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Abstract

Background: Active module, defined as an area in biological network that shows striking changes in molecular
activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated
with cellular or disease states.

Methods: A prior information guided active module identification approach is proposed to detect modules that are
both active and enriched by prior knowledge. We formulate the active module identification problem as a
multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage
of known biological pathways and the activity of the active module simultaneously. Network is constructed from
protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values
and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used
to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to
ensure the connectedness of the identified active modules.

Results: Application of proposed algorithm on a small yeast molecular network shows that it can identify modules
with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions
generated by the algorithm provides solutions with different trade-off between prior knowledge and novel
information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build
network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene
ontology analysis is applied to the identified modules for biological interpretation.

Conclusions: Integrating knowledge of functional groups into the identification of active module is an effective
method and provides a flexible control of balance between pure data-driven method and prior information guidance.
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Background
With the development of high-throughput data collec-
tion technologies, vast amounts of omics data that cover
different species and different levels of biological activi-
ties have accumulated exponentially. These varied omics
data, including the genome sequencing data (genomics),
genome-wide expression profiles (transcriptomics), and
protein abundances data (proteomics), provide valuable
information concerning the intrinsic mechanisms under-
lining biological processes. With the accumulation of
large datasets, one of the most essential challenges for
researchers is that how to properly interpret these data.
Take gene expression data analysis as an example, meth-
ods have evolved from the simple single or multivariate
statistical analysis, e.g., calculation of fold-change, iden-
tification of differential expressed genes, to integrated
approaches that integrate prior knowledge and different
datasets [1]. As a research field driven by those inte-
grated approaches, network biology has gained popularity
recently years.
Network biology offers a highly abstract model of net-

works to characterize various levels of biological systems
and provides insights into those system by taking advan-
tages of network theory [2, 3]. Although currently it’s not
able to fully capture the diversity and dynamics of complex
biological system [4], it is still one of the most promis-
ing and fast developing research area in modern biology.
Many studies have been performed on the construction
of networks from biological systems and the structural
and functional features that may respond to related bio-
logical information. Network construction methods are
varied from calculating pair-wise correlation coefficient
of expression data (correlation network [5]), filtering
from existing interaction database (protein-protein inter-
action network [6–9]), or integrated approaches based
on both expression data and metabolic models (tis-
sue specific metabolic network [10]). Structural features
includes degree distribution, clustering coefficient, scale-
free property [11], modularity [12] and network robust-
ness [13]. One of the most studied features is modular
structure.
Modular structure is one of the essential characteris-

tics that reveal information about the relationship and
interaction among components in the network. In bio-
logical networks, modules are considered as the func-
tional units of cellular process and organization [14].
Varied definitions of module have been proposed and
numerous methods have been developed to identify
those modules [15, 16], all aiming to reveal essential
biological mechanisms [17, 18]. Among them, active
module detection is a successfully applied integrative
approach. Active module is a densely connected area
in network that shows striking changes in molecu-
lar activity or phenotypic signatures, which is often

associated with a given cellular response. Active mod-
ule is expected to reveal dynamic and process-specific
information that is correlated with cellular or disease
states.
A typical active module detection algorithm takes

gene expression data, calculates statistical values indi-
cating differential expression level, and searches in cor-
responding network to identify modules inside which
gene activity changes significantly. The jActiveModule
[19] method proposed by Ideker in 2002 is considered
as the first to formulate active module detection into
an optimization problem. It uses the standard normal
inverse of single gene’s p-value to measure the activ-
ity of one gene, aggregates the node scores for a given
module with adjustment and background correction,
and finally searches for high-scoring modules via sim-
ulated annealing. Many following methods adopt this
framework of significant-area-search method. One rep-
resentative research for identifying condition-responsive
protein-protein interactionmodule used edge-based scor-
ing method [6]. There are also formulations that combine
both node and edge score [7, 9]. As the problem of find-
ing the maximal-scoring connected subgraph is NP-hard
(non-deterministic polynomial-time hard) [19], heuristic
algorithms are broadly used, e.g. simulated annealing [19],
greedy search [20], and evolutionary algorithm [8, 21].
Exact approaches via integer linear programming are also
developed [22].
In this paper we propose a novel multi-objective active

module identification algorithm. We first formulate the
active module identification problem as a multi-objective
problem, which not only maximises the activity score as
defined by Dittrich and Klau [22] but also maximises the
prior knowledge contained in the activemodule. The intu-
ition behind this multi-objective formulation is to use
prior knowledge to guide the search of novel information
from data, i.e., active modules. The Pareto solutions from
this multi-objective optimisation problem are then the
optimal trade-off between known knowledge and novel
information.
In order to solve this multi-objectie problem, we pro-

posed a modified multi-objective evolutionary algorithm.
One of the important details omitted in many papers of
active module identification is how to ensure the con-
nectedness of the solutions. Without this connectedness
constraint, the optimal solution is trivial, i.e., the top genes
with largest node scores. In order to ensure the con-
nectedness of the identified active modules, we design
a novel constraints based on algebraic connectivity. The
algorithm is applied to a small molecular interaction net-
work that was used by Ideker [19] and then applied to
a large Protein-Protein Interaction (PPI) network con-
structed from microarray data on drug toxicity and
resistance.
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Methods
Problem formulation
The network G is represented as G = (V ,E) with pv ∈
(0, 1) for v ∈ V where V is the set of nodes, E the set
of edges, and pv the assigned p-value from differential
expression analysis for each node v. In the proposed algo-
rithm there are two objectives and one constraint for a
given module A:

• Active module score SA indicating significant
changes in gene expression for a given module, to be
maximized during search.

• KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway coverage score RA for the number of
covered metabolic pathway by genes in module, to be
maximized.

• Algebraic connectivity to check whether a given
subgraph is connected or not, used as a constraint to
ensure connectedness.

Activemodule score
Microarray analysis studies showed that expression data
can be effectively estimated by many mixture-model
methods that divide genes into two or more groups, one
group contains genes that are differentially expressed,
and other(s) not differentially expressed [1]. Among
those many methods, Pounds and Morris proposed a
beta-uniform mixture (BUM) model that very accurately
describes the distribution of a large set of p-values pro-
duced from an microarray experiment [23]. The BUM
model considers the distribution of p-values as a mixture
of a special case of beta distribution (b = 1) and a uni-
form(0, 1) distribution, with a mixture parameter λ. The
p-values under the null hypothesis are assumed to have a
uniform distribution. Under the alternative hypothesis the
distribution of p-values will have a high density for small
p-values and can be described by B(a, 1).
A general beta distribution B(a, b) is given by

f (x) = �(a + b)
�(a)�(b)

xa−1(1 − x)b−1 (1)

where �(.) denotes the gamma function. As �(1) = 1,
the probability density function of BUM model is then
reduced to

f (x|a, λ) = λ + (1 − λ)axa−1 (2)

for 0 < x ≤ 1, 0 < λ < 1 and 0 < a < 1. Given a set of
p-values the two parameters of BUM distribution λ and a
can be calculated by maximum likelihood estimation.
Following the idea of Dittrich and Klau [22] to decom-

pose signal component from background noise, an addi-
tive score to measure the significance of gene’s differential
expression is calculated as

SFDR(x) = log
B(a, 1)(x)
B(a, 1)(τ )

= log
axa−1

aτa−1

= (a − 1)(log x − log τ) (3)

where τ is a threshold to determine the significance of a
p-value. In order to control the estimated upper bound
of the false discovery rate (FDR) introduced by Benjamini
and Hochberg [24], τ could then be selected to ensure
that FDR ≤ α for some predefined α using the following
equation

τ =
(

π̂ − αλ

α(1 − λ)

) 1
(a−1)

(4)

where π̂ = λ + (1 − λ)a, meaning the maximum propor-
tion of the set of p-values that could arise from the null
hypothesis.
After assigning score to each of the genes, the overall

score for a given module A is then the summation of all
genes’ scores in it, given by

SA =
∑
x∈A

SFDR(x) (5)

KEGG pathway coverage
KEGG is an integrated database of high level functions
and utilities of biological systems [25]. KEGG PATH-
WAY is a collection of manually drawn pathway maps
representing the knowledge on the molecular interaction
and reaction networks. Mapping of pathway information
mainly relies on molecular datasets, especially large-scale
datasets such as genomics, transcriptomics, proteomics,
and metabolomics. Genes involved in the same KEGG
pathway are considered as functionally related to each
other. In the experiment KEGG pathway coverage score
RA is formulated as the second objective to measure the
enrichment of functional groups in a given module A.
The KEGG pathway information is retrieved from the

KEGG REST-style entry for Saccharomyces cerevisiae
(yeast) [26]. Each entry of the mapping data records one
gene and its corresponding pathway. The records are then
split into different groups labeled by the pathways. For
the i-th pathway, Vi stands for the set of genes it con-
tains. Given a module A with VA as the set of genes,
its KEGG pathway cover rate Ri over the i-th pathway is
calculated as

Ri = |Vi ∩ VA|
|Vi| (6)

meaning the percentage this pathway is covered by given
module. The cover rate Ri is then compared with a thresh-
old Rratio to determine whether this pathway can be con-
sidered as enriched in the given module. The threshold
shall be selected carefully. A too high value of Rratio leads
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to a tiny group of connected pathways genes with posi-
tive active module score as the search could not expand
to other area under such stringent condition. On the con-
trary, a very low Rratio could not reflect the meaning for
the second objective. In practice, Rratio is set to a series
of values for preliminary experiment. The results are ana-
lyzed and compared to decide a suitable value. The total
enriched pathway count RA is given by

RA = |{Ri|Ri > Rratio}|, i ∈ P (7)

where P stands for total number of pathways.

Algebraic connectivity
The algebraic connectivity of a graph G, denoted as α(G),
is the second-smallest eigenvalue of the Laplacian matrix
of G. It serves as a good parameter to measure how well a
graph is connected. α(G) is greater than zero if and only if
G is a connected graph.
The Laplacian matrix L of a simple graphG is calculated

as

L = D − A (8)

where D is the degree matrix and A the adjacency matrix.
The eigenvector ν of the square matrix L is the non-zero
vector that satisfies

Lν = λν (9)

λ is a scalar known as the eigenvalue associated with the
eigenvector ν. Algebraic connectivity α(G) is the second
smallest eigenvalue of the Laplacian matrix L.

Multi-objective optimization algorithm
In order to perform multi-objective optimization to max-
imize both active module score and KEGG pathway cov-
erage score simultaneously, a multi-objective evolutionary
algorithm modified from NSGA-II (non-dominated sort-
ing genetic algorithm II, see [27]) is applied as search
strategy for module detection.

Solution representation
A solution is represented as a binary vector of length |V |,
where |V | is the size of network, i.e. total number of nodes.
Adding or deleting a node is performed through simply
flip one bit of the vector at corresponding site.

Fitness function
Active module score SA and KEGG coverage score RA are
used as two objectives. As the implementation of the algo-
rithm is aimed at minimization both objectives, scores
calculated from above equations would be given an extra
negative sign.

Initialization
The search starts by randomly initializing a group of
small cores in network. Nodes with high SFDR(x) scores

are selected as seeds of potential modules to begin with.
Number of seed nodes is decided by the population
parameter for evolutionary algorithm. For instance, if
population is set to 50, nodes with top 50 SFDR(x) scores
are selected as seeds. In the case when the population size
exceeds network size, every node will be selected as a seed.
In initialization stage, neighboring nodes of a seed with
positive scores are added to the module in which the seed
represents.

Parent selection
Binary tournament selection is applied for selecting par-
ents to reproduce. In some cases when the population
converges too fast, this step is skipped to decrease selec-
tion pressure, thus the whole population would be used
for reproduction.

Reproduction
Single point crossover is applied to selected parents.
Mutation is performed by adding neighboring nodes with
positive SFDR(x) score or in a pathway into currentmodule
each time. Offspring generated is added to parental popu-
lation to form a combined population with twice the size,
waiting to be sorted and selected.

Clearing procedure
An extra clearing procedure is applied after reproduction
and before non-dominated sorting. The step is introduced
because in practise the algorithm tends to generate a
number of replicated solutions when converging towards
global optima. However, considering the natural property
of our optimization problem, it is reasonable to obtain
multiple optima, both those global on the non-dominated
Pareto front and those dominated local optima, each rep-
resenting the most significantly changed modules and
modules that do not change that significantly, but still
worth looking into. This procedure, inspired and sim-
plified from Petrowski [28], detects replicated solution
groups, preserves one copy, and resets all other individ-
uals as infeasible solutions which will soon be eliminated
after soring and replacement.

Sorting and replacement
The algorithm uses fast non-dominated soring and crowd-
ing distance assignment as detailed in Ref [27] to generate
new population from the combined population efficiently
and preserve solution diversity.

Constraint handling
To ensure the connectivity of detected module after
crossover, algebraic connectivity α(G) is used as a con-
straint. Solution with non-positive algebraic connectivity
violates the constraint, indicating itself a disconnected
subgraph and thus an infeasible solution. Replicated solu-
tions are also marked infeasible in the clearing procedure.
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Fig. 1 BUMmodel estimation on p-values in network 1. Left figure is a histogram of p-values with fitted beta-uniform-mixture model distribution.
Blue line indicates the uniformly distributed noises and red line the signals as beta distribution B(a, 1). Right figure is a Q-Q plot of the fitted
distribution versus the empirical p-values for network 1

Infeasible solutions are dominated by all feasible
solutions.

Network construction
Network 1: a small molecular interaction network on
galactose utilization pathway
A small molecular interaction network once used by
Ideker [19] is used as a test network. The molecular inter-
action networks visualization software Cytoscape [29]
provides jActiveModule as a plugin to find expression
activated modules. The tutorial in Cytoscape App Store
[30] provides samples data consists of a network file as a
model of the galactose utilization pathway in yeast and a
companion expression file contains p-values to describe
the significance of each observed change in expression. p-
values under condition labeled as GAL80R are extracted
and overlaid to network file, resulting in a network with
330 genes.

Network 2: yeast drug reaction network constructed from
differential analysis and interactomemapping
Gene expression data on yeast’s reaction to diclofenac
is downloaded from GEO (NCBI Gene Expression
Omnibus) database [31]. Diclofenac is a widely used anal-
gesic drug that can cause serious adverse drug reactions
[32]. Yeast is used as model eukaryote to capture the cel-
lular changes under the treatment of diclofenac. The data
provides the microarray expression for diclofenac-treated
yeast cells and control cells, each with 5 replicates. Dif-
ferential expression analysis between diclofenac-treated
group and control group is performed using the on-
line tool GEO2R [33], with p-value adjustment set to
Benjamini and Hochberg false discovery rate control.
After deleting genes with adjusted p-value larger than
0.05, a set of differentially expressed genes is generated for
interactome mapping.

Protein-protein interaction data is download from
BioGRID [34], an integrated and up-to-date public
database that archives and disseminates genetic and
protein interaction data from model organisms and
humans. To be specific, the downloaded file is BIOGRID-
ORGANISM-LATEST.tab2.zip that separates interactions
into distinct files based on Organism and was released
on June 30, 2016. File for interactions of Saccharomyces
cerevisiae is extracted for use. As the whole interaction
data contains tens of thousands of proteins and mil-
lions of interaction records, a considerable amount of
proteins have no corresponding records in given expres-
sion data or show no differential expression. Those pro-
teins shall be excluded from the final network in order
to avoid the waste of both computational resource and
analysis attention. According to the filtering method
applied by Muraro and Simmons [8], interactions con-
taining at least one differentially expressed gene are
selected as an attempt to include indirect interactions.
The resulting network concerning yeast cellular reac-
tion to diclofenac consists of 1803 nodes and 3356
edges.

Table 1 Parameters for experiment networks

Parameters Network 1 Network 2

nodes 330 1803

edges 359 3356

a 0.113 0.280

λ 9.07 × 10−2 0.168

α (FDR) 1 × 10−4 1 × 10−4

τ 1.76 × 10−4 7.71 × 10−6

Rratio 0.6 0.8
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Result and Discussion
Analysis of network 1
To estimate distribution for p-values, the parameters of
BUM model a and λ are estimated by R package BioNet
[35]. Figure 1 shows the fitted model. As the majority of
genes in yeast network have a very significant p-value,
threshold τ is calculated at an extremely stringent FDR
level as an attempt to control the size of detected module.
Parameter details are shown in Table 1.
As a benchmark, the jActiveModule method is applied

to the network via Cytoscape plugin, generating 5 active

modules by default. Figure 2 gives a visualization of
the network by Cytoscape, with detected active modules
mapped on it. To understand the biological function of
modules, gene ontology (GO) annotation for biological
process is applied to modules by enrichment analysis tools
provided on Gene Ontology Consortium [36]. The tool
only asks for a submission of gene list, GO type (biologi-
cal process, molecular function, cellular component) and
species. The results is shown in Table 2. Among the 5
modules, 3 modules are enriched in the GO term galac-
tose catabolic process via UDP-galactose with p-values

Fig. 2 Network 1 with active modules detected by jActiveModule. Each node denotes for one gene. Node color is a continuous mapping of the
p-value generated from differential expression analysis. Red color indicates a significant change with small p-value and green color means no
significant difference. The point where color will change between red and green is set to the threshold τ = 1.76 × 10−4 that is used as a parameter
for the proposed algorithm. Color of nodes near the changing point is white. Modules identified by jActiveModule are highlighted with black node
border. Modules may overlap with each other
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Table 2 Gene ontology results of modules detected by jActiveModule in network 1

Module Size SA RA Typical GO terms p-value

1 26 250.39 1 galactose catabolic process via UDP-galactose 3.42 × 10−04

glycolytic fermentation to ethanol 2.72 × 10−03

amino acid catabolic process to alcohol via Ehrlich pathway 1.25 × 10−02

2 5 58.21 0 response to heat 2.16 × 10−03

3 16 270.79 2 galactose catabolic process via UDP-galactose 4.85 × 10−05

4 18 169.89 2 galactose catabolic process via UDP-galactose 1.15 × 10−04

cellular carbohydrate metabolic process 3.27 × 10−02

5 4 37.05 0 None Not available

SA and RA are the objective functions of active module score and KEGG pathway coverage score, respectively. The values are calculated by the proposed objective functions
using the same parameters setting as the proposed algorithm. τ = 1.76 × 10−4 and Rratio = 0.6

from 4.85 × 10−05 to 3.42 × 10−04. Other 2 modules are
too tiny to have accurate explanation.
The proposed algorithm is applied to network 1 with

threshold Rratio = 0.6 for KEGG pathway coverage
score, resulting in a set of 13 Pareto solutions. As a
feature for multi-objective optimization, all the mod-
ules in the same Pareto front are equally good. No

one out performs another. In order to show the dif-
ference of those modules in trade-offs between two
objectives, we selected 3 modules from the 13 Pareto
solutions:

• Module 1: the extreme point on the Pareto front with
maximum active module score SA = 393.41.

Table 3 Gene ontology results of 3 modules on Pareto front detected by the proposed algorithm in network 1

Module Size SA RA Typical GO terms p-value

1 65 393.41 9 galactose catabolic process via UDP-galactose 5.15 × 10−03

negative regulation of mating-type specific transcription from RNA
polymerase II promoter

1.21 × 10−02

glycolytic fermentation to ethanol 4.05 × 10−02

pheromone-dependent signal transduction involved in conjugation
with cellular fusion

6.39 × 10−03

cellular carbohydrate metabolic process 4.16 × 10−02

2 92 268.96 19 negative regulation of mating-type specific transcription from RNA
polymerase II promoter

4.67 × 10−04

galactose catabolic process via UDP-galactose 1.63 × 10−02

regulation of transcription during mitosis 7.19 × 10−03

gluconeogenesis 1.84 × 10−04

glycolytic process 2.87 × 10−02

pyruvate metabolic process 4.20 × 10−02

response to pheromone involved in conjugation with cellular fusion 3.93 × 10−06

3 126 181.3 25 negative regulation of mating-type specific transcription from RNA
polymerase II promoter

1.80 × 10−03

galactose catabolic process via UDP-galactose 4.48 × 10−02

C-terminal protein lipidation 1.62 × 10−02

gluconeogenesis 1.36 × 10−03

ADP metabolic process 2.47 × 10−04

pyruvate metabolic process 7.73 × 10−05

response to pheromone involved in conjugation with cellular fusion 1.47 × 10−02

ribonucleoprotein complex assembly 5.31 × 10−03

Module 1 is the extreme point with maximized active score SA . Module 2 is a balanced solution between SA and RA . Module 3 is the other extreme point with maximized
pathway coverage score RA
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• Module 2: at the knee point of the Pareto front,
which represents the optimal trade-off between
active score (SA = 268.96) and KEGG pathway
coverage score (RA = 19)

• Module 3: the extreme point on Pareto front with
maximum KEGG pathway coverage RA = 25.

GO analysis for biological process is performed on the
three modules. The results together with the objective
function values are tabulated in Table 3. We also visualize
Modules 1 and 2 in Figs. 3 and 4, respectively.

By comparing the results in Table 3 with those in
Table 2, we found that Module 1 identified by the pro-
posed algorithm have better active module score (SA) and
KEGG pathway coverage score (RA) than all the modules
found by jActiveModule algorithm. Such results indicate
that by incorporating the prior knowledge, we can guide
the algorithm to search areas in the network with more
significant activity.
From these two figures and Table 3, we found that com-

pared with jActiveModule that searches for small and sep-
arated modules, the proposed algorithm tends to identify

Fig. 3 Visualization of Module 1 with maximized active score SA detected by the proposed algorithm in network 1. Node color and border are set the
same as Fig. 2. Module contains the majority of red nodes that are connected densely, indicating high activity. Notice that compared to small
separated modules identified by jActiveModule shown in Fig. 2, this module tends to connect small areas of red nods by including linkage nodes
with white or light green color. Although these intermediate nodes shows only modest changes in expression, they serve as bridges for cross-talk
between functional groups, or as transcription factors that regulate other genes
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Fig. 4 Visualization of Module 2 which is the knee point of the Pareto front with optimal trade-off between SA and RA detected by the proposed
algorithm in network 1. Node color and border are set the same as Fig. 2. Compared to Fig. 3, this module expands broader as RA gets higher

a large connected subgraph. Even for Module 1 where the
active module score is maximised, because of the integra-
tion of the prior knowledge, highly active areas are more
likely to be connected together by intermediate nodes that
might not be significantly differential expressed, but serve
as a bridge for cross-talk between neighboring functional
areas.
By visualisation of those Pareto solutions (figures not

shown), we found that as the solution on Pareto front
moves from maximum active score to maximum path-
way coverage score, such intermediate nodes appear with
higher frequency. We also found that, as RA gets higher,
detected module expands from a small core area with

high activity to a broad area with more varied functional
groups while still keeping overall activity. This result indi-
cates that by using prior knowledge, we are able to reveal
underlying mechanisms that link different activities in the
network.
While all the three modules are significantly enriched

in the GO term “galactose catabolic process via UDP-
galactose” (corresponding p-value 5.15 × 10−03, 1.63 ×
10−02 and 4.48 × 10−02, respectively), annotations for
Module 1 (the extreme point withmaximum activity score
SA) are more densely related with galactose metabolic
process. On the other hand, for Module 3 with maxi-
mum KEGG pathway coverage score RA, core annotations
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remain the same while additional annotations concern-
ing essential biological processes increases. However, it is
worth noting that, all the additional annotations can be
reasonably related to the cellular response to disturbance
in galactose utilization pathway.
The most interesting module is Module 2, which rep-

resents the optimal trade-off between prior knowledge
and novel information from data. It is worth noting
from Tables 3 and 2 that, even it is a knee point
solution, Module 2 has a slightly worse SA but much
higher RA than all the modules identified by JActiveMod-
ule. We can also observe from Table 3 that, module 2
has a range of slightly broader annotations concerning
metabolic process of galactose, pyruvate and gluconeoge-
nesis, which are highly relevant to galactose untilization
pathways [37].

Analysis of network 2
Parameters of BUM model a and λ to fit p-value dis-
tribution are estimated as shown in Fig. 5. Threshold τ

is calculated at given FDR level. See Table 1 details of
parameters.
The proposed algorithm is applied to network 2 with

threshold Rratio = 0.8 for KEGG pathway coverage score,
resulting in a set of 12 Pareto solutions. Solutions on
the Pareto front are chosen for gene ontology analysis
on biological process. Surprisingly, all identified modules
shows a high consistency in the annotation on drug reac-
tion, which exactly reflects the cellular response for yeast
under the diclofenac treatment. Three genes (YDR406W,
YOR153W and YOR153W, all act as ATP-binding trans-
porter, for detailed functional explanation, see caption in
Fig. 6) that play an important role in the cellular reac-
tion and resistance to drug treatment are discovered in all

the 12 modules, indicating the accuracy and robustness of
searching algorithm.
Similar to the analysis methods for results in network

1, 3 representative modules on Pareto front with dif-
ferent trade-off between active score SA and pathway
coverage score RA are select for gene ontology annota-
tion (see Table 4) and visualization (Fig. 6). From Table 4
we can see that as pathway score RA increases, size of
module increases and the annotation includes a larger
range of biological processes. As drug reaction is con-
siderably complicated response that involves a series of
up or down regulation in related function groups such
as protein kinase pathway, ribosome biogenesis, rRNA
processing and zinc-responsive genes [32], the enriched
annotation in modules with higher RA provides a guid-
ance of deciding which functional groups to look into as
it combines both prior knowledge from existing interac-
tion database and novel information from gene expression
data specific for given experimental conditions.

Conclusion
An integrated multi-objective approach has been pro-
posed for active module identification. The algorithm is
motivated by the idea that incorporating prior informa-
tion into data-driven method would provide new insights
into sophisticated biological processes. We also designed
an constraint based on algebraic connectivity to ensure
the connectedness of the identified active modules.
We first applied our algorithm on a small molecular

interaction network, which identified a set of Pareto solu-
tions that represents different trade-off between prior
knowledge and novel information from data. Gene Ontol-
ogy analysis results show that it successfully identi-
fies modules with relevant and reasonable biological

Fig. 5 BUMmodel estimation on network 2. Histogram of p-values with fitted BUMmodel and a Q-Q plot of estimated and empirical distribution of
p-values for network 2. As the network size increases, estimation becomes more accurate
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Fig. 6 Visualization of module 3 identified by the proposed algorithm in network 2. Each node represents for a gene. The setting for node color is
the same with Fig. 2. The turning point between red and green is set to the value τ = 7.71 × 10−6. Three rectangle shaped nodes with black border
are genes involved in drug export and are highly consistent in all modules. YDR406W is an ATP-binding cassette multidrug transporter. YDR011W is
a ATP-binding cassette transporter. YOR153W is also an ATP-binding cassette multidrug transporter. The three genes serve as an important role in
yeast’s resistance to diclofenac

Table 4 Gene ontology results of 3 modules on Pareto front
detected by the proposed algorithm in network 2

Module Size SA RA Typical GO terms p-value

1 34 91.01 0 Drug export 1.79 × 10−03

Cellular response to drug 4.71 × 10−02

2 39 57.56 4 Drug export 2.84 × 10−03

3 62 46.332 8 Drug export 1.21 × 10−02

Amino acid catabolic pro-
cess to alcohol via Ehrlich
pathway

8.65 × 10−09

Ethanol metabolic process 3.71 × 10−06

NADH oxidation 3.73 × 10−03

Glycolytic process 4.34 × 10−03

Fermentation 1.40 × 10−02

Macromolecule metabolic
process

2.51 × 10−02

interpretations. The algorithm was applied to the second
network, The approach is then applied on a microar-
ray dataset from diclofenac-treated yeast cells and iden-
tify modules to elucidate the molecular mechanisms of
diclofenac toxicity and resistance. The algorithm identifies
accurate and consistent modules with biological function
densely related to given cellular response, proving that
the integrated approach for network construction is fea-
sible and that the proposed algorithm is able to identify
biologically meaningful modules in large scale network.
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