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Abstract

Background: Motivated by the increased amount of data on protein-RNA interactions and the availability of
complete genome sequences of several organisms, many computational methods have been proposed to predict
binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding
sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging
than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in
RNAs have several drawbacks for practical use.

Results: We developed a new support vector machine (SYM) model for predicting protein-binding regions in mRNA
sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and
nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out
(LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than
protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to
non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative
instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an
accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a
Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold
cross validation, but the performance remains high (87.6% accuracy and 0.752 MCQ). In testing the model on
independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other
state-of-the-art methods on a same dataset showed that our model is better than the others.

Conclusions: Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features
than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain
was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of
ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions
in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding.

Keywords: Protein-binding region, RNA-protein interaction, Prediction method

*Correspondence: khan@inha.ac.kr

*Equal Contributors

Department of Computer Science and Engineering, Inha University, 22212
Incheon, South Korea

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

( B.oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0386-4&domain=pdf
http://bclab.inha.ac.kr/RBPbinding
mailto: khan@inha.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Systems Biology 2017, 11(Suppl 2):16

Background

Interactions between protein and RNA molecules are
essential to various cellular processes, such as post tran-
scriptional gene regulation, translation, and alternative
splicing [1]. Many studies have been conducted to identify
RNA-binding proteins (RBPs) or binding sites in pro-
tein and RNA molecules. In particular, recent advances
in high-throughput experimental technologies, includ-
ing next-generation sequencing technologies and cross-
linking and immunoprecipitation (CLIP), have accelerated
the discovery of RBPs and their target RNAs. Despite
the increased number of known RBPs and their target
RNAs, the mechanism of protein-RNA interactions is not
fully uncovered and a large number of RBPs and their
target RNAs remain to be uncovered. For example, for
the ~ 20, 500 protein-coding genes in humans, only 1,542
RBPs (7.5%) and their target RNAs have been identified so
far [2].

As a complement to experimental methods, several
computational methods have been proposed, which are
largely motivated by the increased amount of data on
protein-RNA interactions and the availability of complete
genome sequences of several organisms. Computational
methods in general are much less time-consuming and
costly than experimental methods.

Most existing computational methods are primarily lim-
ited to finding RNA-binding sites in proteins instead of
protein-binding sites in RNAs. For instance, BindN+ [3],
an upgraded version of BindN [4], uses a support vec-
tor machine (SVM) to predict the RNA- or DNA-binding
residues from biochemical features and evolutionary
information of protein sequences. RNABindRPlus [5] also
predicts RNA-binding residues in a protein sequence by
combining predictions from an optimized SVM and those
from a sequence homology method. aaRNA [6] predicts
RNA binding residues in protein using sequence- and
structure-based features.

Compared to the task of predicting RNA-binding sites
in proteins, predicting protein-binding sites in RNA is
more challenging for several reasons [7]. Until very
recently, there were few computational methods that can
predict protein-binding sites in RNA. catRAPID estimates
the binding propensity of RNA and protein molecules by
combining secondary structure, hydrogen bonding and
van der Waals contributions [8]. It often predicts an entire
RNA sequence as a binding site even for an RNA sequence
of 50 or more nucleotides. DeepBind [9] is known to out-
perform state-of-the-art experimental and computational
methods. It uses deep convolutional neural networks,
trained on a huge amount of data from high-throughput
experiments. For the problem of predicting RBP-binding
sites in RNA sequences, DeepBind was trained on data
from RNAcompete, CLIP-seq and RIP-seq [10]. It con-
tains ~ 200 distinct models, each for different RBPs, so
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the user should try all of them in the absence of prior
information on RBP. As output, it only provides a pre-
dictive binding score without protein-binding sites in the
input RNA sequence. A new prediction model called
PRIdictor [11, 12] predicts binding sites in RNA and pro-
tein sequences at the nucleotide and residue level. Wong
et al. [13] developed a method that predicts interacting
nucleotides and residues between DNA and proteins.

In this paper, we propose a new method for predicting
protein-binding regions in mRNA, which are associated
with post-transcriptional regulation of gene expression.
The method uses sequence profiles constructed from log-
odds scores of mono- and di-nucleotides and sequence
compositions of mono-, di- and tri-nucleotides. As shown
in the paper, the proposed method showed a high per-
formance in testing on a large number of human RNA
sequences and was substantially better than other meth-
ods. The rest of the paper presents the details of our
approach and its experimental results.

Methods
Datasets
We obtained protein-binding sites in RNAs from CLIPdb
[14], which provides curated published CLIP-seq data sets
for four species (human, mouse, worm, and yeast). To
obtain a sufficient amount of reliable data, we restricted
the data to those binding regions of 25 nucleotides in ‘+’
strands of human mRNAs, which were identified by PAR-
CLIP technology [15] and have the binding affinity score
> 0.9 in PARalyzer [16]. Human mRNAs were selected
against others because the largest amount of RBP bind-
ing sites is known in human mRNAs. Different RBPs are
known to have different binding preferences within an
mRNA. We examined the type of RBP binding regions
in the extracted human mRNAs by mapping the Ensembl
transcripts to the GRCh37 assembly. Coding sequence
(CDS) regions of mRNA are the most frequent binding
regions of RBPs, followed by 3’ UTR (Additional file 1).

The reason for selecting 25 nucleotides as the size
of a binding region is because protein-binding regions
identified by PAR-CLIP are typically between 21 and
35 nucleotides in length, and binding regions of 25
nucleotides resulted in the larger amount of data from
CLIPdb than other choices for the size (see Additional
file 2 for the distribution of the length of RBP-binding
regions). After extracting a total of 5,145 RBP-binding
regions for 14 RBPs, we assembled RNA sequences using
the reference human genome GRCh37/hg19. These RNA
sequences were used as positive data in our study (Addi-
tional file 3). RBP sequences were obtained from NCBI
GEO (http://www.ncbi.nlm.nih.gov/geo/).

For negative data, we selected 51,450 (10-fold of the
positive data) non-binding regions of 25 nucleotides
in the same reference human genome GRCh37/hgl9.
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The human genome contains more non-binding regions
than protein-binding regions, so we constructed several
datasets with different ratios of binding to non-binding
regions (called 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10 datasets
hereafter).

In order to remove redundancy in the datasets, we first
executed CD-HIT-EST [17] on each of the six datasets
(1:1, 1:2, 1:4, 1:6, 1:8 and 1:10 datasets) and removed
those with a sequence similarity of 80% or higher. After
removing similar sequences, 4372 sequences out of the
5,145 RBP-binding sequences were left. The remaining
4372 RBP-binding sequences were partitioned into two
datasets: training dataset (70% of the remaining RBP-
binding sequences) and test dataset (30%). Thus, there
are no similar RNA sequences between training and test
datasets and within training or test datasets. Table 1 shows
the number of sequences in the training and test datasets
with different ratios of positive to negative instances.
Since the redundancy removal was enforced separately in
the 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10 datasets, the ratio of
positive to negative instances may not be exactly 1 : »
(n=1,2,4,6,8,10) (see Additional files 4 and 5).

Nucleotide profiles and compositions

We constructed position weight matrices (PWMs) of
two types: (1) mono-nucleotide position weight matrix
(mPWM) and (2) di-nucleotide position weight matrix
(dPWM). mPWM(,j) represents the log-odds score of
the i-th nucleotide (i = 1,2,3,4) in the j-th position
(j = 1,2,..., sequence length n), which is defined by
Eq. 1. Likewise, dPWM(dl, j) represents the log-odds score
of the di-th di-nucleotide (di = 1,2,...,16) in the j-th
position (j = 1,2,...,n — 1), defined by Eq. 2.

+ PR
mPWM(i,j) = In (W) (1)
requency= (i, )
+ P
dPWM(di,j) = In ﬁequmy(dl”) 2)
requency (di, )

The PWM of mono-nucleotides, also known as posi-
tion specific score matrix (PSSM) or sequence profile, is

Table 1 Number of RNA sequences in training and test datasets
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frequently used with slightly different definitions [3, 18].
We computed PWM™ and PWM™ from a training dataset
of protein-binding sequences and non-binding sequences,
respectively (see Fig. 1). Each element of PWM™ and
PWM™ represents the frequency of i-th nucleotide (i is
any one of A, C, G and U) in the j-th position of RNA of n
nucleotides. We combined PWM™ and PWM™ of a train-
ing dataset into mPWM by Eq. 1, which represents the
log-odds score the i-th nucleotide in the j-th position.

The PWM of di-nucleotides (APWM) is less commonly
used than PWM of mono-nucleotides, but can elucidate
higher order structures of protein-binding sequences. We
built dPWM in a similar way to mPWM. We first con-
structed dPWM™ and dPWM™ from a training dataset
of protein-binding sequences and non-binding sequences,
respectively. Each element of dAPWM™ and dPWM™ rep-
resents the frequency of the di-th di-nucleotide (di is any
one of AA, AC, ..., UU) in the j-th position (j = 1,2,.. .,
n — 1) of RNA of n nucleotides. dPWM™ and dPWM™ of
a training dataset were combined into dPWM, which rep-
resents log-odds score the di-th di-nucleotide in the j-th
position. The same mPWM and dPWM generated from a
training dataset were used in both training and testing the
prediction model.

In addition to the position weight matrices of two types,
we computed nucleotide compositions of three types:
mono-nucleotide composition (mC), di-nucleotide com-
position (dC) and tri-nucleotide composition (tC). Thus,
a single RNA sequence of # nucleotides is represented
in a feature vector with 2z + 83 elements (n# elements
for mPWM, n — 1 elements for dPWM, and 84 ele-
ments for nucleotide compositions). For a sequence of 25
nucleotides, a single feature vector contains 133 elements
(see Fig. 2 for the structure of a feature vector).

Protein features

To represent a protein sequence, 20 amino acids are first
clustered into 7 groups {A, G, V}, {C}, M, S, T, Y}, {F,
I, L, P}, {H N, Q W}, {K, R} and {D, E} based on their
dipoles and volumes [19]. Every amino acid in each pro-
tein sequence is transformed into an index representing

P:N 1:1 1:2 1:4 1:6 1:8 1:10
Training
Dataset 3,372:3,679 3,372:7,200 337213611 3,372:19,065 3,372:22,826 3,372:26,212
Subtotal 7,051 10,572 16,983 22473 26,198 29,584
Test
Dataset 1,000:1,000 1,000:2,000 1,000:3,998 1,000:5,998 1,000:7,998 1,000:9,998
Subtotal 2,000 3,000 4,998 6,998 8,998 10,998
Total 9,051 13,572 21,981 29,435 35,196 40,582

Since similar sequences were removed separately in each 1:n dataset, the number of negative data (N) is not an exact multiple of the number of positive data (P)
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Fig. 1 Construction of mono-nucleotide position weight matrix
(mPWM). Both binding and non-binding sequences are used to
generate an mMPWM, in which each element (i, j) represents the
log-odds score of the i-th nucleotide (i =A, C, G and U) in the j-th
position (j = 1,2,.. ., sequence length n). F in PWMT, PWM™ and
mPWM denotes the frequency of a nucleotide at a position

an amino acid group. For each protein sequence, the
composition, transition, and distribution of amino acid
groups are represented in a feature vector [19]. The com-
position is the normalized frequency of each group in the
protein sequence. The transition is the normalized fre-
quency of transition between each group in the protein
sequence. The distribution is the normalized position of
the first, 25, 50, 75 and 100%-th amino acid of each group
in the protein sequence. A protein sequence is represented
by a feature vector with 63 elements (7 compositions,
21 transitions, and 35 distributions). Thus, a model that
predicts RBP binding sites using both RNA and proteins
features require 63 more elements in a feature vector than
that using RNA features only.

Prediction model

We built a support vector machine (SVM) model using a
library for support vector machine (LIBSVM) [20]. As a
kernel the radial basis function (RBF) was selected instead
of the linear kernel because the number of instances (>
100,000 RNA sequences) in our dataset is much larger
than the number of features (= 200). Besides, it is known

mPWM dPWM
1 2 = 25 1 2 .. 24
A Ly Ly Lass AA Las1  Laa Laazs
C Lea Les A
G Lao  Le Lg
U Lyz Ly «  Luzs uu Lyus Lwz - Luuzs
n
RIA u‘c‘e‘ ‘A‘C’U
Sequence
n
mPWM Lut | Le2 | Les ‘L;us Lcos | Luzs
n-1
dPWM Luct Lea2 ‘ Laces | Leuzs
84
Composition 4mC 16dC 64 tC
2n+ 83
Feature vector nmPWM n-1dPWM ‘ 84 NC

Fig. 2 Structure of a feature vector. For a sequence of n nucleotides,
mPWM and dPWM are represented by nand n — 1 elements,
respectively. Compositions represent the frequency of each
mono-nucleotide (4 elements), di-nucleotide (16 elements) and
tri-nucleotide (64 elements) in the RNA sequence. A protein
sequence is represented by 63 elements (7 compositions, 21

transitions and 35 distributions)

that there is no need to consider linear SVM if complete
model selection has been conducted using the Gaussian
kernel [21].

The SVM model with the RBF kernel has two parame-
ters, cost (C) and y. We determined the best parameter
values (C = 32 and y = 0.0078125) by running the grid
search tool of LIBSVM on the training dataset. Unless
specified otherwise, all the results shown in this paper
were obtained with C = 32 and y = 0.0078125.

For comparative purposes, we also built another model
using WEKA random forest (http://www.cs.waikato.ac.
nz/ml/weka/). As discussed later in the Result section,
the SVM model was chosen as the final model for
the web server after it was compared with the ran-
dom forest model. The results of the random for-
est model shown in this paper were obtained with
60 trees and 25 features, which resulted in the best
performance.

Evaluation of the model

The performance of the SVM and random forest mod-
els was evaluated using six measures: sensitivity, speci-
ficity, accuracy, positive predictive value (PPV), negative
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predictive value (NPV), and Matthews correlation coeffi-
cient (MCC), which are defined as follows.

o P
Sensitivity = ———— (3)
TP+ FN
TN
Specificity = ——— 4
pecificity = 0 Fp @)
TP+ TN
Accuracy = + (5)
TP+ FP+ TN + FN
P
PPV = (6)
TP + FP
TN
NPV = ——— (7)
TN + FN
TP x TN) — (FP x FN
MCC — (TP x TN) — (FP x FN)

J(TP ¥ EP)(TP + EN)(IN + EP)(IN + EN)
(8)

True positives (TP), true negatives (TN), false positives
(FP), and false negative (FN) represent correctly pre-
dicted binding regions, correctly predicted non-binding
regions, non-binding regions that are incorrectly pre-
dicted as binding, and binding regions that are incorrectly
predicted as non-binding, respectively.

As described above, our prediction model uses PWM of
two types and nucleotide compositions as RNA features.
To examine the contribution of the features to the pre-
diction performance, we tried different combinations of
features in 10-fold cross validation.

We evaluated the model in several different ways. First,
we performed two types of cross validation: (1) standard
10-fold cross validation with six different training datasets
(1:1, 1:2, 1:4, 1:6, 1:8 and 1:10 training datasets) and (2)
leave-one-protein-out (LOPO) cross validation [22] with
the 1:1 training dataset. The reason for performing LOPO
cross validation is because typical k-fold cross validation
tends to over-estimate predictive performances for paired
inputs such as protein-protein interactions (PPIs) or
protein-RNA interactions. Recently Park and Marcottee
[23] and Hamp and Rost [24] have demonstrated that both
standard and refined cross validations lead to inflated
accuracy of PPI prediction methods. In LOPO cross val-
idation with respect to RBPs, all RNA sequences (both
RBP-binding and non-binding sequences) for one RBP are
taken out for testing and remaining RNA sequences are
used for training.

In addition to cross validations of two types, we also
tested the SVM model on independent datasets, which
were not used in training the model. We also compared
our SVM model with DeepBind [9] and catRAPID (8]
using another test dataset. Out of the 14 RBPs used in our
study, DeepBind provides 7 distinct models, one for each
of 7 RBPs (FUS, FXR1, FXR2, IGF2BP2, LIN28A, QK]I,
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TARDBP). For a fair comparison, we extracted new 700
RBP-binding regions of 25 nucleotides from CLIPdb (100
RBP-binding regions for each of the 7 RBPs). To remove
redundancy between the 700 RNA sequences and the
training dataset, we executed CD-HIT-EST-2D on them
with a cut-off value of 0.8. (see Table 2 for the number
of remaining RNA sequences after running CD-HIT-EST-
2D).

Since catRAPID requires an RNA sequence of at least
50 nucleotides, we extended the RBP-binding regions by
including 13 nucleotides on each side of the binding
regions in their original genome sequences. Redundancy
between the extended RNA sequences and the training
dataset was removed by running CD-HIT-EST-2D on
them with a cut-off value of 0.9 because instead of 0.8
since the cut-off value of 0.8 removed too many RNA
sequences (see Table 3 for the number of remaining RNA
sequences after running CD-HIT-EST-2D). As negative
data for the 700 RNA sequences, we extracted additional
100 non-binding regions of 25 and 51 nucleotides in the
reference human genome GRCh37/hg19.

Results and discussion

Evaluation of feature contribution

Table 4 compares different combinations of features in
10-fold cross validation of our SVM model with the
1:1 training dataset. Among the single features, mPWM
and dPWM were much better than nucleotide compo-
sitions. With mPWM or dPWM alone, the SVM model
achieved an accuracy above 89% and an MCC above 0.79.
This result indicates that mPWM and dPWM are very
powerful features in predicting protein-binding regions
in RNA sequences. Compared to using single features
alone, using two different features resulted in perfor-
mance improvement in sensitivity, accuracy, NPV and
MCC. Nucleotide compositions alone achieved a much
lower performance than sequence profiles of log-odds
scores of mono-nucleotides and those of di-nucleotides,
but performance gain was obtained with combination of
nucleotide compositions and sequence profiles (sensitivity
of 91.61%, specificity of 92.39%, accuracy of 92.02%, PPV
of 91.69%, NPV of 92.31% and MCC of 0.840).

Cross validations

Table 5 shows the results of the standard 10-fold cross
validations of the SVM model with the RBF kernel and
random forest model with the 1:1, 1:2, 1:4, 1:6, 1:8 and
1:10 training datasets. The best performance of the SVM
model observed in the balanced dataset with 1:1 ratio of
positive to negative instances (sensitivity of 91.61%, speci-
ficity of 92.39%, accuracy of 92.02%, PPV of 91.69%, NPV
of 92.31% and MCC of 0.840). As expected, running the
SVM model on unbalanced datasets resulted in lower per-
formances on average than running it on the balanced
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Table 2 Results of testing our model and DeepBind on RNA sequences of 25 nucleotides. catRAPID could not be tested on RNA
sequences of 25 nucleotides since the minimum length of an RNA sequence required by catRAPID is 50 nucleotides

#RBP-binding

RBP RNA regions Sensitivity Specificity Accuracy PPV NPV MCC

Our model
FUS 64 93.75% 94.00% 93.90% 90.91% 95.92% 0.873
FXR1 67 97.01% 94.00% 95.21% 91.55% 97.92% 0.902
FXR2 80 66.25% 94.00% 81.67% 89.83% 77.69% 0.638
IGF2BP2 79 74.68% 94.00% 85.47% 90.77% 82.46% 0.709
LIN28A 82 85.37% 94.00% 90.11% 92.11% 88.68% 0.801
QKl 77 84.42% 94.00% 89.83% 91.55% 88.68% 0.793
TARDBP 94 12.77% 94.00% 54.64% 66.67% 5341% 0.117
Weighted average 70.72% 94.00% 83.83% 90.14% 80.54% 0.676

DeepBind
FUS 64 32.81% 42.00% 3841% 26.58% 49.41% -0.246
FXR1 67 11.94% 44.00% 31.14% 12.50% 42.72% -0.444
FXR2 80 15.00% 55.00% 37.22% 21.05% 44.72% -0.320
IGF2BP2 79 41.77% 51.00% 46.93% 40.24% 42.58% -0.072
LIN28A 82 12.20% 52.00% 34.07% 17.24% 41.94% -0.382
QKl 77 83.12% 75.00% 78.53% 71.91% 85.23% 0.576
TARDBP 94 52.13% 92.00% 72.68% 85.96% 67.15% 0.484
Weighted average 36.28% 58.71% 48.91% 40.53% 54.29% -0.051

The specificity of our method is the same for all RBPs because it used a same set of negative data for all RBPs with a single model, whereas DeepBind has distinct models for

each RBP

dataset with 1:1 ratio of positive to negative instances. In
particular, PPV and MCC were significantly decreased as
the ratio of negative instances was increased. But, NPV
was rather increased slightly.

As the dataset contains more negative instances, sen-
sitivity, PPV and MCC of the random forest model were
decreased. In particular, it showed a substantial decrease
in sensitivity. Since there are much more non-binding sites
than binding sites in actual RNA sequences, we deter-
mined that finding all possible binding sites at the expense
of low PPV is better than missing the binding sites. Thus,
we selected the SVM model as the final model for the web
server.

As stated earlier, the SVM model with the RBF kernel is
known to be better than the SVM with linear kernel when
the number of instances is much larger than the number
of features. For comparative purposes, we built an SVM
model with linear kernel and performed 10-fold cross val-
idation of the model (Additional file 6). The SVM model
with linear kernel showed a slightly lower performance
than the SVM model with the RBF kernel.

Our SVM model uses the protein sequence as an addi-
tional information when it is available. Additional file 7
shows the results of 10-fold cross validation of the SVM
model when it is given a protein sequence in addition to

an RNA sequence. The best performance was observed
in the balanced dataset with 1:1 ratio of positive to nega-
tive instances (sensitivity of 93.18%, specificity of 92.01%,
accuracy of 92.57%, PPV of 91.44%, NPV of 93.64% and
MCC of 0.851).

Results of LOPO cross validation with respect to RBPs
in the 1:1 training dataset are shown in Table 6. Since
different RBPs have very different numbers of known
RBP-binding regions, we examined a weighted average
of performance measures instead of a simple average of
them. The weighted average was computed from the total
values of TP, FP, TN and FN of all runs. In LOPO cross
validation, the model showed a sensitivity of 85.54%, a
specificity of 89.53%, an accuracy of 87.60%, a PPV of
88.42%, an NPV of 86.89% and an MCC of 0.752. This
result indicates that LOPO cross validation of our SVM
model obtained a lower performance than 10-fold cross
validation, but its average performance is reasonably high.

Independent tests

For rigorous evaluation of our model, we tested it on inde-
pendent datasets (30% of the entire data), which were not
used in training the model. As in the 10-fold cross valida-
tion, we tested it on six test datasets with different ratios
of positive to negative instances (called 1:1, 1:2, 1:4, 1:6,
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Table 3 Results of testing our model, DeepBind and catRAPID on RNA sequences of 51 nucleotides

#RBP-binding
RBP RNA regions Sensitivity Specificity Accuracy PPV NPV MCC
Our model
FUS 100 79.00% 70.00% 74.50% 72.48% 76.92% 0492
FXR1 97 88.66% 70.00% 79.19% 74.14% 86.42% 0.596
FXR2 93 69.89% 70.00% 69.95% 68.42% 71.43% 0399
IGF2BP2 94 55.32% 70.00% 62.89% 63.41% 62.50% 0.256
LIN28A 96 58.33% 70.00% 64.29% 65.12% 63.64% 0.285
QKl 100 78.00% 70.00% 74.00% 72.22% 76.09% 0482
TARDBP 100 22.00% 70.00% 46.00% 42.31% 47.30% -0.091
Weighted average 64.41% 70.00% 67.25% 67.59% 66.94% 0.345
DeepBind
FUS 100 32.00% 33.00% 32.50% 32.32% 32.67% -0.350
FXR1 97 32.99% 42.00% 37.56% 35.56% 39.25% -0.251
FXR2 93 43.01% 73.00% 58.55% 59.70% 57.94% 0.168
IGF2BP2 94 48.94% 59.00% 54.12% 52.87% 55.14% 0.080
LIN28A 96 36.46% 53.00% 44.90% 42.68% 46.49% -0.107
QKI 100 82.00% 81.00% 81.50% 81.19% 81.82% 0.630
TARDBP 100 50.00% 86.00% 68.00% 78.12% 63.24% 0.386
Weighted average 46.62% 61.00% 53.91% 53.73% 54.05% 0.077
catRAPID
DP value
FUS 10 16.40% - - - - -
FXR1 10 17.60% - - - - -
FXR2 10 22.30% - - - - -
IGF2BP2 10 16.70% - - - - -
LIN28A 10 19.10% - - - - -
QKI 10 15.50% - - - - -
TARDBP 10 18.10% - - - - -
Weighted average 18.22% - - - - -

Sensitivity is shown for our model and DeepBind, and discriminative power (DP) value is shown for catRAPID. The specificity of our method is the same for all RBPs because it
used a same set of negative data for all RBPs with a single model, whereas DeepBind has distinct models for each RBP. Due to the speed of the catRAPID server, catRAPID was
tested on 10 RBP-binding sequences of 51 nucleotides for each RBP, whereas both our model and DeepBind were tested on all the RBP-binding sequences. Detailed results

are available in Additional file 12

1:8, and 1:10 test datasets hereafter). As shown in Table 7,
the specificity, PPV and MCC were decreased as the ratio
of negative instances was increased.

In particular, PPV and MCC were significantly
decreased as the dataset contains more negative
instances. This trend was also observed in 10-fold cross
validation. However, other performance measures (sen-
sitivity, accuracy, and NPV) were rather increased, and
specificity was decreased slightly.

Figure 3 shows the ROC curves of 10-fold cross vali-
dation and independent testing of the SVM models. In
10-fold cross validation, the SVM model with the RBF

kernel yielded a slightly larger area under the ROC curve
(AUC = 0.9732) than the SVM model with linear ker-
nel (AUC = 0.9714). Likewise, in independent testing the
SVM model with RBF kernel showed a slightly larger AUC
(0.8912) than the SVM with linear kernel (0.8878).

Since the prediction model was trained with RBP-
binding RNA sequences of 25 nucleotides, we examined
whether it is applicable to RNAs of different sizes. For
RNAs of k nucleotides (k < 25), we extracted a total of
12,576 RBP-binding RNAs from CLIPdb. When testing
the model on each RNA sequence with < 25 nucleotides,
we selected a position in the RNA sequence which
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Table 4 Comparison of different combinations of features in 10-fold cross validation

Sensitivity Specificity Accuracy PPV NPV MCC
mPWM 89.09% 90.60% 89.87% 89.67% 90.06% 0.797
dPWM 90.48% 92.06% 91.31% 91.27% 91.34% 0.826
compositions 71.44% 88.23% 80.20% 84.76% 77.12% 0.608
mPWM + dPWM 91.46% 91.98% 91.73% 91.27% 92.16% 0.834
mPWM + compositions 91.31% 91.55% 91.43% 90.83% 92.00% 0.828
dPWM + compositions 91.07% 92.53% 91.83% 91.78% 91.88% 0.836
mPWM + dPWM + compositions 91.61% 92.39% 92.02% 91.69% 92.31% 0.840

Using all 3 features showed the best performance. mPWM: mono-nucleotide position weight matrix, dPWM: di-nucleotide position weight matrix, compositions: frequency

of mono-nucleotides, di-nucleotides, and tri-nucleotides in the RNA sequence

results in the maximum sum of log-odds scores from
an ungapped alignment of the sequence with mPWM.
Based on the selected position, we encoded both mPWM
and dPWM features and filled zeros for matrix ele-
ments that have no corresponding nucleotides in the
RNA sequence to make the size of the feature vector
comparable to those for 25-mer RNAs. Nucleotide com-
positions of short RNA sequences were encoded in the
same way as RNA sequences of 25 nucleotides. The
prediction performance with short RNA sequences was
lower than that with 25-mer RNAs, but its accuracy
is as high as 74.4% (Additional file 8). We also tested
the prediction model on RNA sequences with > 25
nucleotides, and details are discussed in the next section.
Additional file 9 shows the change in accuracy of the
model for RNA sequences with lengths between 21 and 40
nucleotides.

Without changing the original mPWM and dPWM, we
tested our model for new RBPs that were not consid-
ered in constructing datasets. It showed a low perfor-
mance for some RBPs but obtained a high performance
for some RBPs (Additional file 10). The best performance
was observed for HNRNPD (sensitivity of 94.29%, speci-
ficity of 94.37%, accuracy of 94.33%, PPV of 92.52%, NPV
0f 95.71% and MCC of 0.884).

A negative dataset in our study was constructed by ran-
dom selection. For comparative purposes, we constructed
different negative datasets by extracting a subsequence
in the upstream region of each RBP binding region. We
tried several different distances ranging from 1 to 1001
nucleotides between the negative instance and the pos-
itive instance (i.e., RBP binding region) in a same RNA
sequence. The performance of our model with a new
negative dataset was as high as that with the previous

Table 5 Results of 10-fold cross validations of SVM and random forest on 6 datasets with different P:N ratios of positive to negative

instances

PN Sensitivity Specificity Accuracy PPV NPV MCC

SYM
1:1 91.61% 92.39% 92.02% 91.69% 9231% 0.840
1:2 91.37% 92.17% 91.91% 84.53% 95.80% 0819
1:4 91.13% 92.33% 92.09% 74.64% 97.68% 0.777
1:6 91.22% 91.95% 91.84% 66.71% 98.34% 0.736
1:8 91.22% 91.92% 91.83% 62.52% 98.61% 0.713
1:10 91.19% 91.54% 91.50% 58.11% 98.78% 0.686

Random forest
11 91.13% 92.06% 91.62% 91.32% 91.89% 0.832
1:2 85.44% 95.21% 92.09% 89.31% 93.32% 0816
1:4 80.40% 97.18% 93.85% 87.59% 95.24% 0.802
1:6 77.88% 97.77% 94.78% 86.01% 96.16% 0.788
1:8 76.01% 98.01% 95.18% 84.95% 96.51% 0.777
1:10 75.24% 98.14% 95.53% 83.90% 96.86% 0.770

PPV positive prediction value, NPV negative prediction value, MCC Matthews correlation coefficient
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Table 6 Results of LOPO cross validation of our method with respect to 14 RBPs

TP TN FP FN Sensitivity Specificity Accuracy PPV NPV MCC
AGO1 37 50 3 18 67.27% 94.34% 80.56% 92.50% 73.53% 0.638
AGO2 39 49 2 18 68.42% 96.08% 81.48% 95.12% 73.13% 0.664
EWSR1 200 198 14 14 93.46% 93.40% 93.43% 93.46% 93.40% 0.869
FUS 468 534 46 19 96.10% 92.07% 93.91% 91.05% 96.56% 0.879
FXR1 3 7 0 1 75.00% 100.00% 90.91% 100.00% 87.50% 0.810
FXR2 25 33 1 1 69.44% 97.06% 82.86% 96.15% 75.00% 0.688
IGF2BP2 57 55 7 15 79.17% 88.71% 83.58% 89.06% 78.57% 0.678
LIN28A 221 263 25 57 79.50% 91.32% 85.51% 89.84% 82.19% 0.714
LIN28B 2214 2343 329 227 90.70% 87.69% 89.13% 87.06% 91.17% 0.783
QKl 3 5 0 1 75.00% 100.00% 88.89% 100.00% 83.33% 0.791
TAF15 11 16 1 2 84.62% 94.12% 90.00% 91.67% 88.89% 0.796
TARDBP 39 159 14 149 20.74% 91.91% 54.85% 73.58% 51.62% 0.179
YTHDF2 35 39 5 6 85.37% 88.64% 87.06% 87.50% 86.67% 0.741
ZC3H78B 388 438 43 94 80.50% 91.06% 85.77% 90.02% 82.33% 0.720
Total 3,740 4,189 490 632
Weighted average 85.54% 89.53% 87.60% 88.42% 86.89% 0.752

The weighted average was computed from the total values of TP, TN, FP and FN of all runs. TP: true positive, TN true negative, FP false positive, FN false negative, PPV positive

prediction value, NPV negative prediction value, MCC Matthews correlation coefficient

dataset in which negative instances were sampled ran-
domly. The specificity has been increased slightly with the
new negative dataset. Details are available in Additional
file 11.

Comparison with other methods

For the comparison with DeepBind and catRAPID,
we prepared two new datasets of RBP-binding RNA
sequences. The first test dataset consists of RNA
sequences of 25 nucleotides extracted from CLIPdb. In
the first dataset, similar sequences with any in the train-
ing dataset were removed by running CD-HIT-EST with
a cut-off value of 0.8. The second test dataset was con-
structed by adding 13 nucleotides in the original genome
sequence at both ends of the 25-mer RNAs in the first
dataset. The reason that we could not use RBP-binding
RNA sequences of 51 nucleotides in CLIPdb is because

DeepBind does not provide a prediction model for RBP-
binding RNA sequences of 51 nucleotides (DeepBind pro-
vides distinct models for each RBP). For negative data of
the test datasets, we selected 100 non-binding regions of
25 and 51 nucleotides in the reference human genome
GRCh37/hg19.

When testing the model on each RNA sequence with
> 25 nucleotides, we found a 25-mer subsequence of
the RNA sequence which results in the maximum sum of
log-odds scores from an alignment of the 25-mer subse-
quence with mPWM. In a feature vector, we encoded both
mPWM and dPWM features of the selected 25-mer sub-
sequence along with nucleotide compositions of the entire
RNA sequence.

Table 2 shows the results of testing our model and
DeepBind on RBP-binding sequences for 7 RBPs. In pre-
dicting RBP-binding regions of 25 nucleotides, our model

Table 7 Results of independent testing of our method on 6 datasets with different P:N ratios of positive to negative instances

P:N Sensitivity Specificity Accuracy PPV NPV MCC

1 72.50% 91.90% 82.20% 89.95% 76.97% 0.656
12 72.40% 91.80% 85.33% 81.53% 86.93% 0.663
1:4 74.10% 91.10% 87.70% 67.55% 83.36% 0.630
1:6 77.00% 90.26% 88.37% 56.87% 95.92% 0.596
1:8 77.80% 89.68% 88.36% 48.53% 97.00% 0.554
1:10 79.10% 89.70% 88.73% 43.44% 97.72% 0.532

PPV positive prediction value, NPV negative prediction value, MCC Matthews correlation coefficient
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Fig. 3 ROC curves of 10-fold cross validation and independent testing
of the RBF-SVM and the linear SYM. Both in 10-fold cross validation
and independent testing, the SYM model with the RBF kernel yielded
a slightly larger area under the ROC curve (AUC) than the SYM model
with linear kernel

achieved an average sensitivity of 70.72%, specificity of
94.00%, accuracy of 83.83%, PPV of 90.14%, NPV of
80.54% and MCC of 0.676. DeepBind showed very low
scores for most RBP-binding sequences, but the scores
of DeepBind are known to be on an arbitrary scale [9].
Thus, for a fair comparison, we computed Z-scores of
DeepBind scores. If an RNA sequence tested by Deep-
Bind had a Z-score > 0, it was considered as RBP-binding;
otherwise, it was considered as non-binding. DeepBind
showed an average sensitivity of 36.28%, specificity of
58.71%, accuracy of 48.91%, PPV of 40.53%, NPV of
54.29% and MCC of -0.051, which is much lower than
ours.

In testing on RBP-binding regions of 51 nucleotides,
our model showed a much better performance than
DeepBind (Table 3). Our model obtained an average
sensitivity of 64.41%, specificity of 70.00%, accuracy of
67.25%, PPV of 67.59%, NPV of 66.94% and MCC of
0.345, whereas DeepBind showed an average sensitiv-
ity of 46.42%, specificity of 61.00%, accuracy of 53.91%,
PPV of 53.73%, NPV of 54.05% and MCC of 0.077. The
catRAPID server was too slow to test all RBP-binding
sequences shown in Table 3, so it was tested on 10
RBP-binding sequences for each RBP. catRAPID showed
low discriminative power (DP) values in most test cases.
Since DP of catRAPID represents the interaction propen-
sity of a protein—RNA pair with respect to the training
sets [8], the result of testing catRAPID on RBP-binding
sequences indicates a low confidence level of the pre-
diction. Details of the RBP-binding sequences used for
comparison of three methods and raw data obtained
from execution of the three methods are available in
Additional file 12.
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Conclusion

In this paper we proposed a new computational method
to predict protein-binding regions in mRNA sequences
using sequence profiles constructed from log-odds scores
of mono- and di-nucleotides and nucleotide composi-
tions. The method has been implemented in SVM models
and evaluated in several ways, including standard 10-fold
cross validation on six datasets with different ratios of
positive to negative instances, LOPO cross validation, and
independent testing with six datasets of different ratios
of positive to negative instances. We also compared our
method with DeepBind and catRAPID using another test
dataset.

Results of cross validation and independent testing of
the method on actual RBP-binding regions in human
mRNAs showed that sequence profiles of log-odds scores
of mono- and di-nucleotides are much more powerful
features than nucleotide compositions in finding protein-
binding regions in RNA sequences. Nucleotide com-
positions alone achieved a much lower performance
than sequence profiles of log-odds scores of mono-
nucleotides and those of di-nucleotides, but performance
gain was obtained with combination of nucleotide com-
positions and sequence profiles. The best performance
was observed in a balanced dataset of positive and neg-
ative instances. 10-fold cross validation with a balanced
dataset achieved a sensitivity of 91.6%, a specificity of
92.4%, an accuracy of 92.0%, a PPV of 91.7%, an NPV
of 92.3% and an MCC of 0.84. 10-fold cross valida-
tion of RNA and protein sequence feature vector model
with a balanced dataset achieved a sensitivity of 93.2%,
a specificity of 92.0%, an accuracy of 92.6%, a PPV of
91.4%, an NPV of 93.6% and an MCC of 0.85. LOPO
cross validation showed a lower performance than the
10-fold cross validation, but the performance remains
high (sensitivity of 85.5%, specificity of 89.5%, accuracy
of 87.6%, PPV of 88.4%, NPV of 86.9% and MCC of
0.752). In testing the model on independent datasets, it
achieved a sensitivity of 72.5%, a specificity of 91.9%, an
accuracy of 82.2%, a PPV of 89.9%, an NPV of 77.0%
and an MCC of 0.66. Testing of our model and two
other methods showed that our model is better than the
others.

The results shown in this paper are preliminary, but
demonstrate the potential of our method to predict RBP-
binding regions in mRNA. Given that the average length
of human mRNAs is about 2 kb and that different RBPs
have different binding preferences within an mRNA, it
is not straightforward to find RBP binding regions in
mRNAs. A computational method like ours will help biol-
ogists save time and effort in designing and performing
their in vivo or in vitro experiments to detect protein-
RNA binding sites by narrowing down candidate binding
regions on target RNAs.
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