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Abstract

Background: Identifying perturbed pathways in a given condition is crucial in understanding biological
phenomena. In addition to identifying perturbed pathways individually, pathway analysis should consider interactions
among pathways. Currently available pathway interaction prediction methods are based on the existence of
overlapping genes between pathways, protein-protein interaction (PPI) or functional similarities. However, these
approaches just consider the pathways as a set of genes, thus they do not take account of topological features. In
addition, most of the existing approaches do not handle the explicit gene expression quantity information that is
routinely measured by RNA-sequecing.

Results: To overcome these technical issues, we developed a new pathway interaction network construction
method using PPI, closeness centrality and shortest paths. We tested our approach on three different
high-throughput RNA-seq data sets: pregnant mice data to reveal the role of serotonin on beta cell mass,
bone-metastatic breast cancer data and autoimmune thyroiditis data to study the role of IFN-α. Our approach
successfully identified the pathways reported in the original papers. For the pathways that are not directly mentioned
in the original papers, we were able to find evidences of pathway interactions by the literature search. Our method
outperformed two existing approaches, overlapping gene-based approach (OGB) and protein-protein
interaction-based approach (PB), in experiments with the three data sets.

Conclusion: Our results show that PINTnet successfully identified condition-specific perturbed pathways and the
interactions between the pathways. We believe that our method will be very useful in characterizing biological
mechanisms at the pathway level. PINTnet is available at http://biohealth.snu.ac.kr/software/PINTnet/.
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Background
The importance of finding perturbed interaction between
pathways
Identifying perturbed pathways in a given condition is
crucial in understanding biological phenomena. Over-
representation analysis (ORA) [1], gene set enrichment
analysis (GSEA) [2–4], signaling pathway impact anal-
ysis (SPIA) [5] and EnrichNet [6] are widely used
approaches to identify such pathways. These approaches
detect activated pathways and rank the pathways in
terms of their own activation scores or statistical
tests. However, pathways usually function in a coor-
dinated and cooperative fashion [7–9]. Thus under-
standing interactions or crosstalk between pathways
becomes as important as identifying perturbed single
pathway.

Currently available methods of pathway interaction
network
There are several approaches to find pathway interac-
tions and construct a pathway interaction network. The
first and simplest one is to consider the shared com-
ponents such as genes or proteins between pathways. It
assumes that shared genes may mediate interactions and
predicts such interactions by testing the significance of
the overlapping genes between pathways using hyperge-
ometric test such as Fisher’s exact test [10]. The second
approach is to estimate interactions using protein-protein
interaction (PPI) information. This approach assumes
that any two interacting pathways may have more edges
connected in PPI than expected. An approach used topo-
logical information in PPIs connecting pathways to con-
struct a pathway interaction network [11]. An improved
method for finding active PPIs between pathways was
also studied [12]. Since statistical significance cannot
guarantee biological significance and vice versa, the afore-
mentioned approaches are likely to miss biologically
meaningful interactions. To address this issue, a function-
based approach was suggested [13]. The approach esti-
mated pathway interaction based on Gene Ontology (GO)
similarities.

Motivation
Though the previously mentioned methods suggested an
insight on how to predict interactions between path-
ways, the methods are based mainly on testing differential
gene expression. None of these methods use the explicit
quantity of gene expression. Therefore, the methods are
not able to identify the subtle but important changes in
gene expression. Moreover, many of the methods do not
take into account the topological features, treating the
pathways just as a set of genes. Recently, a path-based
approach was studied [14] but it does not use tran-
scriptomic data to predict condition-specific interactions,

limiting itself to findingmerely static interactions between
pathways.
Here, we propose a new pathway interaction network

construction method (PINTnet). The summary of our
method are:

1. The interactions between pathways are represented
by the subnetworks that are constructed considering
two topological features: closeness centrality and
shortest path.

2. Shortest paths on the subnetworks are computed
based on an assumption that pathway interactions
occur by a series of spontaneous reactions among
genes belonging to the pathways.

3. The explicit quantity of gene expression is used to
measure the activation status of pathway interactions.

4. The flow of the changes in expression is weighted.
Higher weight is given to any edge between genes
when the edge connects differentially expressed
genes (DEGs).

Methods
In this section, we describe the process of how PINT-
net measures the activation status of the interactions and
constructs the pathway interaction network including the
preprocess steps in detail. The overview of the method is
depicted in Fig. 1.

Preparation of PPI and pathway information
We collected protein-protein interaction data from
STRING (ver.9.1) [15] and pathway data from KEGG
(Release 73.1) [16]. To integrate these two independent
information, we selected the genes in both datasets and
edges in the pathways are augmented by bringing in edges
in STRING. There are several main categories of pathways
in KEGG. These are metabolism, genetic information pro-
cessing, environmental information processing, cellular
processes, organismal systems and human diseases. We
excluded pathways in metabolism category because the
metabolic pathways focus on the metabolic products of
cells and are not well represented in PPI [17].

Defining edges in the pathway network
Defining edges between two pathways is the key issue in
constructing a pathway interaction network. Below are the
steps for defining edges.

Step 1: Subnetwork construction on each pathway pair
We constructed a subnetwork for every possible pair of
pathways. To do so, we used two criteria for the path-
ways to be paired: whether the two pathways have at least
one overlapping gene and whether the two pathways have
at least one gene connected to the overlapping genes via
PPI. We defined every pair of two pathways as a possible
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Fig. 1 Overview of our method

pair only when the two pathways satisfied the both cri-
teria. Then, for every possible pair, a subnetwork was
constructed using PPI involving the two pathways.

Step 2: Closeness centrality calculation
For each subnetwork generated above, we calculated
closeness centrality of all the genes within. The centrality
was to evaluate the degree of a node to be central in a given
network, by taking a reciprocal of an average shortest path
length to all the nodes within a network from the source.
The shorter the average shortest path length of a node, the
closer to 1 the closeness centrality of the corresponding
node is, otherwise, closer to zero. In this way, genes reflect
the topological importance of themselves concerning all
possible neighbor nodes within a given subnetwork.

Step 3: Shortest path computation
After calculating the closeness centrality, we pruned the
genes that are not direct neighbors to overlapping genes
in subnetworks. Then, we computed the shortest paths.
Given two pathways A and B, let the genes in A as
Agenes = {a1, a2, . . . , am} and the genes in B as Bgenes =
{b1, b2, . . . , bn} wherem is the number of genes in A and n
is the number of genes in B. The shortest paths were com-
puted for every pair of genes ai and bj where 1 ≤ i ≤ m,
1 ≤ j ≤ n and both ai and bj are the direct neighbor
genes to the overlapping genes. The shortest paths must
pass through any overlapping gene of the two pathways.

Step 4: Constructing shortest path-weaved subnetwork
Finally, we weaved the shortest paths and constructed
shortest path-weaved subnetworks (SSN). We conjec-
tured that the pathway interaction occurs by the rapid

and spontaneous flow of biological signal or interaction
through topologically important genes. This concept is
realized in our method by computing shortest path in
the weighted subnetworks in terms of closeness centrality.
The SSN thus is the network that connects the topo-
logically important genes using the shortest paths. The
overview of these steps is depicted in Fig. 2.

Measuring activation status of pathway interaction
Measuring the activation status of biological systems or
networks is technically difficult. For example, we may
want to compute the average expression level of all genes
in a network as the activation status of the network.
However, this computation completely ignores topolog-
ical features. A recent work [18] demonstrated that the
identification and measurement of subsystems by using
both PPI and pathway information were effective in prog-
nosis of breast cancer survival by defining activation status
of network edges. We incorporated the approach to calcu-
late the activation status of interaction between pathways.
To measure the activation status of each SSN, PINTnet
firstly calculates a co-expression score (CES) of each edge
of the SSN using the following equations:

CESkl = 1
2
ek,l (ck (vl1) x (vl1) + ck (vl2) x (vl2)) (1)

ek,l = ck (vl1) x (vl1) + ck (vl2) x (vl2)
x (vl1) + x (vl2)

(2)

where k is the index of SSN constructed from each path-
way pair, l is the index of an edge, vl1 and vl2 are two genes
connected by the edge l, ck(v) is the closeness centrality of
a gene v in SSNk and x(v) is the expression level of a gene
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Fig. 2 Constructing a shortest path-weaved subnetwork. g indicates genes. ci indicates the closeness centrality of a gene of subnetwork i.
Overlapping genes are colored in blue, the direct neighbors of the overlapping genes belonging to pathway A are colored in green and the direct
neighbor genes belonging to pathway B are colored in orange. The others are colored in gray. a A subnetwork of pathway A and pathway B b
Closeness centrality is calculated for every gene in the subnetwork. The node size represents the closeness centrality of the node. c The genes that
are not direct neighbors to overlapping genes are pruned. d Shortest paths are computed. e The shortest paths are weaved to construct a shortest
path-weaved subnetwork

v. ek,l is the condition-specific edge centrality of edge l in
SSNk . After measuring the co-expression score for every
edge in SSNk , PINTnet takes the average of the summation
of the scores as the activation score (AS) and that is:

ASSSNk =
∑N

l=1 CESkl
N

(3)

where N is the total number of edges in SSNk and l is
the index of an edge. PINTnet then calculates the ratio of
ASSSNk for the case and the control data so it can reflect
the activity of the pathway interaction in a comparative
manner between case and control.
Computing DEGs is a simple but effective approach for

detecting perturbed pathways and even signaling impacts
in the pathways in a given condition. However, DEGs are
widely interspersed and are not connected in the networks
or pathways. To utilize DEG information, we applied the
ratio of DEGs that are connected by edges as a weight. A
higher interaction score is assigned for more DEG con-
nections. In this step, PINTnet simply calculates the fold
change of expression level of each gene to define DEGs

and the default threshold is log2 0.5 as used in other stud-
ies that used RNA-seq data [19–21]. The equation is as
follows:

ISk = AScaseSSNk

ASctrlSSNk

· U + 1
D + 1

(4)

where k is the index of SSN, ISk is the interaction score of
SSNk , AScaseSSNk

is the activation score of SSNk of the case
data, ASctrlSSNk

is the activation score of SSNk of the control
data, U is the number of connected up-regulated DEGs
of the case data compared to the control data and D is
the number of connected down-regulated DEGs of the
case data compared to the control data. When PINTnet
calculates the fold change, the cutoff value of 1.0 for the
expression level is used to prevent noise such as extremely
high fold change due to the comparison between small
numbers. The cutoff value was set based on other studies
[22, 23]. In addition, genes that are overlapped among
multiple pathways can cause false positives. A study
reported this issue and proposed an approach of ruling
out the overlapping genes when determining perturbed
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pathways [24]. We tried to attenuate the effect of those
genes by dividing the expression level by the number of
pathways that the genes belong to, so that it could be
naturally considered in calculating the ratio of connected
DEGs.

Pathway interaction network construction
After measuring the activation status of all pairs of path-
ways and obtaining the interaction score, PINTnet con-
verts the interaction score using the sigmoid function [25].
It is to convert the scores to a value in the range between 0
and 1, so a constant cutoff value can be applied uniformly
to all SSNs to construct the pathway interaction network
using the only pairs satisfying the cutoff. PINTnet uses
log2-transformed interaction scores as the input values of
the sigmoid function. The equation of the function is as
follows:

f
(
log2 ISk

) = 1
1 + e− log2 ISk

(5)

After the interaction score is converted, a pathway inter-
action network is constructed with the edges between
pathways when the interaction score of edges satisfies the
cutoff value. We empirically determined the cutoff value
by testing PINTnet on various data from other biological
researches.

Results
To evaluate the performance of PINTnet, we used three
different high-throughput RNA-seq datasets in Gene
Expression Omnibus (GEO). Cytoscape was used to visu-
alize the networks [26]. The test datasets are summa-
rized in Table 1. For the evaluation, we investigated
the evidences for every edge that connected the path-
ways reported in the original papers through the liter-
ature search and established the evaluation criteria for
the performance of PINTnet and two existing pathway
interaction network construction methods, overlapping
gene-based approach (OGB) and PPI-based approach
(PB), were used for the performance comparison. The
details of the approaches are described in Performance
comparison to other methods section.

Table 1 The description of three datasets

Name Title Accession No.

Dataset1 Serotonin regulates pancreatic beta
cell mass during pregnancy

GSE21860

Dataset2 ABL kinases promote breast cancer
osteolytic metastasis

GSE69125

Dataset3 IFN-α mediates the development of
autoimmunity

GSE25115

Data description
Dataset1 is the data that measured the gene expression
levels of pregnant mice to reveal how serotonin regu-
lates pancreatic beta cell mass during pregnancy [27].
The authors compared the global gene expression patterns
in islets from nonpregnant and pregnant female mice
by the high-throughput sequencing to identify the genes
potentially involved in regulating maternal beta cell mass.
They stated that Tph1 and Tph2 were the genes most
markedly induced during pregnancy. These two genes
encode two isoforms of tryptophan hydroxylase, the rate-
limiting enzyme in the synthesis of serotonin, 5-HT. The
authors also reported that beta cells share a common gene
expression program and the ability to synthesize, store and
secrete serotonin with serotonergic neurons.
Dataset2 is the data generated by a study investigating

how ABL kinases promote breast cancer osteolytic metas-
tasis [28]. Bone is one of the primary sites where breast
cancer metastasizes and 70% of deaths of breast cancer
is caused by bone metastases. The authors evaluated the
result of single- or double-knockdown of ABL1 and ABL2
in breast cancer cells using RNA-seq analysis to reveal the
signaling pathways required for ABL kinases-dependent
bone metastasis. They carried out GSEA to identify which
pathways were affected by ABL kinases in metastatic
breast cancer cells. They reported that Jak-STAT signal-
ing pathway, Hippo signaling pathway, cytokine-cytokine
interaction and bone metastasis were enriched in the con-
trol group compared to ABL1/ABL2 knockdown group.
Dataset3 is from a study that used thyroiditis as a model

to reveal how IFN-α plays a pivotal role in auto immunity
[29]. The authors generated transgenic mice overexpress-
ing IFN-α in the thyroid and performed RNA-seq analysis.
The transgenic mice showed upregulation of pathways
such as antigen presentation pathway, interferon signal-
ing, complement system, apoptosis, pattern recognition
receptors and RAR activation.

Evaluation criteria
Dataset1
It is well known that nutrient requirements by the fetus
incur change in the maternal metabolism during preg-
nancy. Nutrient flow to the fetus is maintained by increas-
ing insulin resistance. The resistance may cause maternal
hyperglycemia but the glucose level is maintained by the
expansion of beta cells driven by prolactin and placen-
tal lactogen [30–32]. Failures in this response raise the
risk of being diagnosed with gestational diabetes mel-
litus [33]. Serotonin is a regulator of insulin secretion
and co-localized with insulin in granules of pancreatic β-
cells. A lack of serotonin in β-cells can lead to reduced
insulin secretion [34]. Also, it is known that prolactin has
direct effects on increasing insulin secretion [35–37] and
is closely related to diabetes [38].
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Dataset2
Ras signaling pathway is the pathway which ABL1 and
ABL2 belong to and it is known that Ras signaling path-
way activation is implicated in breast cancer invasion and
growth [39]. Thus the downstream of Ras signaling is con-
sidered to be a potential target against osteolytic breast
cancermetastasis [40]. MAPK signaling pathway is known
to be implicated in cancer-induced bone pain [41]. In
addition, it is known that p38 MAPK is important in mat-
uration and synthesis of osteoclasts [42, 43].Wnt signaling
pathway is one of the pathways dysregulated in human
breast cancer and it was reported that the activity of Wnt
signaling in breast cancer is significantly higher than that
in bulk cancer cells [44]. Upregulation of Wnt signaling
pathway has been reported to lead to increased metasta-
sis including bone metastasis from breast cancer [45, 46].
TGF-β signaling pathway was reported to be important
for the development of osteolytic bone metastases by
numerous studies [47]. Proteoglycans participate in the
control of bone tumor development and bone metastases

dissemination [48]. A high sensitivity to PI3K-Akt sig-
naling pathway characterizes triple-negative breast cancer
metastasis to bone [49]. Hippo signaling pathway deregu-
lation in breast cancer bonemetastasis has been suggested
that YAP and TAZ activity was increased in metastatic
breast cancer [50]. In addition to the individual functions
of the pathways, interactions between the pathways are
reported by various studies [51–59].

Dataset3
It is known that Toll-like receptor signaling pathway
plays an important role in autoimmunity including thy-
roid autoimmunity [60, 61]. Also, antigen presentation,
complement system, apoptosis and pattern recognition
receptors are known to involve in thyroid autoimmunity
[62–65].

Performance comparison to other methods
To compare the performance of PINTnet to other
approaches, we implemented the overlapping gene-based

Table 2 Comparison results

(a)

Data
PINTnet OGB

Evidence-supporteda Allb Evidence-supporteda Allb

Dataset1 9 92 1 109

Dataset2 15 122 2 268

Dataset3 1 149 1 291

(b)

Data
PINTnet OGB

Evidence-supportedc Alld Evidence-supportedc Alld

Dataset1 9.500 3.067 3.800 2.344

Dataset2 9.700 3.697 4.000 3.829

Dataset3 5.000 2.922 6.000 4.376

(c)

Data
Founde

Allf
PINTnet OGB

Dataset1 8 6 8

Dataset2 10 9 10

Dataset3 6 4 6

(a) The number of edges between the pathways in the pathway interaction network. The first column of each approach is the number of edges between the
evidence-supported pathways. The second column of each approach is the number of edges between all pathways in the network
(b) The average degree of the pathways in the pathway interaction network. The first column of each approach is the average degree of the evidence-supported pathways.
The second column of each approach is that of all pathways in the network
(c) The number of evidence-supported pathway found in the network. The first column is the number of evidence-supported pathways that are found in the pathway
interaction network constructed using our method. The second column is the number of evidence-supported pathways that are found in the pathway interaction network
constructed using OGB. The third column is the number of all evidence-supported pathways
aThe number of edges connecting the evidence-supported pathways
bThe total number of edges in the pathway interaction network
cThe average degree of the evidence-supported pathways
dThe average degree of all pathways in the pathway interaction network
eThe number of evidence-supported pathways in the pathway interaction networks constructed using both approaches
fThe total number of evidence-supported pathways
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approach (OGB) and the PPI-based approach (PB) and ran
three methods including ours on the three test datasets in
the previous sections.

Overlapping gene-based approach
This method is a two-step approach. In the first step, the
activation status of each pathway was calculated using
Fisher’s exact test with a contingency table dealing with
two parameters: one is whether a gene is a DEG or not
and the other is whether a gene belongs to the pathway
or not. Then, in the second step, the significance of edges
among pathways was evaluated using Fisher’s exact test.
The significance of pathways and the edges among the

pathways were determined at a p-value of 0.05 or less.
The significant edges were used to construct a pathway
network.

PPI-based approach
For PPI-based approach, we implemented the simple
version of the approach since no executable code is
available. We implemented the approach based on the
hypothesis that the more interactions may guarantee the
higher probability of interaction. To do this, we cal-
culated the empirical p-values for every possible pair
of pathways to find significantly interacting pathway
pairs by shuffling the original PPI network 1,000 times,

a

b

c

Fig. 3 Comparison results. a is the percentage of the number of evidence-supported edges against the number of all edges in the pathway
interaction network. PINTnet outperformed OGB in identifying the edges connected by the evidence-supported pathways. b is the ratio of the
average degree of the evidence-supported pathways and that of all pathways in the pathway interaction network. The evidence-supported
pathways had more edges when detected by PINTnet than detected by OGB. c is the percentage of how many evidence-supported pathways are
found in the pathway interaction network
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counting the number of round when the number of
shuffled PPI edges between pathways was bigger than
or equal to that of the original PPI edges and divid-
ing the number by the number of round, in this case,
1,000. Then we adjusted the p-values using Bonferroni
correction and took the edges with the p-value less
than 0.05 as the significantly interacting edges. Con-
necting the edges, we constructed a template network
and calculated active PPIs on the network using the
datasets.
Running the approach on the test datasets, we observed

that too many nodes and edges were connected even
though multiple testing correction was performed using
the Bonferroni correction. For example, there were 271
nodes and 12,264 edges for dataset1. It seemed almost
impossible to determine which pathways and interactions
between the pathways were important in the given con-
ditions. Thus we did not include this approach for the
performance comparison.

Comparison results
We compared the performance of the approaches based
on the biological evidences found by the literature search
and organized in Evaluation criteria section. The follow-
ing criteria were used for the quantitative measure of
the performance. The first criterion was the interactions
between the pathways. We calculated the percentage of
the number of the evidence-supported edges between
the evidence-supported pathways against the total num-
ber of edges in the network. It was to measure how
successfully the approaches connected the correct edges
supported by evidence. The second criterion was the
degree of pathways. We calculated the ratio of the average
degree of the evidence-supported pathways against that
of all pathways in the network. It was to measure how
the approaches placed the important pathways as hubs
in the central position of the network. The last criterion
was to see how successfully the approaches rescued the
correct pathways. We calculated the percentage that how

Fig. 4 A pathway interaction network of pregnant mice. Sixty pathways are connected by 92 edges in this network. The pathways that coincide with
the result of the original paper are rescued. The pathways are serotonergic synapse (mmu04726), insulin secretion (mmu04911), prolactin signaling
pathway (mmu04917), pancreatic secretion (mmu04972), insulin resistance (mmu04931) and three diabetic pathways (mmu04930, mmu04940 and
mmu04950) and colored in red. The edges connecting these pathways are also colored in red. The width of edges is set according to the activation
score. The higher the activation score, the thicker the edge
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many evidence-supported pathways were rescued. We
confirmed that PINTnet surpasses other methods from
the results described in the following paragraphs and the
comparison results are shown in Table 2 and Fig. 3.
In the pathway interaction network constructed using

our method on dataset1 with the cutoff value of 0.95,
there were 60 pathways and 92 edges between the path-
ways. The network is shown in Fig. 4. Among the path-
ways, serotonergic synapse (mmu04726), insulin secretion
(mmu04911), insulin resistance (mmu04931), prolactin
signaling pathway (mmu04917), pancreatic secretion
(mmu04972) and three diabetic pathways (mmu04930,
mmu04940 and mmu04950) were included as nodes. In
addition, it was observed that the edges in the network
connected insulin secretion and serotonergic synapse,
insulin secretion and pancreatic secretion, insulin secre-
tion and prolactin signaling pathway, insulin resistance
and diabetes-related pathways, and prolactin signaling
pathway and diabetes-related pathways. The interactions

between the pathways suggest how biological response
occur during pregnancy by the cooperative work of rele-
vant pathways. In addition, these interactions may give a
point of view to conceive how the interactions of pathways
drive the expansion of beta cell mass. The edges con-
nected to diabetic pathways may imply the high chances
of being diagnosed with gestational diabetes mellitus due
to insulin resistance. Meanwhile, OGB failed to detect
insulin resistance and one of the diabetic pathways even
though there were 93 pathways and 109 edges. Also, there
was only one edge connecting two remaining diabetic
pathways.
There were 66 pathways and 122 edges between the

pathways in the pathway interaction network constructed
using our method on dataset2 with the cutoff value
of 0.99. The network is shown in Fig. 5. We observed
Jak-STAT signaling pathway (hsa04630), Hippo signaling
pathway (hsa04390), cytokine-cytokine receptor interac-
tion (hsa04060) and osteoclast differentiation (hsa04380),

Fig. 5 A pathway interaction network of bone metastasis from breast cancer. Sixty-six pathways are connected by 122 edges in this network. The
original paper reported Jak-STAT signaling pathway (hsa04630), cytokine-cytokine receptor interaction (hsa04060), Hippo signaling pathway
(hsa04390) and bone metastasis were upregulated in the control compared to ABL1/ABL2 knockdown mice. We found multiple paths from Ras
signaling pathway (hsa04014), ABL kinases belong to, to osteoclast differentiation (hsa04380) through MAPK signaling pathway (hsa04010), Wnt
signaling pathway (hsa04390), TGF-β signaling pathway (hsa04350), PI3K-Akt signaling pathway (hsa04151), Hippo signaling pathway (hsa04390)
and proteoglycans in cancer (hsa05205). We found the evidences in literature that these pathways are related to bone metastasis from breast
cancer. These pathways and the edges between the pathways are colored in red and the width of edges are set according to the activation score
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which were reported by the original paper, were included
in the network. In addition to the pathways, we iden-
tified the pathways that we found the evidences of
functional importance in bone-metastatic breast cancer
from the literatures lying on the multiple paths from
Ras signaling pathway (hsa04014) to osteoclast differ-
entiation. The pathways were MAPK signaling pathway
(hsa04010), Wnt signaling pathway (hsa04310), Hippo
signaling pathway, TGF-β signaling pathway (hsa04350),
PI3K-Akt signaling pathway (hsa04151) and proteogly-
cans in cancer (hsa05205). The result implies that the

pathways implicated in bone metastasis from breast can-
cer interact each other and the interactions among the
pathways along with the paths may give the insight of
how bone metastatic breast cancer is caused by path-
ways interaction. However, TGF-β signaling pathway was
not rescued by OGB and only two edges were detected:
MAPK signaling pathway and proteoglycans in cancer;
Ras signaling pathway and PI3K-Akt signaling pathway.
The pathway interaction network constructed using

our method on dataset3 with the cutoff value 0f 0.99
included 102 pathways and 149 edges between the

Fig. 6 A pathway interaction network of IFN-α mediated autoimmunity. One hundred two pathways are connected by 149 edges in this network.
The original paper reported that Toll-like receptor signaling pathway (hsa04620), complement and coagulation cascades (hsa04610), antigen
processing and presentation (hsa04612), RIG-I-like receptor signaling pathway (hsa04622) and apoptosis (hsa04210) were upregulated and our
method rescued the pathways including autoimmune thyroid disease (hsa05320). There is only one edge connecting these pathways and the edge
connects Toll-like receptor signaling pathway and autoimmune thyroid disease
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pathways. The network is shown in Fig. 6. The net-
work successfully included the pathways that mentioned
to be upregulated in the original paper except RAR
activation because there is no proper match of the
pathway in KEGG. The pathways were Toll-like recep-
tor signaling pathway (hsa04620), autoimmune thyroid
disease (hsa05320), complement and coagulation cas-
cades (hsa04610), antigen processing and presentation
(hsa04612), apoptosis (hsa04210) and RIG-I-like receptor
signaling pathway (hsa04622). There was only one edge
between the pathways and Toll-like receptor signaling
pathway and autoimmune thyroid disease were connected
by the edge. However, Toll-like receptor signaling path-
way is the pathway that IFN-α belongs to and autoimmune
thyroid disease is the overall context of the original paper.
Moreover, the findings reported in [60, 61] supported
that Toll-like receptor signaling pathway plays an impor-
tant role in autoimmunity as mentioned in Evaluation
criteria section. On the contrary, OGB failed to detect
RIG-I-like receptor signaling pathway and complement
and coagulation cascades. In addition, there was only one
edge between antigen processing and presentation and
autoimmune thyroid disease.

Discussion
Currently available approaches for constructing pathway
network were designed to handle microarray data so
the approaches mostly rely on the statistical tests. The
approaches determine the significance of the interaction
by the p-value yielded by the tests or use the p-value
itself to calculate the secondary score for the determina-
tion. In addition, even though several approaches incor-
porated PPI to infer the interactions between pathways,
the approaches have a limitation that PPI was treated
merely as a set of individually represented genes without
considering any relation between the genes. To address
these issues, we applied the concept of closeness central-
ity and shortest paths to define the edges in the pathway
interaction network. We assumed that the interaction
between two pathways will occur when the biological
signals rapidly flow through the topologically important
genes. Based on the assumption, we constructed short-
est path-weaved subnetworks to represent the edges and
calculated interaction score using explicit gene expression
quantity on the subnetworks.
The scoring scheme of PINTnet is a ranking method.

It constructs the pathway interaction network using pairs
of pathways of which the score is higher than the cutoff
value. The results on the test datasets suggest that PINT-
net successfully reproduced the results of the original
papers and, therefore, is useful in analyzing the perturbed
pathways and their interactions in a given condition.
Like existing methods, PINTnet is based on the iden-

tification of overlapping genes between two pathways.

We assumed that the overlapping genes function as a
bridge between two pathways. Based on the assumption,
we considered the situation that at least one overlapping
gene exists as one of the rules to define the edge in the
pathway interaction network. This criterion, though rea-
sonable and popular, may be too stringent. For example,
when two pathways are well connected by direct edges in
PPI but do not share any genes, it is not clear whether the
two pathways interact or not. Therefore, the pairs of truly
interacting pathways might be ruled out. We will further
work on the matter to overcome the limitation.

Conclusion
In this work, we developed a new pathway interaction net-
work construction method, PINTnet. Running PINTnet
on the three datasets to test the performance, we observed
that it successfully rescued the findings reported in the
original papers. In the result of dataset1, PINTnet suc-
cessfully detected the pathways related to the changes
occurring during pregnancy. Also we observed that the
pathways were connected by the edges supported by the
literatures. For dataset2, we also identified that the path-
ways related to bone-metastatic breast cancer were res-
cued in the pathway interaction network and the edges
between the pathways implied the interactions participat-
ing in the induction of the phenotype. For dataset3, the
pathways reported by the original paper were included
as nodes in the pathway interaction network and there
was a connected edge between Toll-like receptor signal-
ing pathway and autoimmune thyroid disease. We expect
PINTnet to be a useful tool for pathway interaction net-
work analysis. PINTnet is available at http://biohealth.snu.
ac.kr/software/PINTnet/.
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