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Abstract

Background: Most disease-associated variants identified by genome-wide association studies (GWAS) exist in
noncoding regions. In spite of the common agreement that such variants may disrupt biological functions of their
hosting regulatory elements, it remains a great challenge to characterize the risk of a genetic variant within the
implicated genome sequence. Therefore, it is essential to develop an effective computational model that is not
only capable of predicting the potential risk of a genetic variant but also valid in interpreting how the function
of the genome is affected with the occurrence of the variant.

Results: We developed a method named kmerForest that used a random forest classifier with k-mer counts to
predict accessible chromatin regions purely based on DNA sequences. We demonstrated that our method
outperforms existing methods in distinguishing known accessible chromatin regions from random genomic
sequences. Furthermore, the performance of our method can further be improved with the incorporation of
sequence conservation features. Based on this model, we assessed importance of the k-mer features by a series
of permutation experiments, and we characterized the risk of a single nucleotide polymorphism (SNP) on the
function of the genome using the difference between the importance of the k-mer features affected by the
occurrence of the SNP. We conducted a series of experiments and showed that our model can well discriminate
between pathogenic and normal SNPs. Particularly, our model correctly prioritized SNPs that are proved to be
enriched for the binding sites of FOXA1 in breast cancer cell lines from previous studies.

Conclusions: We presented a novel method to interpret functional genetic variants purely base on DNA
sequences. The proposed k-mer based score offers an effective means of measuring the impact of SNPs on the
function of the genome, and thus shedding light on the identification of genetic risk factors underlying complex
traits and diseases.

Background
With great efforts in the past decade, genome-wide associ-
ation studies (GWAS) have discovered a number of poten-
tial associations between genetic variants and human
inherited diseases or traits [1, 2]. Nevertheless, most of
such variants spread over noncoding regions of the entire

genome [3, 4], making the interpretation of the identified
associations and the final determination of causative vari-
ants a great challenge. A common agreement is that the
occurrence of a variant may disrupt its hosting regulatory
element, result in the loss of function, and hence cause
the development of a disease. According to this under-
standing, the precise prediction of the implication of a
variant in a non-coding region is not only crucial to the
interpretation of the function of regulatory elements but
also urgent to the develop of an effective model for identi-
fying causal variants.
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Toward this goal, computational approaches have
been proposed to predict functionally damaging ef-
fects of genetic variants in the whole genome level
[5–7]. For example, CADD [8] and GWAVA [9] inte-
grated a number of genomic and epigenomic annota-
tions to predict functional implications of all possible
genetic variants in the human genome under the bin-
ary classification framework. Some methods mainly
focus on variants occurring in such specific type of
regulatory regions as transcription factor (TF) binding
sites because it has been revealed that genetic variants
occur in transcription factors binding sites can affect cel-
lular phenotype and gene expression [10]. To mention a
few, ChroMos, an integrated web-tool for SNPs classifica-
tion and prioritization with the combination of genetic
and epigenetic data [11]. HaploReg, another tool based on
quantifying the difference between reference and alternate
alleles in genetic context of canonical TF binding motifs
[12]. DeepBind [13] identify sequence specificities of
DNA- and RNA-binding proteins from experimental data
by using the deep learning technology.
From another perspective, chromatin accessibility is

one of the basic problem in epigenomics. When DNA
molecule fits into the microscopic nucleus which will
wrap around special histone protein and package into a
fiber known as chromatin, some regions of chromatin
will remain accessible to transcription factors (TF) and
other cellular machines involved in gene expression
while some other regions are unavailable to any cellular
machinery. We refer to these two chromatin states as
open (accessible) and close (inaccessible), respectively.
The open regulatory regions often work together with
transcription factors, RNA polymerases and other cellular
regulatory machines [14]. Therefore, the chromatin state
is a quite important factor to understand the information
flow and the regulatory mechanism in the cell. In this
sense, the precise prediction of chromatin accessibility has
a significant meaning in exploring the function of regula-
tory variants in genome.
In general, there are two complementary approached

to detect putative accessible chromatin regions. The
first method is called comparative genomics, which
identities relative regions by their sequence conserva-
tion across different species, based on the generally
accepted hypothesis that functionally important DNA
regions are under purifying selection. Naturally,
conserved noncoding sequences are candidates for
putative open regions. Many relative approaches are
already successfully used to detect regulatory regions
[15–17]. However, these conservation-based approa-
ches still have some limitations due to the fact that the
function and spatio-temporal specificity of conserved
noncoding sequences (CNSs) cannot be determined by
conservation alone. It is therefore necessary to

incorporate additional information. More importantly,
some studies have shown that noncoding sequences
that lack conservation may still contain functional
regulatory elements [18, 19]. The second one is called
functional genomics approaches. It is an experimen-
tally driven approach that utilize developed techniques
of microarray hybridization or massively sequencing
technology. These techniques often combine with
chromatin immunoprecipitation on specific transcrip-
tion factors [20], coactivators [21, 22].
In this paper, we propose a computational approach

named kmerForest, a sequence-based method that uses
k-mer counts as features and a random forest method
as the classifier [23]. We adopt the random forest
method because it has been successfully applied in
many bioinformatics problems, including the gene
selection and classification [24], the identification of
DNA binding proteins [25, 26] and the detection of
causative SNPs [27, 28]. Our kmerForest approach ap-
plies the random forest model to capture the sequence
elements of chromatin accessibility from the viewpoint
of binary classification. With the model obtained, we
assess the contribution of a k-mer to the classification
accuracy by conducting a series of permutation experi-
ments, and we prioritized the k-mers according to their
contributions. Finally, we use the k-mer feature im-
portance to discriminate pathogenic single nucleotide
variants and evaluate the impact of single nucleotide
polymorphism (SNP). In a series of experiments, our
kmerForest method outperforms the existing state-of-
the-art approach, kmer-SVM [29], in a variety of cell
lines. Based on this model, we introduced a score
called the mean decrease accuracy (MDA) to evaluate
input features. We then calculated MDA scores for
all the pathogenic and normal SNPs. Hopefully, a sig-
nificant different distribution of two type SNPs was
found, revealing the effectiveness of our model. Spe-
cifically, our model correctly predicted the impact of
a SNP rs4784227 on FOXA1 binding, while Delta-
SVM [30] failed.

Methods
k-mer feature
k-mer is a relatively simple sequence feature. It is typ-
ically used during the sequence assembling, but it can
also be used in the sequence alignment [31]. k-mers
refers to all possible subsequences of length k that
are contained in the sequence. As for DNA sequence
with length L, the total amount of k-mers is calcu-
lated by L-k + 1 while each nucleotide position has
four possibilities (A, C, G, T). If we encode each nu-
cleotide with 1, 2, 3, 4 for A, C, G and T. we can
easily get a feature vector from every DNA sequence
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with the dimension 4k, namely f
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Generally, k is set to 4 ~ 10 in the case of DNA se-
quence. However, the dimension will rise in an expo-
nential speed when k rises which means we will come
into a curse of dimensionality. For example, the di-
mension will come to over one million when k = 10.
Luckily, we can use Jellyfish to fast count the k-mer
of DNA sequence using parallel computation [32].

Random forest
Random forest is an ensemble machine learning algo-
rithm for classification and regression which is con-
structed by a multitude of full depth decision trees
without pruning [33]. The output will consider the
prediction of each decision tree and make a final de-
cision. In this algorithm, “stochastic discrimination”
approach is proposed in the “bagging” idea and ran-
dom selection of features which means that one sam-
ple may be selected more than one time. Such
strategies can effectively decrease the risk of overfit-
ting when applied to our problem with large dimen-
sion. We use out-of-bag (OOB) data to estimate the
mean decrease accuracy (MDA). Random forest has
been widely used in the prediction of DNA-binding pro-
teins [25, 26], microarray data classification [24, 34] and
many other biology problems.

Integrate k-mer with MSA
We collected the multiple sequence alignment
(MSA) data of 100 mammal species from UCSC
Genome Browser. We then calculated the frequency
noted as fre of human’s nucleotide appeared in other
species. The original feature vector of a sequence

sample f
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Note that xs
�
i ≤ xsi and xs

�
i ¼ xsi if and only if freq, j = 1

for all 1 ≤ q ≤ k and 1 ≤ j ≤ xi
s. The new equation (1)

not only consider the k-mer frequency but also the
conservation of related sequences which makes our
model more powerful in discriminating chromatin
open regions. We should note that the change of the
input scalability will not influence the performance
much due to the great robustness in the scalability
of input data.

MDA score calculation
One of the most importance steps of our MDA-RF
model is to realise the calculation of the MDA score.

The concise algorithm of mean decrease accuracy
(MDA) calculation can be presented as follows:

As our MDA algorithm contains huge dimension due
to the sparse k-mer features which will consume much
time for computation, our strategy is to store the feature
of each sample in the sparse format of libSVM [35] to
reduce the memory need. Besides, we used OpenMP
library in our program to parallel our algorithm in mul-
tithreads as each decision tree is relatively independent.
Such strategy can take full advantage of the computing
resources which can largely help us accelerate the
algorithm.

Results
Data sources
We collected 210 DNase-seq datasets across different
human cell lines from the ENCODE project [36]. These
experiments were carried out across different systems and
tissues including normal cell lines and cancer cell lines.
Besides, we collected the multiple sequence alignment
(MSA) data of 100 mammalians from the UCSC Genome
Browser [37] in order to capture the information of se-
quence conservation. We collected 2977 pathogenic SNPs
form the HGMD database [38], 701,984 normal SNPs
from the 1000 Genomes project [39] and the associated
variants set (AVS) for breast cancer [40].

Overview of the kmerForest model
Our method, named kmerForest, is a machine learning
model that targets on discriminating accessible chromatin
regions and prioritizes k-mer features. As illustrated in
Fig. 1. In the first stage, a random forest model is trained
with bootstrapped positive samples extracted from DNase-
seq data and negative samples obtained from random
genomic sequences. Then the trained model classifies out-
of-bag (OOB) data with each dimension shuffled to obtain
the mean decrease accuracy (MDA) score of each K-mer
(see Method). In general, the drop of the mean decrease
accuracy (MDA) when shuffling one dimension of the
OOB data indicates the importance of the related k-mer.
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Therefore, the quantization model of feature import-
ance is built with MDA score calculation. Then we
prioritize all the k-mers by sorting their MDA scores,
obtaining the k-mer importance that will be utilized in
evaluating the SNPs in the next stage. In the second
stage, we use the calculated MDA scores to evaluate a
single nucleotide polymorphism (SNP) by considering
the k-mers affected by the occurrence of the SNP. Note
that a SNP will only cause the alternation of neigh-
boring k-mers, and the evaluation of a SNP is the
accumulative changed scores of all affected neighboring
k-mers. In order to comprehensively evaluate the effect-
iveness of our kmerForest model, we conduct a series
of experiments to verify the advantage of our model
comparing to existing methods.

kmerForest outperforms state-of-the-art methods in binary
classification
We first compared our kmerForest classifier to kmer-SVM
[29], considering DNase-seq data from different cell lines
in the viewpoint of binary classification. We treated chro-
matin state as open or close, and we obtained positive
samples by extracting putative open regions from peaks
of DNase-seq signals. We obtained negative samples by
directly sampling random genomic sequences from the
entire human genome. When comparing our method to
kmer-SVM [29] and a common used Naïve Bayes classi-
fier, kmerForst and Kmer-SVM always achieve better
performance than the baseline Naïve Bayes classifier in
all experiments. More importantly, kmerForest could
achieves higher AUC than Kmer-SVM in 189 out of

Fig. 1 The schematic of kmerForest model. Bootstrapped samples are trained with a random forest. Then out-of-bag samples are classified with
the trained model to obtain the MDA score of each k-mer. All the MDA score will be sorted as the k-mer importance
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210 different cell lines experiments. We listed two
representative cell lines, GM12878 and K562 in Fig. 2
(a and c). Our model could achieve a better perform-
ance than the other two methods in 90% of the cell
lines experiments considering the same input k-mer
features. Particularly, when we zoom in the ROC curve,
we find that our model can achieve a significant higher
true positive rate when the false positive rate is relatively
small. Fig. 2e shows the distribution of the AUCs and
auPRs (area under PR curve) from 210 different cell lines
experiments. We observe a significant higher performance
of the kmerForest model when compared with the other
two models.

Integration with MSA to improve performance
In order to further improve the performance of the
kmerForest classifier, we considered the conservation of
the sequences based on the generally accepted hypoth-
esis that the functional regions are under purifying se-
lection. Sequences with strong conservation are the
theoretical candidates for putative open regions. As the
accessible chromatin regions tend to have a stronger con-
servation than the close regions. Based on the above, we
collected multiple sequence alignment (MSA) data of 100
mammal species from UCSC Genome Browser. We then
combined k-mer features with the information of se-
quence conservation from multiple sequence alignment
(MSA) and formed a new classifier called kmsaForest

(see Methods). The new classify not only consider the
k-mer occurrences in sequences but also the conserva-
tion information of all the sequences. We designed a
series of experiments to see the improvement after in-
tegrating with conservation information. In 210 differ-
ent cell lines experiments, the kmsaForest classifier can
effectively improve the AUC by 1 to 2% averagely com-
pared to original kmerForest model. The representative
experiment in cell line H1-hESC is showed in Fig. 2f. Note
that the performance of single decision tree is also in-
cluded as a baseline. After integrating the multiple se-
quence alignment (MSA) information, the new classifier
kmsaForest can achieve a better performance which im-
plies that the information of sequence conservation can
offer an another perspective of inferring chromatin states.

kmerForest discriminates pathogenic SNPs from normal
ones
Based on the well-performed random forest classifier, we
built a kmerForest model to obtain the importance of all
the k-mers according to their MDA scores. We then
utilized the k-mer importance to evaluate the impact of
SNPs. We collected 2977 pathogenic SNPs from the
HGMD database [38] and 701,984 normal SNPs from the
1000 Genomes project [39]. We then selected at random
3000 SNPs out of these normal SNPs as the negative sam-
ples. Note that we selected all the SNPs which are located
in putative regulatory regions of human genome, and thus

Fig. 2 Performance in the binary classification. a ROC curve in GM12878 cell line. b PR curve in GM12878 cell line. c ROC curve in K562 cell
line. d PR curve in K562 cell line. e Distribution of AUC and auPR across 210 cell lines. f ROC curve combined with MSA information
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the pathogenic SNPs can be regarded as the disruption of
functional regulatory elements. We used our kmerForest
model to discriminate the SNPs according to their average
MDA score as shown in Fig. 3. As we have collected
DNase-seq data across 210 different cell lines in the
ENCODE project, we trained our kmerForest model with
210 datasets respectively in order to calculate the average
MDA score for all the pathogenic and normal SNPs in
each cell line experiment. A significant different distribu-
tion of two type of SNPs can be observed in Fig. 3a. The
pathogenic SNPs has obviously higher average MDA
scores than the normal SNPs, indicating the disruption of
regulatory elements when the mutation occurs in func-
tional genomic sequences. In order to compare our model
with kmer-SVM [29], we used the SVM weights as the
evaluation of each k-mer features after training with
the same datasets, and then we calculated the score of
each SNP in the same way as kmerForest thus forming
the Delta-SVM model. Comparing to our kmerForest
model, our method can achieve better performance
than Delta-SVM when executing a binary classification
on two type of SNPs. The ROC and PR curves are
shown in Fig. 3b and c respectively. The AUC value of
our model exceeds the Delta-SVM model by about 5%.
Such superiority can also be observed in the PR curve.
In summary, our kmerForest model can discriminate
between two types of SNPs better than Delta-SVM
model in evaluating SNPs, revealing that our model
could give a more accurate estimation of the impact of
SNPs. Our genomic variants evaluation model can

further help us predict the impact of possible mutations
occur in regulatory regions of genome.

Application of kmerForest in prioritizing linked-SNPs in
breast cancer cell line
To further demonstrate the application of our kmerForest
model, we applied it in post-GWAS analysis. In general, a
disease is often associates with more than multiple SNPs
in a GWAS. SNPs tend to have an inner association
mechanism in the development of the disease. We col-
lected a breast cancer associated variant set (AVS) from a
previous study [40]. Briefly, this data set is composed of
44 risk-associated SNPs that were discovered from GWAS
and other 1315 “linked” SNPs that were not discovered in
GWAS but have strong linkage disequilibrium with the
risk-associated SNPs. Previous studies have demonstrated
that breast cancer associated SNPs are quite enriched for
the binding sites of a transcription factor called FOXA1,
which is crucial for chromatin accessibility and nucleo-
some positioning [41, 42]. Among all the SNPs associated
with breast cancer, the rs4784227 is one of the risk-
associated SNPs that is believed to disrupt the binding of
FOXA1 to accessible chromatin [40, 43]. We trained our
kmerForest and Delta-SVM [29] with the same DNase-seq
data from breast cancer cell line MCF-7 in the ENCODE
project, then we used the two models to evaluate
rs4784227 and other linked SNPs collected in AVS
(rs3803662, rs17271951, rs3095604) respectively. As is
shown in Fig. 4a, our method can correctly predict
the impact of rs4784227 while Delta-SVM failed. Next

Fig. 3 Discriminate two type of SNPs. a Distribution of average score in 120 cell lines. b ROC curve of SNPs scores. c PR curve of SNPs scores
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we used our model to evaluate all the SNPs in AVS,
the 44 risk-associated SNPs have significant higher
MDA scores than the rest of SNPs in AVS (Fig. 4b).
According to our MDA scores, we can have an intui-
tionistic sense of the danger of all the breast cancer
associated SNPs.

Conclusions
In this study, we have proposed a kmerForest model and
shown that our method can precisely predict the putative
regulatory sequences according to the basic k-mer feature
without any prior knowledge. Our method outperforms
other approaches using only general genomic sequence

Fig. 4 Detection in risk-associated SNPs. a The score of risk-associated SNP rs4784227 and other three SNPs in AVS b The scores distribution of 44
risk-associated SNPs and 1315 SNPs in AVS
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information. The kmerForest model can effectively help us
to discriminate accessible chromatin regions from pure
genomic context. Such sequence features identified by our
method can be regarded as the functional sequence
elements which are the candidates for consensus motifs
such as TFBSs. The combined model kmsaForest not only
consider the k-mer frequency but also the sequence con-
servation which can always achieve a better performance.
This distinction suggests that predictive sequences fea-
tures may be more evolutionarily conserved. Based on the
above, we further developed an application for evaluating
the regulatory variants. By prioritizing all the k-mers and
calculating the MDA scores, we can give an intuitionistic
description of the pathogenesis of SNPs associated with
diseases. A series of experiments have showed that our
method framework can discriminate the pathogenic SNPs
from normal SNPs better than the deltaSVM model in
previous study. So building such a quantitative model for
evaluating the regulatory variants has significant meaning
in predicting the impact of special mutation in regulatory
genome regions and interpreting the consequence of a
variant associated with diseases.

Discussion
We realize that there are many aspects for us to
generalize and improve our model. First, our method is
mainly motivated by building the effective model for
evaluating regulatory variants associated with diseases.
However, considering the accumulative impact of
neighboring k-mers may ignore the spatial effect of k-
mers and the interaction between different variants. Be-
sides, it may not be accurate to evaluate the variants
when a deletion or insertion of nucleotide occurs. Many
methods take more factors into consideration in order
to build a more authentic regulatory model. To name a
few, gkm-SVM [30] uses gapped k-mers as input features
which takes the mismatches in genome into consideration.
GERV [44] builds a statistical model assembling ChIP-seq
and DNase-seq data to evaluate regulatory variants for
TFBSs. Deepsea [45] constructs a deep learning frame-
work to predict the effect of noncoding variants with
several kinds of chromatin profiling data. It is somehow
difficult to compare these methods to ours due to the
different input features. Taking further thought of our
method, we can generalize it in estimating the effect of
regulatory variants on transcription factor binding sites
(TFBSs), eQTLs, histone marks, DNase I–hypersensitive
sites (DHSs). For example, we can apply our model to
eQTLs analysis with the combination of SNPs and gene
expression data and find out which SNPs are more like
to be eQTLs. In general, the proposed kmerForest
model can still give us an insight when evaluating the
impact of regulatory variants according to their
changed MDA scores.
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DHS: DNase I–hypersensitive site; eQTLs: Expression quantitative trait loci;
GWAS: Genome wide association study; MDA: Mean decrease accuracy;
MSA: Multiple sequence alignment; SNP: Single nucleotide polymorphism;
TFBS: Transcription factor binding site
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