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Abstract

Background: MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by
inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles
of a miRNA and its target mRNA, various computational methods have previously been proposed to identify
miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However,
there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-
mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles
using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight
due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size
problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical
correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods
usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or
suboptimal performance across different datasets is highly needed.

Results: In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association
networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods
(namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the
bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble
aggregation to build a reliable and robust model across different datasets.
Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in
DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art
Ensemble-based model [1] which has shown the best performance across the same three datasets, with a factor of
up to 1.29. Further, we identify 43 putative novel multi-cancer-related miRNA-mRNA association relationships from
an inferred Top 1000 direct miRNA-mRNA association network.

Conclusions: We believe that DMirNet is a promising method to identify novel direct miRNA-mRNA relations and
to elucidate the direct miRNA-mRNA association networks. Since DMirNet infers direct relationships from the
observed data, DMirNet can contribute to reconstructing various direct regulatory pathways, including, but not
limited to, the direct miRNA-mRNA association networks.
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Background
MicroRNAs (miRNAs) are short endogenous non-
coding RNAs that regulate their target mRNAs by pro-
moting messenger RNA (mRNA) degradation or repres-
sing translation [2]. It has been shown that miRNAs are
involved in controlling a wide range of biological pro-
cesses such as differentiation [3], cellular signalling [4],
and several types of cancers [2]. Since miRNAs play cru-
cial roles in regulating genes, the functional associations
between miRNAs and mRNAs should be elucidated.
However, experimental identification of miRNA-mRNA
associations usually performs on a small-scale with a
high cost. Therefore, various computational identifica-
tion methods have been proposed [5].
MiRNAs regulate their target mRNAs post-transcriptionally

by base paring to complementary sequences in the 3′-
UTR of mRNAs [6]. Based on this property, several
methods have been proposed to identify miRNA-target
mRNA relationships using sequence data based on se-
quence complementarity or structural stability [7–9]. Even
though the sequence-based computational methods work
well with generating putative miRNA-target mRNA rela-
tionships, those methods suffer from high false positive
rates and false negative rates [5].
To overcome the limitation of sequence-based compu-

tational methods, matched expression profiles have been
incorporated to identify miRNA-mRNA association rela-
tionships. When a miRNA regulates a target mRNA, the
expression level of its target mRNA should accordingly
be changed. Therefore, there is a correlation between
the expression levels of a miRNA and its target mRNA.
Based on the premise, various computational methods
have been proposed to identify miRNA-mRNA associ-
ation relationships [10–12] or to build miRNA-mRNA
regulatory networks [13–16] by incorporating the
matched miRNA and mRNA expression profiles. The
conventional approaches for identifying miRNA-mRNA
associations using expression profiles are based on trad-
itional correlation measures such as Pearson’s linear cor-
relation coefficient [17–19], Spearman’s rank-based
correlation coefficient [20] or mutual information [21].
These conventional correlation-based methods are valu-
able tools for generating putative miRNA-mRNA associ-
ation relationships.
However, there remain some limitations to be resolved

in inferring miRNA-mRNA associations from expression
data. First, traditional correlation-based network analysis
results in many spurious edges [22, 23]. Most of expres-
sion profile datasets come from high-throughput experi-
ments, and the expression profiles include hundreds to
thousands of variables. The inferred correlations from
the observed expression profiles using conventional
correlation-based methods contain indirect association
relationships derived from transitive information flow

among direct associations [23]. In most cases, due to the
limitations of information, it is hard to distinguish be-
tween direct associations and indirect associations among
ten thousands of variables. Therefore, it is needed to sup-
press spurious associations from output results.
Second, the expression profiles from microarray experi-

ments suffer from “High-dimension-low-sample-size
(large p small n) problem” [24]. When we estimate the
empirical correlation between all pairs of expression pro-
files or conditional dependencies among all variables to
infer association relationships, a covariance matrix of size
p × p has to be calculated. However, it is difficult to obtain
an accurate and reliable estimate of the population covari-
ance matrix from a dataset that has a large number of var-
iables but includes few samples (n < <p) [24].
Third, it is impossible to know in advance which

method will produce good results with user’s datasets
among various computational methods. It has been
shown that there is no single computational method that
performs well consistently across different datasets and
different experimental environments [25]. Each method
has been developed with a different premise and ap-
proach. Thus, different computational methods usually
produce different outputs from the same input data, and
one method usually shows different prediction perform-
ance across different datasets. As shown in the Result
section, our empirical experiments on three datasets
confirm the inconsistent performance of computational
methods for identifying miRNA-mRNA association rela-
tionships. Therefore, a more reliable model that guaran-
tees optimal or suboptimal performance across different
datasets is highly needed.
In this study, we present a new framework for recon-

structing direct miRNA-mRNA association networks from
expression data. The main objectives of the proposed
framework (called DMirNet) are as follows: 1) to identify
direct associations between miRNA and mRNA, 2) to
handle the large p small n problem in microarray expres-
sion data, and 3) to build a reliable and robust model
across different datasets. To achieve the aforementioned
objectives, we propose a direct miRNA-mRNA association
network reconstruction method that adopts direct correl-
ation identification methods, the bootstrapping, and an
Ensemble approach. First, to suppress indirect associations
from the observed expression profiles, we adopt three
methods to identify direct relationships, namely partial
correlation [24], sparse partial correlation [22], and net-
work deconvolution [23] methods. Second, to overcome
the high-dimension-low-sample-size problem, we reduce
the dimension of a dataset by selecting the differentially
expressed miRNA and mRNAs in an experiment. Also, we
embed the bootstrapping approach to build a more accur-
ate and reproducible network by fully utilizing the limited
size of samples. Third, to improve the accuracy and
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reliability of the inferred association relationships, we se-
lect a non-parametric Ensemble approach. It has been
shown that the ensemble methods that integrate different
methods usually outperform individual methods [24, 25].
To aggregate bootstrapping results and different results
from different methods, we choose a rank-product-based
non-parametric Ensemble method.
We use experimentally confirmed miRNA-mRNA as-

sociation datasets to evaluate the performance of DMir-
Net. The results of our empirical experiments on three
matched miRNA and mRNA expression profiles show
that DMirNet reconstructs a more accurate and reliable
miRNA-mRNA association network by incorporating
direct correlation methods, bootstrapping and Ensemble
approach. We also compare the performance of DMir-
Net with the state-of-the-art Ensemble model [1] that
combines Pearson’s correlation, IDA [14], and Lasso [26]
on the same datasets. The results of comparative experi-
ment show that DMirNet performs better than the
counterpart model with a factor of up to 1.29.

Methods
Framework for identifying direct miRNA-mRNA associ-
ation relationships
In this section, we present an overview of the framework
for identifying direct miRNA-mRNA association rela-
tionships as illustrated in Fig. 1. To infer direct miRNA-
mRNA association relationships, a matched miRNA-
mRNA expression data is needed. After pre-processing
each sample, differentially expressed miRNAs and
mRNAs are identified to reduce the dimension of data
and to focus on the active miRNA-mRNA associations.
Because miRNA and mRNA expression profiles are ob-
tained from different platforms, their selected miRNA
and mRNA expression profiles are integrated and then
scaled.
To reconstruct base-direct microRNA-mRNA associ-

ation networks, three bootstrapping-based direct correl-
ation inference methods are applied to the integrated
expression profiles. Notably, each direct correlation in-
ference method produces a direct correlation model
from the expression profiles as a form of a matrix that
contains all combinations among miRNAs and mRNAs.
Given the integrated expression profiles, the bootstrap-
ping generates m new training data sets by resampling
with replacement. For each direct correlation inference
methods, m models are computed using the generated
m bootstrap samples that are integrated by a rank-based
aggregation method. Then, the bootstrapping outputs
from the three methods are integrated using the rank-
based aggregation method to produce a final direct
correlation model. A direct miRNA-mRNA association
network is reconstructed by thresholding the weights in
the output correlation matrix.

Three direct association network inference methods
A conventional approach to reconstruct gene regulatory
or association networks consists of computing the asso-
ciation weight among variables and inferring a link be-
tween the two variables by thresholding the association
weight. However, the association weight also includes
the confounding effect of other variables. By factoring
out the dependency of other variables, a direct associ-
ation network can be inferred. In this subsection, we
introduce three methods that we have adopted for infer-
ring direct association networks using expression
profiles.

Partial correlation
A partial correlation measures the association weight be-
tween two random variables by suppressing the effect of
a set of controlling random variables. The partial
correlation-based methods can infer the conditional de-
pendency by the non-zero entries in the concentration
matrix which is the inverse of covariance matrix. When
we apply the partial correlation-based method to identify
a genetic network, the zero entries can be interpreted as
two nodes that do not interact directly with each other.
Schafer and Strimmer [24] proposed a statistically effi-

cient and computationally fast shrinkage estimator for
the covariance and correlation matrix. We use the Corp-
cor package [24] to compute the partial correlations be-
tween selected miRNA and mRNA expression profiles.
The resulting partial correlation coefficient between the
two variables is regarded as an association weight be-
tween them.

Sparse partial correlation estimation (SPACE)
SPACE is another method to compute partial correla-
tions under the large p and small n problem setting [22].
The main characteristics of SPACE are that it assumes
that the partial correlation matrix is sparse, and most
variable pairs are conditionally independent. Therefore,
the output of space is a sparse matrix where many of the
possible interactions are zeros. This method helps to se-
lect non-zero partial correlations. It estimates sparse
partial correlation using sparse regression techniques
and optimizes the results with a symmetric constraint
and an L1 penalization [22].

Network deconvolution
Network deconvolution is a direct dependency network
inference method that eliminates an indirect weight
from the inferred dependency network from the ob-
served data [23]. The network deconvolution method as-
sumes that the measured association weights from the
observed data represent the sum of direct and indirect
weights. Moreover, the method assumes that the indirect
information flow can be approximated as the product of
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Fig. 1 Workflow for inferring direct miRNA-mRNA association relationships
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direct association weights. Let Gobs be an observed
dependency network, Gtru a true direct dependency net-
work, and Gind an indirect dependency network. Then,
the indirect network can be expressed in terms of all in-
direct effects along paths of increasing length, and we
can express the observed network (Gobs) in terms of the
true network (Gtru) and the indirect network (Gind) as
follows:

Gobs ¼ Gtru þ Gind

¼ Gtru þ G2
tru þ G3

tru þ G4
tru þ…

� �

¼ Gtru I−Gtruð Þ−1 ð1Þ
Therefore, the network deconvolution method [23] in-

fers true direct dependency network by reversing the ef-
fect of transitive information flow across all possible
indirect paths. That is, the true direct network can be
calculated using the observed network as follows:

Gtru ¼ Gobs I þ Gobsð Þ−1 ð2Þ
The network deconvolution method can be applied

with various correlation measures. In this study, we
compute the pair-wise observed correlations between
miRNA and mRNA expression profiles using mutual in-
formation, and then apply the network deconvolution
method to suppress indirect correlation relationships
from the observed correlations.

Bootstrapping
Bootstrapping is a method for generating multiple ver-
sions of a model, and using these to generate an aggre-
gated model. It is designed to improve accuracy and
stability [27]. Given a training set D, bootstrapping gen-
erates m new training data sets Di by sampling from D
uniformly and with replacement. The m models are
computed using the generated m bootstrap samples and
combined by aggregating the outputs.
Because the bootstrap aggregation usually reduces

variance and helps to avoid overfitting, the bootstrap
procedure works well when the sample size is insuffi-
cient for straightforward model inference. Therefore, we
adopt the bootstrapping procedure to reconstruct mul-
tiple networks from a single original dataset using a sin-
gle direct association network inference method, which
can then be aggregated into a more accurate and repro-
ducible association network.

Rank-based Ensemble aggregation
Because computational methods often show varying per-
formances across different datasets [25], it is necessary
to improve the reliability and accuracy of the inferred
networks using computational methods. In this case, the
Ensemble methods that integrate different methods can
be used because they have shown better performances

than individual methods [1, 25]. Also, the Ensemble
methods may be useful to capture nonlinear relation-
ships as well as linear relationships among variables by
integrating results from linear or nonlinear correlation
inference methods.
When several results from computational methods are

integrated, the distribution of the weights between two
elements usually varies considerably among computa-
tional methods. It is difficult to directly integrate real-
valued weights between two variables from individual
methods. Thus, it is challenging to aggregate real-valued
weights of inferred association networks from different
methods or datasets.
To aggregate different output networks from various

methods, we adopt a non-parametric approach based on
ranking. Because a rank-based Ensemble aggregation
method only considers the rank of the weight and does
not assume specific distribution of the source data, the
rank-based method does not depend on the actual distri-
bution of weights derived from different methods [28].
The characteristic of rank-based aggregation is the abil-
ity to combine lists from different sources and platforms.
Hence, we employ a rank-based Ensemble approach to
aggregate the outputs from bootstrapping iterations and
different methods. The conventional rank-based aggre-
gation methods include the rank-sum-based approach,
average-rank-based approach, and Borda count election
[1]. In this study, we use an inverse-rank-product
method [29] to combine networks reconstructed from
the same set of genes, after empirically comparing the
performances of the Borda count election method and
the normalized-weight-sum method with the inverse-
rank-product method. The rank of a particular weight
between a miRNA and an mRNA in the aggregated net-
work is calculated by taking the product of the ranks of
the same edge across all networks. Then, to assign a
lower rank to a higher weight, the inverse of rank-
product is used as a representative association weight
between the miRNA and the mRNA. Let G be a set of
association networks to be integrated, and let rij be a
rank of association weight between node i and j. Then,
the association weight of an integrated graph using the
inverse-rank-product strategy (r’ij) can be calculated as
follows:

r
0
ij ¼

1

log Πm∈G rmij þ 1
� �� � ð3Þ

We apply the inverse-rank-product method to aggre-
gate bootstrapping outputs from the single direct associ-
ation identification method and to integrate the outputs
from different methods.
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Experiments for performance evaluation
To evaluate our proposed DMirNet, we performed em-
pirical experiments with three matched miRNA and
mRNA expression profiles. First, we analysed the effect
of bootstrapping and Ensemble to identify miRNA-
mRNA association relationships. Second, we compared
the performance of DMirNet with a best-performed En-
semble model [1] for inferring miRNA-mRNA regula-
tory relationships from expression data.

Experimental datasets
To avoid the biased or intentional selection of experi-
mental data, we used the same three matched miRNA
and mRNA expression profiles used in a recently pub-
lished comparative study [1, 30]. The three processed
datasets were obtained from [30].
Epithelial to Mesenchymal Transition (EMT) data

includes the matched miRNA-mRNA expression pro-
files of epithelia class (11 samples) and mesenchymal
class (36 samples). Multi-Class Cancer (MCC) data
includes 60 samples from normal and cancerous tis-
sues from eight organs. Breast Cancer (BR) data has
50 samples from basal and luminal groups. After ap-
plying the differentially expressed gene (DEG) analysis
with limma package of Bioconductor and a false dis-
covery correction process at a significant level (ad-
justed p-value <0.05), 35 miRNAs and 1154 mRNAs
were identified as DEGs of the EMT data; addition-
ally, 108 miRNAs and 1860 mRNAs were identified
as DEGs of the MCC data. Regarding the BR data, 92
miRNAs (adjusted p-value <0.2) and 1500 mRNAs
(adjusted p-value <0.0001) were identified as DEGs.
The selected and integrated miRNA and mRNA ex-
pression profiles were standardized across samples be-
fore applying our DMirNet.

Implementation of DMirNet
To identify a direct miRNA-mRNA association network,
its base association networks were reconstructed using
the three direct association relationships inference method
with bootstrapping. For each method, the base miRNA-
mRNA association networks were iteratively built using
randomly resampled data with replacement. To get the
bootstrapping results, we randomly selected 95% of the
dataset with replacement and iteratively rebuilt association
networks 100 times for each dataset.
To utilize three direct association network iden-

tification methods, we use corpcor and space R packages
[31, 32] from Bioconductor and an existing network de-
convolution algorithm [33]. Aggregations of the results
from bootstrapping of a single method and Ensembles of
different methods were performed using equation (3).

Performance evaluation method
Currently, 1,881 miRNA precursors and 2,588 mature
sequences in the Human genome are listed in miRBase
(GRCh38), and the number of human genes is estimated
at 20,000-25,000 [34]. Several manually curated miRNA-
target mRNA databases show that one miRNA may
regulate many genes as its targets, while one gene may
be targeted by many miRNAs. This indicates that the re-
lationships between miRNAs and their target mRNAs
may not be one-to-one. However, the number of experi-
mentally validated miRNA-mRNA interactions for evalu-
ating a computational model has been very limited until
now. Since there is no complete ground-truth for evalu-
ating performances, the union of public miRNA-target
mRNA databases, which include both experimentally
verified relationships and some predicted relationships,
has been used to evaluate performance and to compare
different computational methods [1, 30, 35, 36]. The
union of Tarbase v.6.0 [37], miRecords v2013 [38], miR-
Walk v2.0 [39] and miRTarBase v.4.5 [40] includes
62,858 unique miRNA-target mRNA interactions among
693 miRNAs and 16,091 genes. We use the union of
these four databases [30] as a ground-truth dataset.
Based on the ground-truth data, the performance of

each method was evaluated by checking the number of
overlaps between top k high-ranked mRNAs of each
miRNA on an inferred network and the ground-truth
miRNA-mRNA pairs. Even though the number of
ground-truth is very limited, the fraction of inferred cor-
relations that are experimentally validated pairs may be
regarded as a measure of the precision of the computa-
tional method. Since the total number of selected
miRNA-mRNA correlations is same across all the
methods in the comparative study, a higher number of
overlaps can be regarded as higher precision on inferring
direct miRNA-mRNA association network.

Results
Performance evaluation of DMirNet
To investigate the performance of DMirNet and to
examine the effects of all components of the framework,
we performed comparative empirical experiments using
EMT, MCC, and BR datasets and three direct correlation
inference methods: Corpcor, SPACE, and mutual
information-based network deconvolution (MIND). For
bootstrapping execution, the number of bootstrapping it-
erations was set to 100, and the sampling rate was set to
95%. Additionally, an inverse-rank-product method was
applied for aggregating bootstrapping results and integrat-
ing results from different methods. For each method, the
number of experimentally confirmed miRNA-mRNA as-
sociations was evaluated as a measure of precision by
computing the overlaps between ground-truth pairs and
inferred top 100 mRNAs per a miRNA. Table 1
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summarizes the precisions of all combinations of DMir-
Net component.
First, we investigated each single direct correlation es-

timation method across three datasets. The results of
empirical experiments confirm that there is no single in-
ference method that performs optimally across all data-
sets. Corpcor (C) shows the best precision with the BR
dataset, but it ranks the medium with the EMT and the
MCC datasets. SPACE (S) performs best with the EMT
dataset, but has the worst performance with BR and
MCC datasets. On the other hand, even though MIND
(M) performs worst with the EMT dataset, it shows
good performance with both MCC and BR dataset. The
results indicate that each method has its own limitation
on inferring direct correlations; thus, it is difficult to
identify the whole direct miRNA-mRNA correlations
using any single method. In such cases, the Ensemble
aggregation of different methods can improve the accur-
acy and stability of an inferred correlation network.
We also determined the effects of bootstrapping in

DMirNet framework. By applying a bootstrapping strategy,
the precision of three methods was strictly increased within
MCC and BR datasets. However, regarding the EMT data-
set, bootstrapping does not lead to any performance im-
provement. The results imply that the bootstrapping
procedure does not guarantee an increase in the fraction of
experimentally validated pairs among inferred pairs.
Although an Ensemble method that combines three in-

ference methods (C&S&M) shows good performance, on
occasion, single methods (SPACE with EMT whole and
Corpcor with BR bootstrap) or Ensembles of two inference
methods (S&M with MCC bootstrap) outperforms
C&S&M. This phenomenon was derived by combining the
worst-performed model to the Ensemble. For example,

MIND shows the worst performance with the EMT dataset
but the Ensemble method excluding MIND (i.e. C&S) with
the EMT dataset performs best. It should be noted that al-
though C&M, S&M, and C&S&M perform relatively worse
because they are integrated with MIND, the combined en-
semble models turn out to outperform MIND itself.
Additionally, when the number of aggregated methods in-
creases from two to three, the precision of Ensemble
methods also increases. The experimental results show that
the Ensemble aggregation approach helps to relieve the ef-
fect of the worst model and achieves a relatively higher
performance.
We also investigated the combinatorial effect of bootstrap-

ping and Ensemble aggregation on DMirNet framework. Re-
garding the EMT dataset, there was no improvement in the
precision using bootstrapping. However, the Ensemble ag-
gregation of different methods reduced the effect of the
worst-performed MIND. In the MCC and BR dataset, the
results show performance improvements by bootstrapping
across almost all experiments, as well as a relief of the effect
of the worst model (SPACE) and improved precision by En-
semble aggregation. Regarding the BR dataset, each method
with the combination of bootstrapping and Ensemble aggre-
gation turns out to be effective.
The effect of bootstrapping and Ensemble approaches

can be quantified using a paired t-test. Figure 2 demon-
strates the average number of confirmed miRNA-mRNA
correlations using each method. Additionally, in order to
assess the statistical significance of difference on the pre-
cision between two methods, the p-values using the
paired t-test were calculated.
We summarize the performance evaluation on preci-

sions for all combinations of DMirNet component using
the limited number of ground-truth pairs as follows: 1)
The performance of each direct correlation estimation
method slightly varies across the three datasets. 2) Ap-
plying the bootstrapping procedure generally improves
the precision of the model. 3) If an Ensemble model ag-
gregates a poorly performed model, the Ensemble ap-
proach guarantees at least the average performance of
aggregated methods. 4) The balanced combination of
three direct correlation inference methods, bootstrap-
ping and Ensemble approach, strictly reduces the effect
of the worst-performed model and achieve the best or
the second best precision. Therefore, we demonstrate
that the use of both bootstrapping and Ensemble ap-
proaches helps to build a more reliable and robust
model across different expression datasets, while tack-
ling the large p small n problem.

Performance comparison between DMirNet and the state-
of-the-art Ensemble-based model
DMirNet framework adopts the three direct correlation
network inference methods to identify direct miRNA-

Table 1 Number of experimentally confirmed miRNA-mRNA
associations by the ground-truth data

Single Method Ensemble Method

Corpcor Space MIND C&S C&M S&M C&S&M

EMT Whole 35 45 24 45 34 35 41

Bootstrap 32 38 25 40 24 37 40

MCC Whole 200 183 210 204 206 201 209

Bootstrap 211 204 207 201 217 220 216

BR Whole 98 83 95 90 94 97 102

Bootstrap 107 95 99 99 102 100 105

The Top 100 correlations for each miRNA were selected from each experiment
for performance comparison. To evaluate the effect of three direct correlation
inference methods, bootstrapping and Ensemble approach, we performed a
comparative study using EMT, MCC and BR datasets. Corpcor (denoted as C) is
the partial correlation estimation method, SPACE (denoted as S) is the sparse
partial correlation estimation method, and MIND (denoted as M) is the mutual
information-based network deconvolution method. ‘Whole’ means that the
whole expression profiles were used to infer a direct correlation matrix, and
‘Bootstrap’ means that 100 direct correlation matrices were computed using
100 bootstrapped samples and then aggregated based on an
inverse-rank-product method
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mRNA association network. It embeds the bootstrap ag-
gregation for fully utilizing the limited training
expression profiles and the Ensemble approaches for
improving reliability and performance. To show the ef-
fectiveness of DMirNet on identifying direct miRNA-
mRNA interactions, we compare the performance of it
with the state-of-the-art Ensemble-based model [1]. The
Ensemble-based model integrates Pearson’s correlation
(denoted as P), IDA (denoted as I) [14], and Lasso
(denoted as L) [26] using the Borda count election ag-
gregation method. Through a rigorous comparative
study using EMT, MCC, and BR dataset and eight cor-
relation inference methods, the ensemble of P&I&L was
selected as a best-performed model across the three
datasets [1]. Table 2 shows the number of experimentally
confirmed miRNA-mRNA correlations inferred from

combinations of components in DMirNet framework
and the P&I&L Ensemble model. Table 2 shows interest-
ing results of the comparative study. The solo use of
Corpcor, Space, and MIND methods usually does not out-
perform Pearson, IDA, and Lasso methods. Moreover, Re-
garding the BR dataset, Pearson, IDA and Lasso rather
considerably outperform Corpcor, Space, and MIND with
the current ground-truth data. However, when three dir-
ect correlation estimation methods are bootstrapped and
aggregated, the integrated model considerably performs
better. The p-value of the difference on performance be-
tween DMirNet (Bootstrap&Ensemble) and P&I&L is less
than 0.05 (p-value = 0.040) as shown in Fig. 2. This implies
that the difference of the above two methods is statistically
significant, and thus, DMirNet is a better choice than
P&I&L in a statistical sense.

Fig. 2 Average number of experimentally confirmed miRNA-mRNA correlations on three datasets. This bar-chart represents the average number of
the experimentally confirmed miRNA-mRNA correlations of each method on EMT, MCC and BR datasets. It also shows the statistical significances of
differences on performance between two methods in terms of the p-value computed using the paired t-test. ‘Single’ means the average performance
of three models from the three direct correlation inference methods without bootstrapping and Ensemble aggregation steps. ‘Bootstrap’ means the
average performance of the bootstrapping aggregation results for each three direct correlation inference method. ‘Ensemble’ means the average
performance of inferred models using Ensemble aggregation of single experiments. Additionally, Bootstrap&Ensemble means the average performance
of proposed DMirNet that uses both bootstrapping and Ensemble aggregation. E-P&I&L means a comparable control that is an ensemble model
aggregating Pearson, IDA and Lasso [1]

Table 2 Performance comparison of DMirNet with the state-of-the-art Ensemble model

Dataset Direct correlation inference methods the state-of-the-art method

Corpcor Space MIND E-C&S&M B&E-C&S&M Pearson IDA Lasso E-P&I&L

EMT 35 45 24 41 40 30 29 29 31

MCC 200 183 210 209 216 205 198 187 203

BR 98 83 95 102 105 114 124 120 101

To compare the performance of our method with a related work, we investigate the number of experimentally confirmed miRNA-mRNA associations of the state-
of-the-art Ensemble model. It combines Pearson’s correlation (denoted as P), IDA (denoted as I), and Lasso (denoted as L) using the Borda count election and was
reported as the best-performed Ensemble model on the three datasets [1]. ‘E’ denotes the Ensemble approach, and ‘B&E’ denotes the DMirNet with both boot-
strapping and Ensemble aggregation
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Network analysis of inferred direct miRNA-mRNA association
networks
Based on the proposed DMirNet framework, we recon-
structed direct miRNA-mRNA association networks for
each dataset. Through the procedures described in
Method section with 100 bootstrapping iterations, the
output miRNA-mRNA correlation matrix was generated.
We selected top 1000 miRNA-mRNA association rela-
tionships to reconstruct association networks for each
dataset. The top 1000 miRNA-mRNA pairs for each
dataset are listed in the Additional file 1.
We visualized the reconstructed networks from the

top 500 pairs using the Cytoscape [41] environment, and
analysed their network structure using the ModuLand
plug-in [42]. The ModuLand can determine overlapping
network modules and community centrality. Since the
outputs of the ModuLand represent representative com-
munity centralities and connections among network
modules, the results of the ModuLand effectively show
an abstraction of the whole network structure. For each
dataset, the reconstructed network and its key network
structure are shown in the Additional file 2. Among
them, Fig. 3 shows the core network structure of the

inferred Top 500 miRNA-mRNA associations of the
MCC data. Additionally, the network of modules repre-
sents the indirect associations among miRNAs mediated
by the mRNAs.
To interpret the related biological pathway of inferred

miRNA-mRNA association network, we analyse the
functions of mRNAs listed in the Top 500 and Top 1000
pairs based on KEGG pathway [43]. We used the
ClueGO [44] Cytoscape plug-in to extract the biological
pathways for associated mRNAs, and to visualize the se-
lected KEGG pathway terms in a functionally grouped
network. The overall results of identifying significant
KEGG pathway across three dataset are summarized in
the Additional file 3. Figure 4 demonstrates the KEGG
biological pathways related to Top 1000 pairs of the
MCC dataset. The size of the nodes reflects the statis-
tical significance of the terms. The degree of connectiv-
ity between terms (edges) is calculated using kappa
statistics. The calculated kappa score is also used to de-
fine functional groups. A node having more than two
colours is a term that can be included in several groups.
It should be noted that the MCC dataset is the expres-
sion profiles of normal and cancerous tissues from eight

Fig. 3 The key network structure of top 500 miRNA-mRNA association network using the MCC dataset. In this key network structure, a node
represents a network module, a label of a module represents community centrality, and an edge stands for the connectivity among modules.
The network modules identified using ModuLand
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organs. The top 1000 pairs of the MCC dataset consists
of 103 miRNAs and 572 mRNAs. The biological path-
way analysis was performed on the 572 mRNAs. Among
various biological pathways, there are three cancer-
related categories; namely ‘Transcriptional misregulation
in cancer,’ ‘MicroRNAs in cancer,’ and ‘Choline metabol-
ism in cancer.’ The three cancer-related categories are
associated with 44 miRNA-mRNA pairs among 33 miR-
NAs and 27 mRNAs. The list of the 44 miRNA-mRNA
pairs is shown in Additional file 4, and Fig. 5 shows the
list in a network form.
To investigate putative novel multi-cancer-related

miRNA-mRNA pairs, we checked the overlaps between
the 44 multi-cancer-related miRNA-mRNA pairs and
ground-truth data which is a union of the four manually
curated database. Our DMirNet found out a strong
miRNA-mRNA association between hsa-miR-181a and
BMPR2 as top 809 out of 200,880 pairs (upper 0.4% per-
centile). This miRNA-mRNA relationship has already
been confirmed in [45] such that the hsa-miR-181a plays
a direct role in down-regulating the BMPR2. This means
that our DMirNet inference provide a consistent result
with pre-known miRNA-mRNA relationships.
Regarding hsa-miR-299::CDKN2C (top 479) and hsa-

miR-301::BCL6 (top 593) in the 44 multi-cancer-related
pairs, they are not listed in the ground-truth data.

However, the ground-truth data includes closely related
pairs (namely, has-miR-299-5p::CDKN1A and hsa-
miR301a::BCL2L11) of which mRNA is from the same gene
family. In many cases, genes in a family have a similar
structure of function, or proteins produced from these
genes work together as a unit or participate in the same
process. Therefore, the existence of similar miRNA-mRNA
pair may support the plausibility of the inferred pairs by
DMirNet.
After excluding the known miRNA-mRNA pair (hsa-

miR-181a::BMPR2), 43 among 44 miRNA-mRNA pairs
can accordingly be regarded as the putative novel multi-
cancer-related miRNA-mRNA pairs.

Discussion
By investigating the combinatorial effect of the boot-
strapping and the Ensemble aggregation on DMirNet
framework, the performance enhancement factors of
DMirNet are demonstrated. The bootstrapping proced-
ure helps to build a more accurate and reproducible net-
work by fully utilizing the limited size of samples.
Additionally, the Ensemble model helps to avoid the
worst performance by guaranteeing at least the average
performance of aggregated methods. The balanced com-
bination of three direct correlation inference methods,
bootstrapping and Ensemble approach, strictly reduces

Fig. 4 KEGG biological pathways related to Top 1000 pairs of the MCC dataset
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the effect of the worst-performed model and achieves a
better precision.
Additionally, when we compare the performance of

DMirNet with P&I&L, three single direct correlation in-
ference methods do not show good performance com-
pared to Pearson, IDA, and Lasso. This result indicates
that even though each direct correlation estimation
method suppresses its indirect information from an ob-
served data in some degree, they are still incomplete.
However, by incorporating the bootstrapping and
Ensemble aggregation, DMirNet outperforms the best-
performed P&I&L across three datasets. These results
demonstrate the effectiveness of DMirNet procedure in
terms of accuracy and robustness. Although the three
direct correlation inference methods cannot perfectly
suppress the whole indirect relationships from the ob-
served data, we can effectively focus on the direct associ-
ations through incorporating the bootstrapping and the
Ensemble approach. We expect that if we can integrate
more direct correlation inference methods to DMirNet,
the performance of DMirNet would be more improved.
Also, if Pearson, IDA, and Lasso methods can be

integrated with additional information such as sequence-
based miRNA-mRNA target prediction result, the indirect
associations might be filtered, and it may further improve
the performance of the Ensemble model.
We would like to discuss the limitation of the ground-

truth dataset which was used at the experiments. The
number of pairs in ground-truth data is significantly
smaller than the expected number of miRNA-mRNA
correlation pairs in a genome. Moreover, the miRNA-
mRNA relationships are dynamically changed according
to the experimental method, sample, and experimental
condition. For example, ‘hsa-miR-19a-3p’ sometimes
directly down-regulates the mRNA of RAB14 on the
Kidney tissue with the PAR-CLIP experiment [46],
whereas ‘hsa-miR-19a-3p’ sometimes does not regulate
RAB14 on the lung tissue with the Luciferase reporter
assay method results [47] as shown in Table 3. There-
fore, it is difficult to fully estimate the performance of
computational inference methods based only on the
overlap with the limited size of the ground-truth data. We
expect that the number of experimentally confirmed pairs
will increase as miRNA mediated gene regulation research

Fig. 5 Cancer-related miRNA-mRNA association networks among Top 1000 pairs of the MCC dataset. The red rectangle nodes are mRNAs and
the blue circle nodes are mRNAs

Table 3 Conflict between experimental results on hsa-miR-19a-3p and RAB14

Publication Method Tissue Cell line Tested cell line Result Regulation

Hafner M. et al. 2010 [46] PAR-CLIP Kidney HEK293 N/A Positive Down

Kanzaki H et al. 2011 [47] Luciferase Reporter Assay Lung SBC3 HEK293 Negative ?

A manually curated miRNA-target database includes conflict experimental results for some miRNA-mRNA pairs. As an example, this table shows a conflict experi-
mental result on hsa-miR-19a-3p and RAB14(hsa) from TarBase 6.0 [37]
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in this field becomes more mature and flourished. More
extensive ground-truth findings may confirm our false
negative inference cases as true positive ones.
Regarding the MCC datasets, we identify putative novel

multi-cancer-related miRNA-mRNA pairs by utilizing
KEGG pathway analysis and ground-truth data. After ex-
cluding previously known one pair and similar two pairs
with the ground-truth data, 43 out of 44 miRNA-mRNA
association pairs are reported.
Although our DMirNet improves the performance by

incorporating the bootstrapping and Ensemble approach,
the bootstrapping procedure may come with computa-
tional overhead. The bootstrapping procedure generates
m training datasets using sampling with replacement,
computes m direct correlation matrices, and aggregates
the m models. If the bootstrapping procedures are
combined with Ensemble approach that aggregates n
different methods, we have to run the bootstrapping
procedure n times. However, in many bioinformatics
applications, there is a trade-off between performance
improvement and computation complexity. Also, we can
accelerate the bootstrapping and ensemble procedure by
utilizing the MPI.

Conclusions
We have presented the DMirNet framework that identi-
fies direct miRNA-mRNA association networks from ex-
pression profiles. DMirNet takes full advantage of three
direct association estimation methods, the bootstrapping
and the Ensemble approach based on an inverse-rank-
product method. The performance evaluation has shown
a substantial effectiveness of DMirNet in terms of the
number of the matched miRNA-mRNA cases with a
ground-truth data. Our proposed DMirNet framework
outperforms the state-of-the-art Ensemble model with a
factor of up to 1.29 with the EMT data in terms of preci-
sion. These empirical experimental results show the ef-
fectiveness of the combinatorial effects of the direct
association estimation, the bootstrapping, and the Ensem-
ble approaches in DMirNet. This paper demonstrates that
our DMirNet can be a promising alternative to other
existing methods to identify direct and novel miRNA-
mRNA relationships more extensively. We expect that
DMirNet can contribute to reconstructing various direct
regulatory pathways, including, but not limited to, the dir-
ect miRNA-mRNA association networks.

Additional files

Additional file 1: Top1000 miRNA-mRNA association relationships for
each dataset. (XLSX 59 kb)

Additional file 2: Reconstructed miRNA-mRNA association networks and
their key structures with top 500 miRNA-mRNA association relationships. The

reconstructed network was visualized with Cytoscape and the key modular
structure of the network was analysed using ModuLand. (XLSX 658 kb)

Additional file 3: Functional analysis of reconstructed miRNA-mRNA
association networks based on KEGG pathway. To interpret the functions
of inferred miRNA-mRNA association network, related KEGG pathway in
Top 500 and Top 1000 pairs were analysed using ClueGO (XLSX 1447 kb)

Additional file 4: The list of multi-cancer-related 44 miRNA-mRNA pairs.
The putative novel multi-cancer-related pairs are coloured with yellow.
(XLSX 12 kb)
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