
Bassen et al. BMC Systems Biology  (2017) 11:10 
DOI 10.1186/s12918-016-0380-2

SOFTWARE Open Access

JuPOETs: a constrained multiobjective
optimization approach to estimate
biochemical model ensembles in the Julia
programming language
David M. Bassen2, Michael Vilkhovoy1, Mason Minot1, Jonathan T. Butcher2 and Jeffrey D. Varner1*

Abstract

Background: Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained
population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by
using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter
ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state
performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and
robustly constrain model predictions, despite having many poorly constrained parameters.

Results: In this software note, we present a multiobjective based technique to estimate parameter or models
ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs
integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface
between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including
test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept
biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions
approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the
proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the
training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of
the individual objective functions.

Conclusions: JuPOETs is a promising approach for the estimation of parameter and model ensembles using
multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and
continuous variable types, bilevel optimization problems and constrained problems without altering the base
algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package
manager from the JuPOETs GitHub repository
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Background
Ensemble modeling is a promising approach for obtain-
ing robust predictions and coarse grained population
behavior in deterministic mathematical models. It is often
not possible to uniquely identify all the parameters in
biochemical models, even when given extensive training
data [1]. Thus, despite significant advances in standard-
izing biochemical model identification [2], the prob-
lem of estimating model parameters from experimental
data remains challenging. Ensemble approaches address
parameter uncertainty in systems biology and other fields
like weather prediction [3–6] by using parameter fami-
lies instead of single best-fit parameter sets. Parameter
families can be selected based upon simulation error,
along with other criteria such as diversity or steady-
state performance. Simulations using parameter ensem-
bles can estimate confidence intervals on model variables,
and robustly constrain model predictions, despite hav-
ing many poorly constrained parameters [7, 8]. There
are many techniques to generate parameter ensembles.
Battogtokh et al., Brown et al., and later Tasseff et al. gen-
erated experimentally constrained parameter ensembles
using a Metropolis-type random walk [3, 5, 9, 10]. Liao
and coworkers developed methods to generate ensem-
bles that all approach the same steady-state, for example
one determined by fluxomics measurements [11]. They
have used this approach for model reduction [12], strain
engineering [13, 14] and to study the robustness of non-
native pathways and network failure [15]. Maranas and
coworkers have also applied this method to develop a
comprehensive kinetic model of bacterial central carbon
metabolism, including mutant data [16]. We and others
have used ensemble approaches, generated using both
sampling and optimization techniques, that have robustly
simulated a wide variety of signal transduction processes
[9, 10, 17–19], neutrophil trafficking in sepsis [20], patient
specific coagulation behavior [21], uncertainty quantifica-
tion in metabolic kinetic models [22] and to capture cell
to cell variation [23]. Further, ensemble approaches have
been used in synthetic biology to sample possible biocir-
cuit configurations [24]. Thus, ensemble approaches are
widely used to robustly simulate a variety of biochemical
systems.
Identification of biochemical models requires signifi-

cant training data perhaps taken from diverse sources.
These real-world data sets often contain intrinsic con-
flicts resulting from, for example, the use of different
cell lines, different measurement technologies, different
reagent vendors or lots, uncontrollable experimental arti-
facts or general cross laboratory variability. Parameter
ensembles that optimally balance these inherent conflicts
lead to more robust model performance. Multiobjective
optimization is an ensemble generation technique that
naturally balances conflicts in noisy training data [25].

Multiobjective optimization has been used to identify
signal transduction models [18, 23], for the design of
synthetic circuits [24], to design the folding behaviors
of novel RNAs [26], to design bioprocesses [27], and to
understand bacterial adaptation [28]. Thus, it is a widely
used approach for a variety of biochemical applications.
Previously, we developed the Pareto Optimal Ensemble
Technique (POETs) algorithm to address the challenge
of competing or conflicting training objectives. POETs,
which integrates simulated annealing (SA) and multiob-
jective optimization through the notion of Pareto rank,
estimates parameter ensembles which optimally trade-off
between competing (and potentially conflicting) experi-
mental objectives [29]. However, the previous implemen-
tation of POETs, in the Octave programming language
[30], suffered from poor performance and was not con-
figurable. For example, Octave-POETs does not accom-
modate user definable objective functions, bounds and
problem constraints, cooling schedules, different variable
types e.g., a mixture of binary and continuous design
variables or custom diversity generation routines. Octave-
POETs was also not well integrated into a package or
source code management (SCM) system. Thus, upgrades
to the approach containing new features, or bug fixes were
not centrally managed.

Implementation
In this software note, we present an open-source imple-
mentation of the Pareto optimal ensemble technique
in the Julia programming language (JuPOETs). JuPO-
ETs takes advantage of the unique features of Julia to
address many of the shortcomings of the previous imple-
mentation. Julia is a cross-platform, high-performance
programming language for technical computing that has
performance comparable to C but with syntax sim-
ilar to MATLAB/Octave and Python [31]. Julia also
offers a sophisticated compiler, distributed parallel exe-
cution, numerical accuracy, and an extensive function
library. Further, the architecture of JuPOETs takes advan-
tage of the first-class function type in Julia allowing
user definable behavior for all key aspects of the algo-
rithm, including objective functions, custom diversity
generation logic, linear/non-linear parameter constraints
(and parameter bounds constraints) as well as cus-
tom cooling schedules. Julia’s ability to naturally call
other languages such as Python or C also allows JuPO-
ETs to be used with models implemented in a variety
of languages across many platforms. Additionally, Julia
offers a built-in package manager which is directly inte-
grated with GitHub, a popular web-based Git reposi-
tory hosting service offering distributed revision control
and source code management. Thus, JuPOETs can
be adapted to many problem types, including mixed
binary and continuous variable types, bilevel problems
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and constrained problems without altering the base
algorithm, as was required in the previous POETs
implementation.

JuPOETs optimization problem formulation
JuPOETs solves theK−dimensional constrained multiob-
jective optimization problem:

min
p

⎧
⎪⎨

⎪⎩

O1 (x(t,p),p)
...
OK (x(t,p),p)

(1)

subject to the model equations and constraints:

f (t, x(t,p), ẋ(t,p),u(t),p) = 0
g1 (t, x(t,p),u(t),p) ≥ 0

...
gC (t, x(t,p),u(t),p) ≥ 0

and parameter bound constraints:

L ≤ p ≤ U

The quantity Oj denotes the jth objective function
(j = 1, 2, . . . ,K), typically the sum of squared errors for
the jth data set for biochemical modeling applications.
The terms f (t, x(t,p), ẋ(t,p),u(t),p) denote the system
of model equations (e.g., differential equations, differ-
ential algebraic equations or linear/non-linear algebraic
equations) where p denotes the decision variable vector
e.g., unknown model parameters (D × 1). In typical bio-
chemical modeling applications, the model equations f(·)
are a system of continuous real-valued non-linear differ-
ential equations that comprise a kinetic model, but other
types of models e.g., stoichiometric models are also com-
mon. The quantity t denotes time, x (t,p) denotes the
model state (with an initial state x0), and u(t) denotes an

input vector. The decision variables (e.g., kinetic parame-
ters) can be subject to bounds constraints, where L and U
denote the lower and upper bounds, respectively as well
as C problem specific constraints gi (t, x(t,p),u(t),p) , i =
1, . . . , C. The decision variables p are typically real-valued
kinetic constants, or metabolic fluxes in the case of sto-
ichiometric models. However, other variables types e.g.,
binary or categorical decision variables can also be accom-
modated.
JuPOETs integrates simulated annealing (SA) [32] with

Pareto ranking to estimate decision variables on or near
the optimal tradeoff surface between competing objec-
tives (Fig. 1 and Algorithm 1). A tradeoff surface defines
the best possible performance for every conflicting objec-
tive, such that an increase in the performance of one
objective does not decrease the performance of at least
one other objective. Pareto rank is a scalar measure of dis-
tance away from the optimal tradeoff surface (low rank is
near the surface, while higher ranks are progressively fur-
ther away). Thus, the central idea underlying POETs is a
mapping between the value of the objective vector eval-
uated at pi+1 (decision variable guess at iteration i + 1)
and the scalar Pareto rank (Fig. 1). Traditional simulated
annealing uses a scalar performance value e.g., simulation
error to make a probabilistic decision to keep or reject
a set of decision variables; decision variables with better
performance are always accepted, while those with worse
performance are sometimes accepted depending upon a
parameter called the temperature. On the other hand,
JuPOETs makes this same decision using the Pareto rank
instead of a single performance objective. The problem
of estimating biochemical model parameters from exper-
imental data is typically posed as an error minimization
problem over continuous real-valued decision variables
(model parameters) subject to the model equations. A
parameter set pi+1 lies along the optimal tradeoff surface
if no other parameter guess leads to decreased error for

Fig. 1 Schematic of multiobjective parameter mapping. The performance of any given parameter set is mapped into an objective space using a
ranking function which quantifies the quality of the parameters. The distance away from the optimal tradeoff surface is quantified using the Pareto
ranking scheme of Fonseca and Fleming in JuPOETs
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Algorithm 1: Pseudo-code for the JuPOETs run-loop. The user must specify the objective function and
an initial parameter guess. The user can optionally specify the neighbor, acceptance, cooling and
refinement functions (or use the default implementations). The rank archiveR, solution archive S and objec-
tive archiveO are initialized from the initial guess. The initial guess (potentially following a single objective local
refinement step) is perturbed in the neighbor function, which generates a new solution whose performance is
evaluated using the user supplied objective function. The new solution and objective values are then added to
the respective archives and ranked using the builtin rank function. If the new solution is accepted (based upon
a probability calculated with the user supplied acceptance function) it is added to the solution and objec-
tive archive. This solution is then perturbed during the next iteration of the algorithm. However, if the solution
is not accepted, it is removed from the archive and discarded. The temperature is adjusted using the user sup-
plied cooling function after each I iterations. When JuPOETs terminates, the parameter solution archive S ,
objective archiveO and rank archiveR are retuned to the caller.

input : User specified objective function, and initial guess (D × 1). User can also specify custom neighbor, acceptance.
cooling and refinement functions or use the default functions provided.

Output: Rank archiveR (A × 1), parameter solution archive S (D × A) and objective archiveO (K × A), whereA
denotes the number of accepted solutions

1 initialize:R, S andO using initial guess po;
2 initialize: T ←1.0;
3 initialize: Tmin ←1/10000;
4 initialize: Maximum number of steps per temperature I ;

// Call to local refinement function (single objective problem)
5 po ← user-function:refinement(po);

6 while T > Tmin do
7 i ← 1;
8 while i< I do

// Generate a new parameter solution using user neighbor function
9 pi+1 ← user-function::neighbor(p∗);

// Evaluate pi+1 using user objective function
10 oi+1 ← user-function::objective(pi+1);

11 Add pi+1 to solution archive S ;
12 Add oi+1 to objective archiveO;

// Calculate Pareto rank of solutions in O using builtin rank function
13 R ← builtin-function::rank(O);

// Accept pi+1 into the archive with user defined probability
14 P ← user-function::acceptance(R,T);
15 if P >rand then

// Update the best solution with pi+1
16 p∗ ← pi+1;
17 prune S ,R andO of all solutions above a rank threshold;
18 else
19 Remove pi+1 from solution archive S ;
20 Remove oi+1 from error archiveO;
21 end
22 i ← i + 1;
23 end

// Update T using the user cooling function
24 T ← user-function::cooling(T);
25 end
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every objective. JuPOETs calculates the performance of a
candidate parameter set pi+1 by calling the user defined
objective function; objective takes a parameter set
as an input, evaluates the model equations, and using
this solution, returns the K × 1 objective vector. Can-
didate parameter sets are generated by the user sup-
plied neighbor function; the default implementation of
neighbor is a random perturbation, however other per-
turbation logic can be implemented by the user. The error
vector associated with pi+1 is ranked using the builtin
Pareto rank function, by comparing the error at iteration
i + 1 to the error archive Oi (all error vectors up to iter-
ation i meeting a ranking criterion). Parameter sets on or
near the optimal trade-off surface between the objectives
have a rank equal to 0 (no other current parameter sets are
better). These rank zero parameter sets define the Pareto
optimal group for the ensemble, wherein Pareto optimal-
ity is defined as a parameter set not being dominated by
any other sets within the ensemble. Sets with increas-
ing non-zero rank are progressively further away from the
optimal trade-off surface. Thus, a parameter set with a
rank = 0 is better in a trade-off sense than rank > 0. We
implemented the Fonseca and Fleming ranking scheme in
the builtin rank function [33]:

rank (Oi+1 (pi+1) | Oi) = r (2)

where rank r is the number of parameter sets that domi-
nate (are better than) parameter set pi+1, and Oi+1 (pi+1)
denotes the objective vector evaluated at pi+1. We used
the Pareto rank to inform the SA calculation. The param-
eter set pi+1 was accepted or rejected by the SA at
each iteration, by calculating an acceptance probability
P (pi+1):

P(pi+1) ≡ exp {−rank (Oi+1 (pi+1) | Oi) /T} (3)

where T is the simulated annealing temperature; the tem-
perature provides control over how strictly decreasing
Pareto rank is enforced. As rank (Oi+1 (pi+1) | Oi) → 0,
the acceptance probability moves toward one, ensuring
that we explore parameter sets along the Pareto surface.
Occasionally, (depending upon T) a parameter set with
a high Pareto rank is accepted by the SA allowing a
more diverse search of the parameter space. However, as
T is reduced as a function of iteration count (using the
cooling function), the probability of accepting a high-
rank set decreases. Parameter sets could also be accepted
by the SA but not permanently archived in Si, where Si
is the solution archive. Only parameter sets with rank
less than or equal to a threshold (rank ≤4 by default) are
included in Si, where the archive is re-ranked and fil-
tered after accepting every new parameter set. Parameter
bounds were implemented in the neighbor function as
box constraints, while problem specific constraints were
implemented in objective using a penalty method:

Oi + λ

C∑

j=1
min

{
0, gj (t, x(t,p),u(t),p)

}
i = 1, . . . ,K

(4)

where λ denotes the penalty parameter (λ = 100 by
default). However, because both the neighbor and objec-
tive functions are user defined, different constraint imple-
mentations are easily defined.
To use JuPOETs, the user specifies the neighbor,

acceptance, cooling and objective functions
along with an initial decision variable guess. Default
implementations of the neighbor, acceptance and
cooling functions can be used directly, or they can be
overridden by user defined logic. However, the user must
provide an implementation of the objective function
and provide an initial decision variable guess. Lastly, if
the user is operating JuPOETs in hybrid mode, then a
refinement function pointer must also be specified.
Hybrid mode temporarily switches the search from amul-
tiobjective to a single objective problem, where the sum of
the objective functions can be used to update the best (or
initial) parameter guess. The specific hybrid mode search
logic is up to the user; by default hybrid mode is off, and
the default refinement implementation is simply a pass
through function. However, we have shown previously
that POETs operated in hybrid mode (where the single
objective problem used a pattern search approach) had
better performance that POETs alone [29]. Thus, hybrid
mode is generally recommended for most applications. In
addition, there are several user configurable parameters
that can be adjusted to control the performance of JuPO-
ETs: maximum_number_of_iterations controls the
number of iterations per temperature (default 20);
rank_cutoff controls the upper rank bound on the
solution archive (default 5); temperature_min con-
trols the minimum temperature after which JuPOETs
returns the error and solution archives (default 0.001);
show_trace controls the level of output shown to the
user (default true). After the completion of the run, JuPO-
ETs returns the parameter solution archive S , objective
archive O and rank archive R. The parameter solution
archive S contains is an D × A array, where A denotes
the number of solutions in the archive when JuPOETs ter-
minated. On the other hand, the objective archive O is
an K × A array containing the performance values for
each objective corresponding the columns of S . Lastly,
JuPOETs returns the rank archive R which is an A × 1
array of Pareto ranks corresponding to the columns of
S . One technical note, if JuPOETs is run from multiple
starting locations, and the archives from each of these
runs is combined into a single collective archive, the com-
bined parameter rank archive may become invalid. In
these cases, it is required to re-rank the parameter sets
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using the built-in rank function to produce a collective
parameter ranking.

Results and discussion
JuPOETs identified optimal or nearly optimal solutions
significantly faster than Octave-POETs for a suite of mul-
tiobjective algebraic test problems (Table 1). The algebraic
test problems were constrained non-linear functions with
bound constraints and additional non-linear constraints
on the decision variables in one case. The problems had
up to three-dimensional continuous real-valued decision
vectors, and each case had two objective functions. The
wall-clock time for JuPOETs and Octave-POETs was mea-
sured for 10 independent trials for each of the test prob-
lems. The same cooling, neighbor, acceptance,
and objective logic was employed between the imple-
mentations, and all other parameters were held constant.
For each test function, the search domain was partitioned
into 10 segments, where an initial parameter guess was
drawn from each partition. The number of search steps for
each temperate was I = 10 for all cases, and the cooling
parameter was α = 0.9. On average, JuPOETs identified
optimal or near optimal solutions for the suite of test
problems six-fold faster (60s versus 400s) than Octave-
POETs (Fig. 2). JuPOETs produced the characteristic
tradeoff curves for each test problem, given both deci-
sion variable bound and problem constraints (Fig. 3).
Thus, JuPOETs estimated an ensemble of solutions to
constrained multiobjective algebraic test problems signif-
icantly faster than the current Octave implementation.
Next, we tested JuPOETs on a proof-of-concept biochem-
ical model identification problem.
JuPOETs estimated an ensemble of biochemical model

parameters that were consistent with the mean of syn-
thetic training data (Fig. 4). Four synthetic training data
sets were generated from a prototypical biochemical net-
work consisting of 6 metabolites and 7 reactions (Fig. 4,
inset right). We considered a common case in which

the same extracellular measurements of Ae,Be,Ce and
cellmass were made on four hypothetical cell types, each
having the same biological connectivity but different per-
formance. Network dynamics were modeled using the
hybrid cybernetic model with elementary modes (HCM)
approach of Ramkrishna and coworkers [34]. In the
HCM approach, metabolic networks are first decomposed
into a set of elementary modes (EMs) (chemically bal-
anced steady-state pathways, see [35]). Dynamic combi-
nations of elementary modes are then used to characterize
network behavior. Each elementary mode is catalyzed
by a pseudo enzyme; thus, each mode has both kinetic
and enzyme synthesis parameters. The proof of concept
network generated 6 EMs, resulting in 13 model param-
eters (continuos real-valued decision variables). The syn-
thetic training data was generated by randomly varying
these parameters.
The general form of the biochemical test problem was

given by:

min
p

(O1, . . . ,OK) (5)

subject to model and bounds constraints. We consid-
ered four training data sets (K = 4), each of which
contained time-series measurements of Ae,Be,Ce and
cellmass. Each objective Oj, j = 1, . . . ,K quantified
the squared difference between the simulated (xi) and
measured extracellular species abundance (yi) in the jth
data set:

Oj =
∑

i

∑

τ

(xi(τ ) − yi(τ ))2 j = 1, . . . ,K (6)

where, i denotes the species index and τ denotes the time
index. The abundance of extracellular species i (xi), the
pseudo enzyme el (catalyzes flux through mode l), and
cellmass were governed by the model equations:

Table 1 Multi-objective optimization test problems. We tested the JuPOETs implementation on three two-dimensional test problems,
with one-, two- and three-dimensional parameter vectors. Each problem had parameter bounds constraints, however, on the Binh and
Korn function had additional non-linear problem constraints. For the Fonesca and Fleming problem, N = 3

Name Dimension Function Domain Constraints

Schaffer function 1 O1(x) = x2 −10 ≤ x ≤ 10

O2(x) = (x − 2)2

Binh and Korn function 2 O1(x, y) = 4x2 + 4y2 0 ≤ x ≤ 5 g1(x, y) = (x − 5)2 + y2 ≤ 25

O2(x, y) = (x − 5)2 + (y − 5)2 0 ≤ x ≤ 3 g2(x, y) = (x − 8)2 + (y + 3)2 ≤ 7.7

Fonseca and Fleming function 3 O1(xi) = 1 − exp

(

−
N∑

i=1

(
xi − 1√

N

)2
)

−4 ≤ xi ≤ 4

O2(xi) = 1 − exp

(

−
N∑

i=1

(
xi + 1√

N

)2
)
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Fig. 2 The performance of JuPOETs on the multi-objective test suite. The execution time (wall-clock) for JuPOETs and POETs implemented in Octave
was measured for 10 independent trials for the suite of test problems. The number of steps per temperature I = 10, and the cooling parameter α = 0.9
for all cases. The problem domain was partitioned into 10 equal segments, an initial guess was drawn from each segment. For each of the test
functions, JuPOETs estimated solutions on (rank zero solutions, black) or near (gray) the optimal tradeoff surface, subject to bounds and problem
constraints

dxi
dt

=
R∑

j=1

L∑

l=1
σijzjlql (e,p, x) c i = 1, . . . ,M

del
dt

= αl + rEl (p, x)ul − (βl + rG) el l = 1, . . . ,L
dc
dt

= rGc

where R and M denote the number of reactions and
extracellular species in the model and L denotes the num-
ber of elementary modes. The quantity σij denotes the
stoichiometric coefficient for species i in reaction j and
zjl denotes the normalized flux for reaction j in mode l.
If σij > 0, species i is produced by reaction j; if σij < 0,

Fig. 3 Representative JuPOETs solutions for problems in the multi-objective test suite. The number of steps per temperature I = 10, and the
cooling parameter α = 0.9 for all cases. The problem domain was partitioned into 10 equal segments, an initial guess was drawn from each
segment. For each of the test functions, JuPOETs estimated solutions on (rank zero solutions, black) or near (gray) the optimal tradeoff surface,
subject to bounds and problem constraints
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Fig. 4 Proof of concept biochemical network study. Inset right: Prototypical biochemical network with six metabolites and seven reactions modeled
using the hybrid cybernetic approach (HCM). Intracellular cellmass precursors A, B, and C are balanced (no accumulation) while the extracellular
metabolites Ae , Be , and Ce are dynamic. The oval denotes the cell boundary, qj is the jth flux across the boundary, and vk denotes the kth intracellular
flux. Four data sets (each with Ae , Be , Ce and cellmass measurements) were generated by varying the kinetic constants for each biochemical mode.
Each data set was a single objective in the JuPOETs procedure. a Ensemble simulation of extracellular substrate Ae and cellmass versus time.
b Ensemble simulation of extracellular substrate Be and Ce versus time. The gray region denotes the 95% confidence estimate of the mean
ensemble simulation. The data points denote mean synthetic measurements, while the error bars denote the 95% confidence estimate of the
measurement computed over the four training data sets. c Trade-off plots between the four training objectives. The quantity Oj denotes the jth
training objective. Each point represents a member of the parameter ensemble, where gray denotes rank 0 sets, while black denotes rank 1 sets.
Ensembles were generated using POETs without employing local refinement

species i is consumed by reaction j; if σij = 0, species i is
not connected with reaction j. Extracellular species, cell-
mass and pseudo-enzyme were subject to the initial con-
ditions x (to) = xo, c(to) = co and el = 0.5, respectively.
The term ql (e,p, x) denotes the specific uptake/secretion
rate formode lwhere e denotes the pseudo enzyme vector,
p denotes the unknown kinetic parameter vector (deci-
sion variables), x denotes the extracellular species vector,
and c denotes the cell mass; ql (e,p, x) is the product
of a kinetic term (q̄l) and a control variable governing
enzyme activity. Flux through each mode was catalyzed
by a pseudo enzyme el, synthesized at the regulated spe-
cific rate rE,l (p, x), and constitutively at the rate αl. The
term ul denotes the cybernetic variable controlling the
synthesis of enzyme l. The term βl denotes the rate con-
stant governing non-specific enzyme degradation, and rG
denotes the specific growth rate through all modes. The
specific uptake/secretion rates and the specific rate of
enzyme synthesis were modeled using saturation kinetics.
The specific growth rate was given by:

rG =
L∑

l=1
zμlql (e,p, x)

where zμl denotes the growth flux μ through mode l. The
control variables ul and vl, which control the synthesis and
activity of each enzyme respectively, were given by:

ul = zslq̄l
L∑

l=1
zslq̄l

(7)

and

vl = zslq̄l
max

l=1,...,L
zslq̄l

(8)

where zsl denotes the uptake flux of substrate s through
mode l. Each unknown kinetic parameter was continuous
and real-valued, and subject to bounds constraints: L ≤
p ≤ U .
JuPOETs produced an ensemble of approximately

dimS 	 13,000 parameter sets that captured the mean
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of the measured data sets for extracellular metabolites
and cellmass (Fig. 4a and b). JuPOETs minimized the dif-
ference between the simulated and measured values for
extracellular metabolites Ae, Be, Ce and cellmass, where
the residual for each data set was treated as a single
objective (leading to four objectives). The 95% confidence
estimate produced by the ensemble was consistent with
the mean of the measured data, despite having signifi-
cant uncertainty in the training data. JuPOETs produced
a consensus estimate of the synthetic data by calculating
optimal trade-offs between the training data sets (Fig. 4c).
Multiple trade-off fronts were visible in the objective
plots, for example between data set 3 (O3) and data set 2
(O2). Thus, without a multiobjective approach, it would
be challenging to capture these data sets as fitting one
leads to decreased performance on the other. However,
the ensemble contained parameter sets that described
each data set independently (Fig. 5). Thus, JuPOETs pro-
duced an ensemble of parameters that gave the mean of
the training data for conflicting data sets, while simulta-
neously estimating parameter sets that performed well on
each individual objective function.
Currently, JuPOETs does not consider parameter

identifiability when constructing parameter ensembles.
Although JuPOETs produces parameter estimates that
givemodel performance similar to the training data, we do
not have strict statistical confidence that the true param-
eter values are contained within the ensemble. However,
despite this, ensembles produced by POETs can be pre-
dictive [18, 23]. Thus, JuPOETs produces a collection of

Fig. 5 Experiment to experiment variation captured by the ensemble.
Cellmass measurements (points) versus time for experiment 2 and 3
were compared with ensemble simulations. The full ensemble was
sorted by simultaneously selecting the top 25% of solutions for each
objective with rank ≤ 1. The best fit solution for each objective (line)
± 1-standard deviation (gray region) for experiment 2 and 3 brackets
the training data despite significant differences the training values
between the two data sets

parameters that are constrained by the performance of
the model, and not by specific hypotheses regarding the
individual values of the raw model parameters. Of course,
knowledge of specific parameter values, or the relation-
ship between parameter combinations, can be used to
inform the search through either bounds or problem spe-
cific constraints (for example, as demonstrated in the first
example problem).

Conclusions
In this software note, we presented JuPOETs, a mul-
tiobjective technique to estimate parameter ensembles
in the Julia programming language. JuPOETs is open
source, and available for download under an MIT license
from the JuPOETs GitHub repository at https://github.
com/varnerlab/POETs.jl. We demonstrated JuPOETs on a
suite of algebraic test problems, and a proof-of-concept
ODE based biochemical model. While JuPOETs outper-
formed (and was significantly more flexible) than the
previous Octave implementation, there are several areas
that could be explored further. First, JuPOETs should be
compared with other multiobjective evolutionary algo-
rithms (MOEAs) to determine its relative performance
on test and real world problems. Many evolutionary
approaches e.g., the non-dominated sorting genetic algo-
rithm (NSGA) family of algorithms, have been adapted
to solve multiobjective problems [36, 37]. However, since
there is a lack of open source Julia implementations of
these alternative approaches, we did not benchmark the
relative performance of JuPOETs in this note. One advan-
tage that JuPOETs may have when compared to a strictly
evolutionary approaches, is the inclusion of a local refine-
ment step (hybrid mode), which temporarily reduces the
problem to a single objective formulation. Previously,
POETs run in hybrid mode led to better convergence on
a proof-of-concept signal transduction model compared
to the same approach without the hybrid refinement step
[29]. Other hybrid multiobjective methods have also been
shown to be more efficient than evolutionary approaches
alone, for a variety of biochemical optimization problems
[24, 38]. Thus, there are several different algorithms that
we can use to benchmark, and improve the performance
of JuPOETs, after we implement them in Julia. Another
strategy to improve the performance of JuPOETs is to
reduce the number (or cost) of function evaluations that
are required to obtain optimal or near optimal solutions.
For example, in many real world parameter estimation
problems, the bulk of the execution time is spent eval-
uating the objective functions. One strategy to improve
JuPOETs performance could be to optimize surrogates
[39], while another would be parallel execution of the
objective functions. Currently, JuPOETs serially evaluates
the objective function vector. However, parallel evaluation
of the objective functions e.g., using the parallel Julia

https://github.com/varnerlab/POETs.jl
https://github.com/varnerlab/POETs.jl
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macro or other techniques, could be implemented with-
out significantly changing the JuPOETs run loop. Taken
together, JuPOETs demonstrated improved flexibility, and
performance over POETs in parameter identification and
ensemble generation for multiple objectives. JuPOETs has
the potential for widespread use due to the flexibility of
the implementation, and the high level syntax and distri-
bution tools native to the Julia programming language.

Availability and requirements
JuPOETs is open source, available under an MIT soft-
ware license. The JuPOETs source code is freely avail-
able from the JuPOETs GitHub repository at https://
github.com/varnerlab/POETs.jl. All samples used in this
study are included in the sample/biochemical
and sample/test_functions subdirectories of the
JuPOETs GitHub repository. JuPOETs can be run on all
common.
Operating system environments: (Linux, Mac OS,
Windows).

Acknowledgements
We gratefully acknowledge Ani Chakrabarti, Russell Gould and Kathy Rogers
for their input and suggestions regarding new features to include into
JuPOETs. We also gratefully acknowledge the suggestions from the
anonymous reviewers to improve this manuscript and JuPOETs.

Funding
This study was supported by an award from the National Science Foundation
(NSF CBET-0955172) and the National Institutes of Health (NIH HL110328) to
J.B, and by a National Science Foundation Graduate Research Fellowship
(DGE-1144153) to D.B. Lastly, J.V was supported by an award from the US Army
and Systems Biology of Trauma Induced Coagulopathy (W911NF-10-1-0376).

Authors’ contributions
JV developed the software presented in this study. MM and MV developed the
proof-of-concept biochemical model. The manuscript was prepared and
edited for publication by DB, JB and JV. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Chemical and Biomolecular Engineering, Cornell University,
14853 Ithaca, NY, USA. 2Department of Biomedical Engineering, Cornell
University, 14853 Ithaca, NY, USA.

Received: 8 June 2016 Accepted: 16 December 2016

References
1. Gadkar KG, Varner J, Doyle FJ. Model identification of signal transduction

networks from data using a state regulator problem. Syst Biol
(Stevenage). 2005;2(1):17–30.

2. Gennemark P, Wedelin D. Benchmarks for identification of ordinary
differential equations from time series data. Bioinformatics. 2009;25(6):
780–6. doi:10.1093/bioinformatics/btp050.

3. Battogtokh D, Asch DK, Case ME, Arnold J, Shüttler HB. An ensemble
method for identifying regulatory circuits with special reference to the qa
gene cluster of Neurospora crassa. Proc Natl Acad Sci USA. 2002;99(26):
16904–9.

4. Kuepfer L, Peter M, Sauer U, Stelling J. Ensemble modeling for analysis of
cell signaling dynamics. Nat Biotechnol. 2007;25(9):1001–6.
doi:10.1038/nbt1330.

5. Brown KS, Sethna JP. Statistical mechanial approaches to models with
many poorly known parameters. Phys Rev E. 2003;68:021904–19.

6. Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher
M. Representing model uncertainty in weather and climate prediction.
Ann Rev Earth Planetary Sci. 2005;33:163–93.

7. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP.
Universally sloppy parameter sensitivities in systems biology models.
PLoS Comput Biol. 2007;3(10):1871–8. doi:10.1371/journal.pcbi.0030189.

8. Song S, Varner J. Modeling and analysis of the molecular basis of pain in
sensory neurons. PLoS ONE. 2009;4:6758–72.

9. Tasseff R, Nayak S, Salim S, Kaushik P, Rizvi N, Varner JD. Analysis of the
molecular networks in androgen dependent and independent prostate
cancer revealed fragile and robust subsystems. PLoS ONE. 2010;5(1):8864.
doi:10.1371/journal.pone.0008864.

10. Tasseff R, Nayak S, Song SO, Yen A, Varner JD. Modeling and analysis of
retinoic acid induced differentiation of uncommitted precursor cells.
Integr Biol (Camb). 2011;3(5):578–91. doi:10.1039/c0ib00141d.

11. Tran LM, Rizk ML, Liao JC. Ensemble modeling of metabolic networks.
Biophys J. 2008;95(12):5606–17. doi:10.1529/biophysj.108.135442.

12. Tan Y, Rivera JGL, Contador CA, Asenjo JA, Liao JC. Reducing the
allowable kinetic space by constructing ensemble of dynamic models
with the same steady-state flux. Metab Eng. 2011;13(1):60–75.
doi:10.1016/j.ymben.2010.11.001.

13. Contador CA, Rizk ML, Asenjo JA, Liao JC. Ensemble modeling for strain
development of l-lysine-producing escherichia coli. Metab Eng.
2009;11(4–5):221–33. doi:10.1016/j.ymben.2009.04.002.

14. Tan Y, Liao JC. Metabolic ensemble modeling for strain engineers.
Biotechnol J. 2012;7(3):343–53. doi:10.1002/biot.201100186.

15. Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble modeling for robustness
analysis in engineering non-native metabolic pathways. Metab Eng.
2014;25:63–71. doi:10.1016/j.ymben.2014.06.006.

16. Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of
escherichia coli core metabolism satisfying multiple sets of mutant flux
data. Metab Eng. 2014;25:50–62. doi:10.1016/j.ymben.2014.05.014.

17. Luan D, Zai M, Varner JD. Computationally derived points of fragility of a
human cascade are consistent with current therapeutic strategies. PLoS
Comput Biol. 2007;3(7):142. doi:10.1371/journal.pcbi.0030142.

18. Song SO, Varner J. Modeling and analysis of the molecular basis of pain in
sensory neurons. PLoS ONE. 2009;4(9):6758. doi:10.1371/journal.pone.
0006758.

19. Nayak S, Siddiqui JK, Varner JD. Modelling and analysis of an ensemble of
eukaryotic translation initiation models. IET Syst Biol. 2011;5(1):2.
doi:10.1049/iet-syb.2009.0065.

20. Song SO, Song SOK, Hogg J, Peng ZY, Parker R, Kellum JA, Clermont G.
Ensemble models of neutrophil trafficking in severe sepsis. PLoS Comput
Biol. 2012;8(3):1002422. doi:10.1371/journal.pcbi.1002422.

21. Luan D, Szlam F, Tanaka KA, Barie PS, Varner JD. Ensembles of
uncertain mathematical models can identify network response to
therapeutic interventions. Mol Biosyst. 2010;6(11):2272–86.
doi:10.1039/b920693k.

22. Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK–in silico approach
to characterization and reduction of uncertainty in the kinetic models of
genome-scale metabolic networks. Metab Eng. 2016;33:158–68.
doi:10.1016/j.ymben.2015.10.002.

23. Lequieu J, Chakrabarti A, Nayak S, Varner JD. Computational modeling
and analysis of insulin induced eukaryotic translation initiation. PLoS
Comput Biol. 2011;7(11):1002263. doi:10.1371/journal.pcbi.1002263.

24. Otero-Muras I, Banga JR. Multicriteria global optimization for biocircuit
design. BMC Syst Biol. 2014;8:113. doi:10.1186/s12918-014-0113-3.

25. Handl J, Kell DB, Knowles J. Multiobjective optimization in bioinformatics
and computational biology. IEEE/ACM Trans Comput Biol Bioinform.
2007;4(2):279–92. doi:10.1109/TCBB.2007.070203.

26. Taneda A. Multi-objective optimization for RNA design with multiple
target secondary structures. BMC Bioinformatics. 2015;16(1):280.
doi:10.1186/s12859-015-0706-x.

https://github.com/varnerlab/POETs.jl
https://github.com/varnerlab/POETs.jl
http://dx.doi.org/10.1093/bioinformatics/btp050
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1371/journal.pcbi.0030189
http://dx.doi.org/10.1371/journal.pone.0008864
http://dx.doi.org/10.1039/c0ib00141d
http://dx.doi.org/10.1529/biophysj.108.135442
http://dx.doi.org/10.1016/j.ymben.2010.11.001
http://dx.doi.org/10.1016/j.ymben.2009.04.002
http://dx.doi.org/10.1002/biot.201100186
http://dx.doi.org/10.1016/j.ymben.2014.06.006
http://dx.doi.org/10.1016/j.ymben.2014.05.014
http://dx.doi.org/10.1371/journal.pcbi.0030142
http://dx.doi.org/10.1371/journal.pone.0006758
http://dx.doi.org/10.1371/journal.pone.0006758
http://dx.doi.org/10.1049/iet-syb.2009.0065
http://dx.doi.org/10.1371/journal.pcbi.1002422
http://dx.doi.org/10.1039/b920693k
http://dx.doi.org/10.1016/j.ymben.2015.10.002
http://dx.doi.org/10.1371/journal.pcbi.1002263
http://dx.doi.org/10.1186/s12918-014-0113-3
http://dx.doi.org/10.1109/TCBB.2007.070203
http://dx.doi.org/10.1186/s12859-015-0706-x


Bassen et al. BMC Systems Biology  (2017) 11:10 Page 11 of 11

27. Sendin J, Otero-Muras I, Alonso AA, Banga J. Improved Optimization
Methods for the Multiobjective Design of Bioprocesses. Ind Eng Chem
Res. 2006;45:8594–603.

28. Angione C, Lió P. Predictive analytics of environmental adaptability in
multi-omic network models. Sci Rep. 2015;5:15147.
doi:10.1038/srep15147.

29. Song SO, Chakrabarti A, Varner JD. Ensembles of signal transduction
models using pareto optimal ensemble techniques (poets). Biotechnol J.
2010;5(7):768–80. doi:10.1002/biot.201000059.

30. Eaton JW, Bateman D, Hauberg S. GNU octave version 3.0.1 manual: a
high-level interactive language for numerical computations. North
Charleston: CreateSpace Independent Publishing Platform; 2009.

31. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. arXiv CoRR. abs/1411.1607. Ithaca: Cornell
University; 2014.

32. Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated
annealing. Science. 1983;220(4598):671–80.
doi:10.1126/science.220.4598.671.

33. Fonseca CM, Fleming PJ. Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. arXiv CoRR
Publisher. In: Proceedings of the 5th International Conference on Genetic
Algorithms. Ithaca: Cornell University; 1993. p. 416–23.

34. Kim J, Varner J, Ramkrishna D. A hybrid model of anaerobic e. coli gjt001:
Combination of elementary flux modes and cybernetic variables.
Biotechnol Prog. 2008;24(5):993–1006. doi:10.1002/btpr.73.

35. Schuster S, Fell DA, Dandekar T. A general definition of metabolic
pathways useful for systematic organization and analysis of complex
metabolic networks. Nat Biotechnol. 2000;18(3):326–2. doi:10.1038/73786.

36. Kalyanmoy D, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans Evol Comp. 2002;6:
182–97.

37. Huband S, Hingston P, Barone L, While L. A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans Evol Comp.
2006;10:477–506.

38. Sendin JOH, Otero-Muras I, Alonso AA, Banga JR. Improved optimization
methods for multiple objective design of bioprocesses. Ind Eng Chem
Res. 2006;45:8594–603.

39. Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW. A
rigorous framework for optimization of expensive functions by
surrogates. Struct Optim. 1999;17:1–13.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1038/srep15147
http://dx.doi.org/10.1002/biot.201000059
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1002/btpr.73
http://dx.doi.org/10.1038/73786

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	JuPOETs optimization problem formulation

	Results and discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

