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Abstract

Background: Bruton tyrosine kinase (Btk) plays an important role in B-cell development, differentiation, and
signaling. It is also found be in involved in male immunodeficiency disease such as X-linked agammaglobulinemia
(XLA). Btk is considered as a potential therapeutic target for treating autoimmune diseases and hematological
malignancies.

Results: In this work, a combined molecular modeling study was performed on a series of thieno [3,2-c] pyridine-4-
amine derivatives as Btk inhibitors. Receptor-guided COMFA (q2 = 0.574, NOC = 3, r2 = 0.924) and COMSIA (q2 = 0.646,
NOC = 6, r2 = 0.971) models were generated based on the docked conformation of the most active compound 26.
All the developed models were tested for robustness using various validation techniques. Furthermore, a 5-ns
molecular dynamics (MD) simulation and binding free energy calculations were carried out to determine the
binding modes of the inhibitors and to identify crucial interacting residues. The rationality and stability of molecular
docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM/PBSA
method showed the importance of the van der Waals interaction.

Conclusions: A good correlation between the MD results, docking studies, and the contour map analysis were
observed. The study has identified the key amino acid residues in Btk binding pocket. The results from this study
can provide some insights into the development of potent, novel Btk inhibitors.

Keywords: Btk Kinase, COMSIA, Molecular docking, Molecular dynamic simulation, Free energy calculation, MM/
PBSA

Background
Bruton’s tyrosine kinase (Btk), a member of the Btk/Tec
family of protein tyrosine kinases (PTKs), is a cytoplasmic
protein-tyrosine kinases (Ptk) [1–3]. It is closely involved
regulating survival, activation, proliferation in signal trans-
duction pathways, and differentiation of B-lineage lymph-
oid cells [4–6]. Mutations in the human BTK gene are
responsible for X-linked agammaglobulinemia (XLA), a

male immunodeficiency that causes shortage of mature B
cells and serum immunoglobulin [7–9]. BTK has two
regulatory tyrosine residues (Tyr-223 and Tyr- 551) that
participate in kinase activation [10]. BTK is initially acti-
vated by trans-phosphorylation of Tyr-551 on activation
loop followed by stimulating autophosphorylation of the
Tyr-223 residue within ligand binding site in SH3 domain
[1, 11–15]. Btk is important for B-cell development, differ-
entiation, and signaling [16–18].
Btk inhibitors are still ongoing in clinical evaluation to

identify their use of treating autoimmune diseases. Many
Btk inhibitors such as Hm71224, ONO-4059, Spebruti-
nib, CC-292, AVL-292 and RN-486 have been reported.
Recently, Btk inhibitor ibrutinib (Imbruvica) was
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approved by FDA for treating Mantle cell lymphoma
(MCL) and Chronic lymphocytic leukemia [19]. This
makes it as a potential therapeutic target. Our computa-
tional research group has been involved in molecular
modeling studies [20–23].
In the present study, we performed a molecular mod-

eling study combining molecular docking; Molecular dy-
namics (MD), Molecular mechanics Poisson-Boltzmann
surface area (MM/PBSA) calculations, and three-
dimensional structure-activity relationship (3D-QSAR)
analysis to find the binding mode of Btk inhibitors and
to identify the important key residues that participate in
inhibition of Btk. We have developed receptor-guided
3D-QSAR models. The docking results can help to
understand the binding process. Energy calculations and
energy decomposition were used to study the contribu-
tion of each active site residues in inhibition of Btk kin-
ase. Furthermore, 3D-QSAR results can provide
structural insights to design more active compounds of
this series and to develop novel Btk inhibitors.

Methods
Collection of dataset
A total of 41 thieno[3,2-c]pyridine-4-amines inhibitors
of Bruton’s tyrosine kinase reported by Xiang et al. was
taken for the study [24, 25]. The experimental IC50

values were converted into pIC50 (−log IC50) values
which were used as dependent variables in the current
QSAR analyses. All the compounds were sketched using
Sybyl X 2.1 [26] and the energy optimization is done
using tripos force field. MMFF94 charges were applied
as partial charges. The compounds in the dataset are di-
vided into 13 test sets and 28 training sets. The test set
compounds were selected randomly but, it is ensured
that they contain compounds in uniformly distributed
range of values from low activity to high active com-
pounds. The pIC50 values are from 5.00 to 8.13, covering
an interval of more than 3 log units which is fit for 3D
QSAR studies [27]. The most active molecule (com-
pound 26) from the dataset was docked into the active
site of Btk kinase. This docked pose was selected as a
template structure to sketch the rest of the molecules in
the dataset. The complete dataset taken for this study is
shown in Additional file 1: Table S1.

Modeling of missing residues
The recent high-resolution crystal structure of Bruton’s
tyrosine kinase was retrieved from the protein data bank
(PDB ID: 5BQ0) [28]. The residues from loop region
552–557 were reported missing in crystal structure. This
region was modeled and refined using modellerV9.14
[29–32]. After the loop refinement, the best loop con-
formation was selected based on low-energy, GA341

[33] and DOPE [34] score. This structure was taken as
an initial structure for docking and Molecular dynamics.

Molecular docking
Autodock 4 [35, 36] was used for performing docking
calculations. The active site residues of Bruton’s tyrosine
kinase were reported in previous studies [24, 25, 28].
The residues around 4 Å of the co-crystallized ligand
were considered as the binding site for docking studies.
The most active compound (compound 26) from the
dataset was docked into the active site of Btk. The pro-
tein structure was prepared by removing water, adding
Kollman charges and polar hydrogen. The torsion of the
ligand was prepared by limiting the number of rotatable
bond to 6. The grid maps were generated by the auxil-
iary program AutoGrid4.0 using x, y and z coordinates
of the active site. The grid dimensions were set to 70 ×
70 × 70 points with a grid spacing of 0.375 Å. The num-
ber of docking runs was set to 100. The population in
the genetic algorithm was 150. After docking, the 100
docked poses were clustered into groups with RMS devi-
ations lower than 1.0 Å. A pose ranked by the lowest en-
ergy on the cluster was selected as the docked
conformation. This docked conformation of the most ac-
tive compound 26 was used in 3D QSAR studies and
molecular dynamics.

Alignment
Molecular alignment of compounds is a crucial step in
the development of 3D-QSAR models [37]. The align-
ment was achieved by taking the docked pose of com-
pound 26 as the template. It was assumed that each
molecule binds to the active site in a similar mode, as
they share a common scaffold. The statistics of the
model depends on the alignment of the molecules in its
bioactive conformation [38]. During the procedure, all
the dataset compounds are aligned to the template com-
mon substructure using the substructure-alignment
function in SybylX2.1.

COMFA and COMSIA studies
The COMFA and COMSIA models were generated
using SybylX 2.1. In COMFA [39], the steric and electro-
static fields were calculated separately using sp3 carbon
as the probe atom with the energy cutoff values of
30 kcal/mol. Models were generated using default pa-
rameters. To generate statistically significant 3D-QSAR
models, partial least squares (PLS) regression was used.
It evaluates the training set by correlating the variation
in their pIC50 values with variations in their COMFA/
COMSIA descriptor fields. To analyze the reliability of
the models generated from PLS analysis, cross-validation
analysis was accomplished with the leave-one-out (LOO)
methodology. Then, a non cross-validation analysis was
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carried out using the obtained optimal number of com-
ponents by cross-validation; the Pearson coefficient (r2)
and standard error of estimates (SEE) were calculated.
In Comparative Molecular Similarity Indices Analysis

(COMSIA) [40], steric, electrostatic, hydrophobic, and
hydrogen bond (H-bond) donor and acceptor descriptors
were calculated using a probe atom of radius 1.0. An at-
tenuation factor of 0.30 was used. COMSIA models with
different combinations were generated. From these de-
veloped models, a statistically reasonable COMSIA
model in terms of q2, r2 and SEE was selected.

3D-QSAR model validation
To evaluate the real predictive ability of the models gen-
erated by the COMFA/COMSIA analyses, various valid-
ation techniques were used. All the models are tested for
stability and robustness with external test set validation,
Leave-Five-Out (LFO), a 100 run of bootstrapping, pro-
gressive scrambling, rm2 metric calculations, slope k and
concordance correlation coefficient. The progressive
scrambling of 100 runs with 2 to 100 bins was per-
formed to validate the models [41]. Finally, the COMFA/
COMSIA results were graphically represented by field
contour maps using the field type ‘StDev*Coeff ’. In con-
tour maps, molecular fields such as steric, electrostatic,
hydrophobic, donor and acceptor fields define the favor-
able or unfavorable regions of aligned molecules suggest-
ing the modification required to increase the activity of
the inhibitors or to design new molecules.

Molecular dynamics simulation
The docked structure of 5bq0 with compound 26 served
as a starting structure for MD simulations using Gro-
macs 4.5.7 [42] package. Amber99SB force field [43] was
used for the protein. The force field parameters for com-
pound 26 was generated by the general AMBER force
field (GAFF) [44] using the ACPYPE program [45]. The
complex was solvated in a rectangular box of TIP3P
water [46], a minimum distance of 2 between the sol-
ute and the box. Sodium ions were added to the system
by random replacement of water molecules to neutralize
the system. Long-range coulomb interactions were han-
dled using the particle mesh Ewald (PME) method [47].
The energy minimization of the whole system was car-
ried out for 50,000 steps with steepest descent method
followed by a short NVT equilibration in constant
temperature of 300 K for 100 ps using Berendsen
thermostat [48]. The system then equilibrated with NPT
with constant pressure of 1 atm for 100 ps. To keep the
bonds constrained, LINCS algorithm [49] was used. A
production run for 5 ns was performed using NPT en-
semble at 300 K and 1.0 atm pressure with a time step
of 2 fs. Coordinate trajectories were recorded every 2 ps
for the whole MD runs.

Binding free energy calculation
Free energy calculations were performed on the MD tra-
jectory using g_mmpbsa [50]. Free energy was calculated
for each snapshot and for each molecular species (pro-
tein-ligand complex, protein and ligand). The binding
free energy is computed by Eq. 1. The molecular me-
chanics energy (ΔGMM) was calculated by the electro-
static and van der Waals interactions. Solvation free
energy (ΔGsol) was composed of the polar and the non-
polar contributions. Non-polar solvation free energy was
determined using Solvent Accessible Surface Area
(SASA) model while, polar solvation free energy was ob-
tained by solving the Poisson-Boltzmann equation for
MM/PBSA method. Furthermore, the binding free ener-
gies were decomposed to a single residue using MM/
PBSA method TΔS represented the entropy term:

ΔGbind ¼ ΔGMMþ ΔGsol−TΔS ::::: ð1Þ

Results and discussion
Molecular docking
The docking of the most active compound 26 was car-
ried out using Autodock 4. The docking produced 100
conformations. The clusters were analyzed and a docked
conformation based on the binding energy, hydrogen
bond and hydrophobic interaction was selected. The se-
lected conformation exhibited a binding energy of
−4.22 kcal/mol. The binding pocket of BTK kinase is
mainly contributed by residues Leu408, Ala428, Lys430,
Met449, Thr474, Glu475, Met477, Ser538, Asp539 and
Phe540 [28]. The docked conformation of compound 26
with Btk kinase is shown in Fig. 1.
It was found that compound 26 was favorably located

in the Btk binding pocket. The amino group of
thieno[3,2-c]pyridine formed two hydrogen bond with
hinge residues Thr474 and Glu475. Thr474 is a gate-
keeper residue of the BTK kinase and hence this inter-
action is crucial. Additionally, Nitrogen atom of
thieno[3,2-c]pyridine formed a hydrogen bond with
Met477 of Btk kinase. These three hydrogen bond inter-
action has been reported in the previous studies [51]
and are reported critical for maintaining the Btk inhibi-
tory activity [24, 25]. Furthermore, a hydrogen bond be-
tween the oxygen atom of phenoxyphenyl group and
active site residue Asp539 was observed. Pi-cation inter-
action between Lys430 and first phenyl ring of phenoxy-
phenyl group attached to the thieno [3,2-c] pyridine was
found. Hydrophobic interaction of pyrazol ring with
Leu408 and second phenyl ring of phenoxyphenyl group
with residues Met449, Val458 and Leu528 were identi-
fied. Based on the polar and hydrophobic interactions
formed, the selected docked conformation is considered
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efficient and was used for the receptor-guided QSAR
studies.

COMFA and COMSIA study
Receptor-guided CoMFA models were developed for
series of thieno [3,2-c] pyridine-4-amine derivatives as
Btk antagonist. The docked conformation of the most
active compound 26 was taken as the template to
sketch and align the rest of the dataset molecules.
The common substructure and alignment of the data-
set are shown in Additional file 2: Figure S1 and
Additional file 3: Figure S2, respectively. The data set
was divided into 28 training and 13 test set com-
pounds. The compounds for external test set valid-
ation were categorized into most active, moderately
active, and least active compounds based on the bio-
logical activity. Both the test and training set contains
compounds of all three activity levels.
To find the reliability of a QSAR model, statistical pa-

rameters such as cross-validated correlation coefficient
(q2), non cross-validated correlation coefficient (r2), and
standard error of estimate (SEE), optimum number of
components (NOC) and F statistical values should be
evaluated. A reasonable COMFA model (q2 = 0.574,
NOC = 3, r2 = 0.924) was developed for the selected
training and test sets. Different combinations of COM-
SIA descriptors were used to generate models. The de-
tailed values of each generated model are given in
Additional file 4: Table S2. Among the all the combin-
ation of the COMSIA descriptors, steric (S), electrostatic
(E), hydrophobic (H), hydrogen-bond acceptor (A) and
hydrogen-bond donor (D) SEHAD yielded the most ro-
bust COMSIA model (q2 = 0.646, NOC = 6, r2 = 0.971).
The detailed statistical summary of the CoMFA and
COMSIA analysis are tabulated in Table 1.

Model validation of COMFA and COMSIA models
The following validation techniques were used to calcu-
late the robustness of the developed models. The values

Fig. 1 The binding conformation and hydrogen bonding interactions of compound 26 in the active site of Btk. Hydrogen bonds are represented
as yellow dotted lines and their distances are labeled in Angstrom

Table 1 Detailed statistical summary of the COMFA and
COMSIA models

Parameters COMFA COMSIA (SEHAD)

q2 0.574 0.646

NOC 3 6

SEP 0.721 0.703

r2 0.924 0.971

SEE 0.305 0.202

F value 97.079 116.467

LFO 0.565 0.661

r2pred 0.639 0.791

BS r2 0.937 0.983

BS SD 0.026 0.012

Q2 0.465 0.494

rm2 0.786 0.801

Delta rm2 0.182 0.045

CCC 0.797 0.909

Influence of different fields (%)

S 43.9 10.3

E 56.1 26.4

H - 20.2

A - 18.0

D - 25.1

q2 cross-validated correlation coefficient, NOC optimum number of compo-
nents, SEP standard error of prediction, r2 non-validated correlation coefficient,
SEE standard error of estimation, F value F-test value, r2pred predictive r2,LOF
leave out five, BS-r2 bootstrapping r2 mean, BS-SD bootstrapping standard de-
viation; Q2: Progressive scrambling; Average rm2 for the dataset; Delta rm2 for
the dataset, CCC concordance correlation coefficient, S steric, E electrostatic, H
Hydrophobic, A acceptor, D donor
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of leave five out, external test set (r2pred), bootstrapping,
progressive scrambling (Q2) and rm2 metric calculation
for COMFA and COMSIA models were within the sug-
gested range [52]. Furthermore, CCC value for the
COMFA and COMSIA models found to be substantial
according to Gramatica et al. [53, 54]. The validation re-
sults show that the selected models were robust and pre-
dictable. As shown in Table 1, the COMSIA 3D-QSAR
models have a better statistical result. Therefore, we
focus on the SEHAD model in the following discussion.
The experimental and predicted activity values for the
developed models were tabulated in Additional file 5:

Table S3. The scatter plot for the same is shown in Add-
itional file 6: Figure S3.

Contour map analysis
The contour map for the COMSIA model with SEHAD
combination is shown in Fig. 2. The most potent com-
pound 26 of the dataset is shown superimposed with
COMSIA contour map inside Btk kinase. In the steric
contour map, green contours represent sterically favor-
able regions where bulky substituent increases the activ-
ity. The yellow contours indicate sterically unfavorable
region where bulky substituent decreases the activity

Fig. 2 COMSIA StDev*Coeff contour maps. a steric contour map (green: favored; yellow: disfavored); b electrostatic contour map (Blue: favors
electropositive substituent; red: favors electronegative substituent); c hydrophobic contour map (Cyan: favored; violet: disfavored); d H-bond
acceptor map (Magenta: favored; grey: disfavored). e H-bond donor map (Orange: favored; purple: disfavored). Compound 26 is shown as ball and
stick model inside the active site of Btk kinase
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(Fig. 2a). A big green contour seen near the pyrazole
ring of at R2 position suggests that bulky substitution is
favored in this region. Longer bulky substitution in this
position could enhance the activity. This could possibly
the reason for higher activity of compounds 15, 24, 25,
30 and the most active compound 26 which contains
long bulkier substitution at this position. Bulky substitu-
tion in this position could interact with Leu408. Inter-
action of the ligand with Leu408 has been reported in
previous studies on Btk inhibitors. A yellow contour
near the ethynyl group of R2 position suggests that bulky
substitution in this region could decrease the activity.
In the electrostatic map, blue contours represent regions

where substitutions increase the activity while red contours
indicate regions where electronegative substitutions in-
crease the activity (Fig. 2b). A blue contour near the ethynyl
group at R2 position implies that positive substitution in
that region could increase the activity of the inhibitor. The
red contour on the pyrazole ring of R2 position suggests
that negative atoms in that position could help in increasing
the activity of the ligand. This could be the reason for high
activity of compounds 12, 25, 27, 30 including the most ac-
tive compound 26 that possess Nitrogen (negative) atoms
in pyrazole ring with positive substitution at the end (near
ethynyl group). Presence of negative atom at this position
could make polar contact with Leu408. This could be the
reason for the least activity of compounds 1, 4, 5, 7, 8, 36
and 41 which doesn’t possess pyrazole ring or negative
atoms at the R2 position.
The hydrophobic contour map from COMSIA is

shown in Fig. 2c. Cyan contours indicate the regions
where hydrophobic groups are favored. A cyan contour

near the pyrazole ring at R2 position indicates that
hydrophobic groups near the pyrazole ring are favored.
This could be proved with our docking interaction
where the R2 substituent formed a hydrophobic contact
with Leu408. Another big cyan contour is seen near the
phenoxyphenyl substituent of the R1 group. This region
is a hydrophobic pocket. These interactions are also can
be correlated with our docking results. Phenoxyphenyl
of the ligand occupied a deep position in hydrophobic
pocket constituted by residues Met449, Val458, Ile472
and Leu528. Hence compounds possessing aromatic
(hydrophobic) substitution at this position hold higher
activity levels. This scenario can be observed in nearly
all the moderate and highly active compounds.
The H-bond Acceptor COMSIA contour map is

shown in Fig. 2d. The Magenta color signifies regions
that favor H-bond acceptor groups whereas, grey color
signifies the opposite. The magenta color contour near
the nitrogen atom of pyrazole ring at the R2 position in-
dicates that the presence of hydrogen bond acceptor
group in this position could help in increased activity.
Compounds having acceptor group (Nitrogen atom) at
this position could form a hydrogen bond with residues
Leu408. This could be validated by the presence of ni-
trogen atom as hydrogen bond accepting groups in most
of the highly active compounds 25, 24, 30, 15, 28, 29
including the most active molecule of our dataset com-
pound 26. The grey color atom near the phenoxyphenyl
group at R1 position indicates that hydrogen bond
accepting groups at the position decreases the activity.
The H-bond donor COMSIA contour map is shown in

Fig. 2e. The Orange contours signify regions favoring

Fig. 3 RMSDs of Cα atoms of the protein, active site and compound 26 in 5 ns MD simulation
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hydrogen bond-donor groups, whereas the purple con-
tours signify regions unfavorable for hydrogen bond-
donor groups. An orange contour R2 position depicts
that presence of donor group atoms in that substituents
could increase the activity of inhibitors. The presence of
hydrogen bond donor groups at these specific positions
could form hydrogen bond with Leu408 and Met477.
The hydrogen bond formation of Btk inhibitors with
Leu108 has been reported in many previous studies in-
cluding the one our group published with a series of dia-
minopyrimidine derivatives as Btk inhibitors [51, 55].

Molecular dynamics simulation
MD simulations of 5 ns were performed to investigate
the binding mode and to test the stability of the docked

conformation of compound 26. The standard MD ana-
lysis on potential energy, temperature and pressure for
the system are given in Additional file 7: Figures S4-S6.
The Root Mean Square Deviation (RMSD) of the atomic
positions with respect to the starting structure was cal-
culated (Fig. 3). The RMSD plot shows that the system
had reached a converged state after 1.17 ns for the pro-
tein and less than 1 ns for the ligand after which they
maintain stability. The active site residues remain stable
with much less deviation. The Plot of the root mean
square fluctuation (RMSF) of the system is shown in
Additional file 8: Figure S7. The RMSF was plotted from
0 to 5 ns. Presence of peaks indicates the areas fluctuates
the most during the simulation. The fluctuations ob-
served are around 0.1 nm and less than 0.15 nm which

Fig. 4 Change evaluated in terms of distance between crucial active site residues and compound 26. a Distance between oxygen atom of
Thr474 and H17 of compound 26; b Distance between Oxygen atom of Glu475 and H18 of compound 26; c Distance between Oxygen atom of
Met477 and N2 of compound 26; d Distance between hydrogen atom of Asp539 and O16 of compound 26
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signifies the stability of the system. The radius of gyr-
ation determines the compactness of the system and it
shows the stability of the protein during the simulation.
The radius of gyration is seen as a plateau throughout
the simulation indicating protein stability (Additional file
9: Figure S8).

Analysis of MD results showed three hydrogen bond
formations with active site residues The474, Glu475 and
Met477. This is consistent with our docking results ex-
cept for additional hydrogen bond with Asp539 was ob-
served in the docked conformation. Apart from the
hydrogen bond interactions, hydrophobic contact of

Fig. 5 Structure comparison between initial (yellow color) and representative snapshot from 5 ns MD (cyan color). Compound 26 is represented as
stick model inside the active site of Btk

Fig. 6 Energy of each residue contribution to the binding of compounds 26 with Btk kinase
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pyrazole ring with Leu408 was observed. The phenoxy-
phenyl group was deeply buried in the hydrophobic
pocket formed by Val416, Ser538, Leu528 and Asp539.
This result is also consistent with our docking results.
To study the stability of these interactions, hydrogen
bond with these four residues were monitored through-
out the 5 ns simulation (Fig. 4). Hydrogen bond inter-
action with residues Thr474, Glu475 and Met477 were
stable throughout the simulation whereas, interaction
with Asp539 was weak. To further study the reason be-
hind it, docked conformation of compound 26 (Initial
MD) was superimposed with the structure obtained at
5 ns (Fig. 5). The final MD structure showed that con-
formation of the phenoxyphenyl group slightly changed
and moved away from Asp539.

Free energy calculation using MM/PBSA
The binding affinity of compound 26 was calculated
using MM/PBSA method. The predicted binding free
energy is −153.765 KJ/mol. It composed of Van der Waal
energy of −254.502 KJ/mol, electrostatic energy of
−48.576 KJ/mol, polar solvation energy of 170.763 KJ/
mol and SASA energy of −21.450 KJ/mol. Van der Waals
energy and non-polar salvation energy are vital for the
binding of the inhibitor with Btk. On the other hand,
polar solvation energy is unfavorable for the binding of
the inhibitor. This shows the significance of the intermo-
lecular van der Waal’s contribution. This is consistent
with the docking study and MD simulation interactions,
where the large interaction of ligand with the hydropho-
bic binding pocket was observed. To understand the
protein-ligand interaction in detail, decomposition of the
binding free energy was performed. The energy decom-
position analysis showed that the main contribution of
binding is from residues, Leu528, Gly480, Asp539,
Cys481 and Ser538 with −26.82, −19.93, −8.79, −8.33,
−7.07 and −4.89 KJ/mol respectively (Fig. 6). It is re-
vealed that residue Thr474, Lys430, Leu408 and Ala428
are in disfavor with the binding of compound 26. Over-
all, the binding free energy analysis explained the bind-
ing mechanism with the list of residues that favors the
binding of compound 26 to Btk kinase.

Conclusion
Inhibition of Btk kinase has emerged as a new promising
target in the field of B cell malignancies and autoimmunity
or allergy/hypersensitivity as it is involved in several sig-
naling pathways. In this study, an attempt was made to
understand the binding mechanism and to get an insight
on important residues that are crucial to inhibit Btk kin-
ase. The most active molecule of the dataset, compound
26 was docked into the binding site of Btk kinase. Our
docking results were consistent with the results of other
studies. The molecular dynamic simulation and MM/

PBSA calculations confirmed that the docked conform-
ation is reliable. Free energy calculations showed that van
der Waal interaction provided the most substantial force
for the binding of the inhibitor. The decomposition of
binding free energy revealed that residues Leu528, Gly480,
Asp539, Cys481 and Ser538 contributed favorably to the
binding of compound 26. Hydrogen bond interactions
with Thr474, Gly475, Met477 and Asp539 were observed
during docking and MD simulations.
A reasonable receptor-guided COMFA and COMSIA

models were developed. Based on the statistical performance
COMSIA model was selected as the final model. The con-
tour map analysis suggests that bulky substitution is favored
at R2 position. Negative substitutions and hydrogen bond
acceptors are preferred near the pyrazole ring at the R2 pos-
ition. Hydrophobic or aromatic substitutions are highly fa-
vored near the phenoxyphenyl substituent at R1 position.
Bulky positive substituents with hydrogen bond donor prop-
erties are preferred near ethynyl group at R2 position. There
is a good correlation between the docking results, MD re-
sults and contour map analysis. This proves that the devel-
oped COMSIA model is robust and predictable. Our results
could be a good start for the rational design of more potent
and novel Btk kinase inhibitor of this series.
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