, permits the algorithm to con-
verge much more rapidly for low stochasticity problems
than the traditional multi-level CE method employed by
SParSE. In addition, by computing a weighted average of
previous estimates, SParSE++ improves the accuracy of
interpolation. We note that all the merits of SParSE—high
parallelizability, robustness of PE values, and concur-
rent updates on all reaction parameters—are retained in
SParSE++.
The four examples featured in this paper demonstrate

that performance gains are largest for problems requir-
ing high accuracy. In terms of total number of iterations
required, SParSE++ outperformed SParSE in 29 out of 30
test problems. For the birth-death process with PE =
0.80 and εPE = 0.10, SParSE and SParSE++ performed
equally well. This is not surprising, as most (29 out of
30) of the initial reaction rates did not require any inter-
polation in SParSE and converged rapidly to the solution
hypersurface. For this problem configuration, each set
of initial reaction rates required only 3.7 iterations on
average to converge to the solution hypersurface. Sim-
ilarly, SParSE++ outperformed SParSE on 25 out of 30
test problems when comparing the total runtime. For the
remaining five problems, the differences in runtime are
negligible (less than aminute).We also note that three sets
of reaction rates that failed to converge using SParSE (two
from the birth-death process and one from the reversible
isomerization model) successfully reached the solution
hypersurface with SParSE++.
As computational researchers continue to model events

of interest in realistic biochemical systems, the need for
efficient methods to identify compatible reaction rate
parameters will grow. We expect that the algorithmic
advancements provided by SParSE++ will fulfill this need
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and enable characterization of increasingly more compu-
tationally intensive biochemical events in the future.

Additional file

Additional file 1: Appendix. In this file, we present a list of variables and
definitions used in the manuscript (Section A). Detailed pseudocode for
the SParSE++ driver, multi-level CE method, and inverse biasing method
are given in Section B. Section C contains two tables regarding the yeast
polarization process. The first table (Table 4) lists thirty randomly generated
initial reaction rates that were used to run the SParSE and SParSE++
algorithms. The second table (Table 5) contains an algorithmic breakdown
for each of the initial reaction rates. (PDF 234 kb)
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