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Abstract

Background: The identification of Protein-RNA Interactions (PRIs) is important to understanding cell activities.
Recently, several machine learning-based methods have been developed for identifying PRIs. However, the
performance of these methods is unsatisfactory. One major reason is that they usually use unreliable negative
samples in the training process.

Methods: For boosting the performance of PRI prediction, we propose a novel method to generate reliable negative
samples. Concretely, we firstly collect the known PRIs as positive samples for generating positive sets. For each
positive set, we construct two corresponding negative sets, one is by our method and the other by random method.
Each positive set is combined with a negative set to form a dataset for model training and performance evaluation.
Consequently, we get 18 datasets of different species and different ratios of negative samples to positive samples.
Secondly, sequence-based features are extracted to represent each of PRIs and protein-RNA pairs in the datasets. A
filter-based method is employed to cut down the dimensionality of feature vectors for reducing computational cost.
Finally, the performance of support vector machine (SVM), random forest (RF) and naive Bayes (NB) is evaluated on the
generated 18 datasets.

Results: Extensive experiments show that comparing to using randomly-generated negative samples, all classifiers
achieve substantial performance improvement by using negative samples selected by our method. The
improvements on accuracy and geometric mean for the SVM classifier, the RF classifier and the NB classifier are as
high as 204.5 and 68.7%, 174.5 and 53.9%, 80.9 and 54.3%, respectively.

Conclusion: Our method is useful to the identification of PRIs.
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Background

Exploring the interactions between proteins and RNAs
can help us to understand the mechanisms of life, such
as the protein translation process [1-3], gene expression
[4, 5], RNA post-transcriptional modification [6—8], cellu-
lar regulation [9, 10].

A lot of effort has been put on the identification
of PRIs using traditional experimental methods and
post-experimental methods. As experimental methods
consume more time and money than post-experimental
methods, the latter is gaining more and more attention.
There are mainly two categories of post-experimental
methods: 1)structural & chemical-based methods and
2)computational methods.

The first category of methods attempted to analyze the
interacting mechanism of protein and RNA at structural
and chemical levels. For example, Jones et al. [11] focused
on analyzing protein-RNA complexes, and obtained the
physical-chemical properties of RNA-binding residues
and the distribution of atom-atom within the complexes.
With protein-RNA experimental data, Ellis et al. [12]
presented a statistics on properties of binding residues
bounding to functional various RNAs. Besides, some
function-based works [13, 14] also discussed the protein-
RNA interactions.

As for computation-based methods, several machine
learning techniques have been employed on identifying
PRIs, such as random forest (RF), Naive Bayes (NB) and
support vector machine (SVM). Pancaldi et al. [15] used
RF and SVM for identifying PRIs by considering more
than 100 properties of RNAs and proteins. Instead, Mup-
pirala et al. [16] used only protein and RNA sequence
information for predicting interactions. Similarly, Wang
et al. [17] improved the Naive Bayes (ENB) classifiers for
predicting PRIs with only sequence data. Recently, we also
proposed learning method [18] with only positive and
unlabeled samples on PRIs prediction.

Compared with structural & chemical-based methods,
computational methods are more efficient and effective.
However, the performance of computational methods
heavily depends on the quality of training datasets, which
usually consist of positive samples and negative samples.
Here, positive samples are not the problem. The diffi-
culty lies in that we do not have experimentally-validated
negative samples. Current works [16, 17] addressed
this problem by randomly pairing RNAs and proteins
and then removing these pairs included in the pos-
itive set. In this paper, we call this method random
method or traditional method. Obviously, random nega-
tive samples must not be real negative samples. So the
quality of random negative sets cannot be guaranteed.
This will unavoidably impact prediction performance
of classifiers trained on datasets with random negative
samples.
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This paper addresses how to select highly reliable neg-
ative samples to improve PRI prediction. To this end, we
present an effective method FIRE — the abbreviation of
FInding Reliable nEgative samples). The basic idea of our
method is like this: given a known PRI of protein i and
RNA j, for a protein k, the more difference between pro-
tein i and protein k, the less possibility that protein k
interacts RNA j.

We first construct positive sets using known PRIs. Given
a positive set, we establish two negative sets: one is by
random method and the other by our method. And the
positive set is combined with each of the two negative
sets to form a dataset for model training and performance
evaluation. In such a way, we construct 18 datasets of dif-
ferent species and different ratios of negative samples to
positive samples. Then, we extract the features of each
pair of protein and RNA. Here, each feature is com-
posed of a conjoint triad of vicinal amino acids and a k
nucleotide acids. To cutoff computational cost, a filter-
based feature selection method is employed to reduce
the dimensionality of feature vectors. Finally, we conduct
extensive experiments to evaluate the proposed method
by training and testing SVM, RF and NB classifier on
the 18 datasets. The experimental results show that these
classifiers perform much better using the negative sam-
ples generated by our method than using random negative
samples.

Methods

We collected non-redundant known PRIs as positive sam-
ples, and generated 18 datasets based on our method and
the random method, which were used to evaluate the
performance of PRI prediction by SVM, RF and NB clas-
sifiers. Figure 1 is the procedure of our method, which
contains five steps: 1) Generating negative datasets by
using our method FIRE and the random method; 2) Con-
structing feature vectors for each pair of protein-RNA; 3)
Reducing the dimension of feature vectors; 4) Training
classifiers; 5) Performance evaluation.

Datasets

We constructed 9 non-redundant positive PRI sets from
PRIDB [19], NPInter [20], 9 reliable negative sets based
on the positive sets and the STRING [21] database by
our method, and 9 random negative sets with the random
method. The procedure for negative sample construc-
tion will be detailed later. Each positive set is merged
with a negative set to construct a PRI dataset, conse-
quently 18 PRI datasets in total are constructed. PRIDB
is a database of protein-RNA interfaces calculated from
protein-RNA complexes in PDB [22]. NPInter is a com-
plete database covering eight-category functional interac-
tions between proteins and noncoding RNAs of six model
organisms, including Caenorhabditis elegans, Drosophila
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Fig. 1 The framework of this work. Here, rectangles are executive modules, and parallelograms are data modules

melanogaster, Escherichia coli, Homo sapiens, Mus muscu-
lus and Saccharomyces cerevisiae. STRING is an updated
online database resource Search Tool for the Retrieval
of Interacting Genes, it provides uniquely comprehen-
sive coverage and ease of access to both experimental and
predicted protein-protein interaction (PPI) information.

The 18 datasets are divided to 3 groups. The first group
of datasets (denoted group 1) contain 336 experimental-
validated PRIs that are used as positive samples, which are
related to the six organisms above and constructed from
the NPInter and STRING databases. This group consists
of six sub-datasets (named by SO) as follows:

1. The first sub-dataset (SO_reliable;.;) contains 168
positive samples and 168 reliable negative samples
generated by our method, the ratio of positives to
negativesis 1: 1;

2. The second sub-dataset (SO_reliable;.;) contains 336
positive samples and 168 reliable negative samples,
the ratiois 2 : 1;

3. The third sub-dataset (SO_reliable;.;) contains 168
positive samples and 336 reliable negative samples,
the ratiois 1 : 2;

4. The fourth sub-dataset (SO_random;.1) contains 168
positive samples and 168 random negative samples
generated by the random method, and the ratio of
positives to negativesis 1 : 1;

5. The fifth sub-dataset (SO_randoms.1) contains 336
positive samples and 168 random negative samples,
the ratiois 2 : 1;

6. The last sub-dataset (SO_random;.5) contains 168
positive samples and 336 random negative samples,
the ratiois 1: 2.

The second group of datasets (denoted as group
2) includes 1320 experimental-validated homo
species PRIs used as positive samples, which are
extracted from the PRIDB and STRING databases,
it also consists of six sub-datasets. Following the
nomenclature of the first group of datasets, these
PRI datasets are named as HOMO_reliable;.,
HOMO _reliabley.;, HOMO reliabley.., HOMO_random; .,
HOMO_randoms.1, HOMO_random;.o.

The third group of datasets (denoted as group 3) has 114
experimental-validated mouse PRIs as positive samples,

which also consists of six sub-datasets: MUS_reliable;.1,
MUS reliables.,, MUS._reliabley.,, MUS_random .1,
MUS_randomy.1, MUS_random; ..

Table 1 gives the statistics of the total 18 PRI datasets.

Construction of random negative samples
Previous works [16, 17] randomly select negative samples,
the underlying hypothesis is: if there is no validated inter-
action between a protein and a RNA, then the protein
and the RNA constitute a negative sample. Obviously, the
hypothesis is not completely reasonable. The flowchart for
generating random negative samples is shown in Fig. 2.

In Fig. 2, the major steps of the random method are as
follows:

1. Each PRI extracted from PRIDB and NPInter is
included in the positive set. From the positive set, we
can get a set P of proteins and a set R of RNAs, each
protein/RNA in P/R is involved in at least a positive
PRI

Table 1 The 18 PRI datatsets used in this paper

Datesets # Positive samples # Negative samples
SO_reliable 168 168
SO_reliabley 336 168
SO_reliableq» 168 336
SO_randomy 1 168 168
SO_randomy 336 168
SO_randomy > 168 336
HOMO_reliable 4 660 660
HOMO_reliabley. 1320 660
HOMO_reliabley . 660 1320
HOMO_randomy 660 660
HOMO_randomy- 1320 660
HOMO_random . 660 1320
MUS_reliabler 4 57 57
MUS_reliabley 114 57
MUS_reliable, > 57 114
MUS_random 4 57 57
MUS_randomy: 114 57
MUS_randomq 57 114
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Fig. 2 The flowchart of constructing random negative samples

2. For each protein p in P and each RNA r in R, there is
a corresponding protein-RNA pair (p, r).

3. If (p, r) is not included in the positive set, it is a
negative sample.

4. The positives and negatives are merged to a PRI
dataset.

Construction of reliable negative samples
The basic idea of our method is like this: for an
experimentally-validated PRI of protein p and RNA r, r is
highly possible to interact with any protein p’ similar to
p. On the contrary, if protein p’ is dissimilar to p, there is
low possibility that p’ interacts r. Based on this idea, we
propose the method FIRE to construct reliable negative
PRIs. The flowchart of FIRE is shown in Fig. 3. Concretely,
for each positive PRI (p, ), we try to find any protein p’
that is as much dissimilar as possible to p. If (¢/, ) is not
an experimentally-validated PRI, then it is selected as a
negative PRL

We first compute the similarity between each pair of
proteins based on three different data sources, then we
combine these similarity scores as a final score to measure
the similarity between the two proteins. Detail is delayed
to “Protein-protein similarity computation” section.

The procedure of our method FIRE is as follows:
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1. Construct the positive set PS of PRIs based on the
PRIDB and NPInter databases, and compute the
similarity matrix SP of proteins involved in PS as in
“Protein-protein similarity computation” section.

2. For protein p; and RNA 7; that do not form a positive
PRIin PS, i.e, (p;, rj) ¢ PS, compute a score between
pi and 7; as follows:

(a) If protein py (k # i) and rj forms a PRI in the
positive PRI set PS, then the score SPR;j
indicating the confidence of (p;, r;) being a
positive PRI via protein py can be evaluated via
SPj, which is the similarity between p; and py.

(b) As there may be multiple (say n) positive PRIs
involving r; in PS, we aggregate the scores
SPRj over all positive PRIs (px, ;) (k # i and
k = 1..n) as follows:

n n
SPRj =Y " SPRj = » 8(k,j) x SPy, (1)
k=1 k=1

SPR;; indicates the confidence of (p;, r;) being
a positive PRL 8 (i, j)=1 if (p, r;) is a positive
PRI, otherwise 0.

3. As (p;, rj) ¢ PS, it is a potential negative PRI Sorting
all generated potential PRIs (p;, rj) via their scores
SPR;; in increasing order, the top-m protein-RNA
pairs in the sorted list are taken as negative PRIs if m
negative PRIs are to be generated.

Protein-protein similarity computation

We compute the similarity between any two proteins
involved in the positive set based on three types of data
sources: sequence information, functional annotations
and protein domains, these computed similarities are
called sequence similarity, functional annotation seman-
tic similarity and protein domain similarity, which are
merged to get the final similarity of the two proteins.

_—— Ve ==
,,,,,,,,,,,,,,,,,,,,,,, ;
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!
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Fig. 3 The flowchart of constructing reliable negative samples
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Sequence similarity (SS). Protein sequences are obtained
from the UniProt database [23]. We compute sequence
similarity between two proteins using a normalized ver-
sion of Smith-Waterman score [24]. The normalized
Smith-Waterman score between two proteins p; and pj is
nsw(pi, pj)=sw(pi p)//swwi> p)/sw(pj, pj) where sw(.,.)
means the original Smith-Waterman score. By applying
this operation to protein pair p; and p;, we can obtain their
sequence similarity SS(p;, pj)=(nsw(p;, pj)+nsw(pj, p))/2.

Functional annotation semantic similarity (FS). GO
annotations are downloaded from the GO database [25].
Semantic similarity between each pair of proteins is cal-
culated based on the overlap of the GO terms associated
with the two proteins [26]. All three types of GO are used
in the computation as similar RNAs are expected to inter-
act with proteins that act in similar biological processes, or
have similar molecular functions or reside in similar cell
compartments. We compute the Jaccard value [27] with
respect to the GO terms of each pair of proteins as their
similarity. The Jaccard score between term sets ¢; and ¢; of
proteins p; and p; is defined as |¢; N ] /|¢; U ¢], which is the
ratio of the number of common terms between proteins
pi and pj; to the total number of terms of p; and p;, which
is used as the functional annotation semantic similarity
FS(pi, pj) of proteins p; and p;.

Protein domain similarity (DS). Protein domains are
extracted from Pfam database [28]. Each protein is rep-
resented by a domain fingerprint (binary vector) whose
elements encode the presence or absence of each retained
Pfam domain by 1 or O, respectively. We compute the Jac-
card value of any two proteins p; and p; with their domain
fingerprints as their similarity DS(p;, p)).

For proteins p; and p;, we compute the aggregated
similarity (AS) by merging the three different similarity
measures above as follows:

AS(pi,p)) = (SS(pi pj)) +ES(pi» pj) + DS(pi, ) /3. (2)

PRI feature vectors

Existing works [29-31] found that properties of amino
acids are effective in protein classification. To reduce
the dimensionality of protein representation, Shen et
al. [32] classified the 20 amino acid residues as seven
classes according to their physicochemical properties,
meanwhile the concept of conjoint triads were also pro-
posed to represent the protein properties. Wang et al.
[17] further reduced the dimension of feature vector by
encoding the 20 amino acids residues into four classes:
{DE}, {HRK}, {CGNQSTY}, and {AFILMPVW). In this
work, we use the same strategy for encoding protein
sequences.

Feature construction
To compute protein feature vectors, we used conjoint tri-
ads as protein properties as in [16, 17, 32]. 3 continuous
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amino acids constitute a conjoint triad, we can get 64
(4 x 4 x 4) classes of conjoin triads. Note that two triads
are treated as the same class if their residues in the cor-
responding positions belong to the same class. For RNA
sequences, we used k-nucleotide acids (k-NAs) as proper-
ties. A k-NAs refers to a unit of k continuous nucleotide
acids. k-NAs of size 1 (i.e. k = 1) are called “uniNASs’,
size 2 (i.e. k = 2) are called “biNAs’, size 3 (i.e. k = 3)
are called “triNAs’, size 4 or more (i.e. k > 4) are sim-
ply called “k-NAs” Because RNA sequences contain only
the four bases A, U, C, G, we have 4 unique uniNAs, 4?
unique biNAs and 43 unique triNAs. Finally, by pairing
the k-NAs (k = 1,2, 3) and triads, we can get at most 256
(64 x 4) 4-mers, 1024 (64 x 4%) 5-mers and 4096 (64 x 43)
6-mers, each of which is composed of a conjoint triad and
a uniNA, biNA and triNA respectively. In the sequel, we
also call 4-mers, 5-mers, 6-mers as type 1, 2, 3 (k+3)-mers.

Table 2 gives the combination of triads and k-NAs
examples. For a pair of hypothetical amino acid sequence
DPPVPPPPPV and nucleotide acids sequence CCUCU,
two classes of triads {DPP}, {PPV, PVP, VPP, PPP} (note
that ‘P’ and ‘V’ belong to the same class), three classes of
3-NAs {CCU}, {CUC} and {UCU]}, three classes of 2-NAs
{CC}, {CU} and {UC} and two classes of 1-NAs {C} and {U}
are generated. Hence, we can get the following 15 6-mers
by matching the 3-NAs and triads: CCU-DPP, CCU-PPYV,
CCU-PVP, CCU-VPP, CCU-PPP, CUC-DPP, CUC-PPYV,
CUC-PVP, CUC-VPP, CUC-PPP, UCU-DPP, UCU-PPV,
UCU-PVP, UCU-VPP and UCU-PPP, and 15 5-mers by
matching the 2-NAs and triads: CC-DPP, CC-PPV, CC-
PVP, CC-VPP, CC-PPP, CU-DPP, CU-PPV, CU-PVP, CU-
VPP, CU-PPP, UC-DPP, UC-PPV, UC-PVP, UC-VPP and
UC-PPP, and 10 4-mers by matching the 1-NAs and tri-
ads: C-DPP, C-PPV, C-PVP, C-VPP, C-PPP, U-DPP, U-PPV,
U-PVP, U-VPP, U-PPP.

Feature value computation

In order to discriminate the significance of different types
of features in a feature vector, we introduce the concept
of concentration of different features. Denote the number
of unique (k + 3)-mers of type i as N;. The concentration
of type i is the ratio of N; to the total number of unique
(k 4+ 3)-mers, that is,

Table 2 An example of feature extraction for a pair of protein
and RNA sequences

DPPVPPPPPV
ccucu

Protein sequence
RNA sequence

Triads (DPP}, {PPV, PVP, VPP, PPP}
3-NAs {Ccuy, {CuCy ucuy
2-NAs {CC}, {CU} {UC}

1-NAs (€U}
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=33 N
21N
For example, the number of unique 6-mers is 64 x 43.
The total number of unique (k + 3)-mers used in this
study is 5376, therefore the concentration of 6-mers is

Cs = 4096/5376 = 0.762. Then, the elements of a feature
vector are calculated by

f]'=t]'XCi, 1 <j<5376 (4)

. i=1,23. 3)

i

Above, tj is the occurrence frequency of a certain unique
(k 4+ 3)-mer of type i. A feature vector contains 5376
dimensions, each of which corresponds to a unique (k +
3)-mer of a certain type i ({ = 1, 2 and 3). Within a vec-
tor, the dimensions are arranged in the order of 6-mers,
5-mers and 4-mers. Then f; is further normalized to ff; as
follows:

ﬁ}' _ ﬁ _fmin‘

fmax _fmm
where f,,14x and f,i, denote the maximum and the mini-
mum of all f; (j = 1,2,...,5376), respectively.

(5)

Feature reduction
In order to reduce the computational cost, we employed
a filter-based method for cutting down the dimension of
feature vectors.

For the i-th feature ff;(i) of the j-th vector, let F(i), and
F(i), denote its occurrence frequency in the positive and
negative sample set respectively, which are calculated by

N
F(i), = Zﬁ?(i), vectorj € the positive set, (6)
j=1
M
F@), = Zﬁ;(i), vectorj € the negative set, (7)
j=1

where N and M are the numbers of positives and negatives
in the dataset.

F(i), and F(i), are further normalized to FF(i), and
FF (i), as in Eq. (5), and then the final score of each feature
is defined as follows:
FF(i),
FF (i),

Our objective is to choose those discriminative features
that either frequently occur in the positive set but seldom
occur in the negative set, or frequently occur in the nega-
tive set but rarely occur in the positive set. In such a way,
we choose the features that help us to distinguish positive
samples from negative samples.

As FScore(i) measures the relative enrichment of the i-
th feature in the positives over the negatives, it can be
regarded as an indicator of the usefulness of the i-th fea-
ture. Based on the calculated FScore values, the most
“useful” features that have the largest or smallest FScore

FScore(i) = i=1,2,...,5376. (8)
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values are selected to represent the PRI pairs. Suppose
that we reduce the PRI vectors to k dimensions, we select
the g features with the largest FScore values and the %
features with the smallest FScore values to represent the
k-dimension PRI vectors. In our work, k is set to 1000.

The classifiers and performance metrics

As several studies have successfully used random forest
(RF), naive Bayes (NB) and support vector machine (SVM)
to predict PRIs [15-17], we also use them to evaluate our
method by 10-fold cross validation.

Four widely-used performance metrics, sensitivity (SE),
specificity (SP), accuracy (ACC) and geometric mean (GM)
are used in this paper. GM is commonly used for class-
imbalance learning [33] because it can give a more accu-
rate evaluation on imbalanced data. Therefore, for the
imbalance datasets, we pay more attention to GM rather
than ACC. These metrics are evaluated as follows:

TP
SE= ——, )
TP + FN
N
P=—, (10)
TN + FP
GM = +/SE x SP, (11)
TP + TN
ACC = + (12)

TP+ FN + TN + FP’
where TP is the number of true positives, TN is the num-

ber of true negatives, FP is the number of false positives,
and FN is the number of false negatives.

In addition, we also use AUC (Area Under the receiver
operating characteristic (ROC) Curve) to evaluate pre-
diction performance in some experiments. AUC falls
between 0 and 1. The maximum value 1 means a perfect
prediction. For a random guess, the value of AUC is close
to 0.5.

Results and Discussion
In our experiments, eighteen PRI datasets are used, these
datasets either contain PRI data of different species or
have different ratios of positive PRIs to negative PRIs. For
each dataset, 10-cross validation is performed on SVM,
RF and NB classifiers respectively, and the performance
metrics of SE, SP, GM and ACC as well as AUC are used.
In the sequel, for the simplicity of notation, we denote
the ratio of positive samples to negative samples as PNR,
and remove the words “reliable” and “random” from the
dataset names in Table 1. For example, both SO_reliable; ;
and SO_random;; are simplified to SOy.1. In other words,
SO1.1 represents both SO_reliable;.; and SO_random; ;.

Performance comparison
Figures 4, 5 and 6 respectively show the performance
comparison between using our reliable negative samples
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and using random negative samples on the SO datasets,
HOMO datasets and MUS datasets.

To more clearly evaluate the advantage of reliable nega-
tive samples over random negative samples, we define the
performance improvement ratio (IR) of using our reliable
negatives over using random negatives as follows:

result,eiapie — result,
R — reliable randm x 100%,

resultyandom

(13)

where resulty i pe and result,,; 40, denote the perfor-
mance measure (any of SE, SP, GM and ACC) of using
our reliable negatives and using random negatives, respec-
tively. A positive IR means using our reliable negatives
achieves better performance than using random nega-
tives. Table 3 shows the IR values calculated based on the
results in Figs. 4, 5 and 6.

From Table 3, we can see that out of the 108 IR val-
ues, only 14 IRs are negative, one is 0, the other 93
(93/108~86%) values are positive. As GM and ACC are
more comprehensive than SE and SP in measuring classi-
fication performance, we check their IR values more care-
fully. Of the 54 IR values for GE and ACC, 51 (51/54~94%)
values are positive. Therefore, in most cases performance
measure of our method is better than the random method.
The largest IR is 760.4%, which is achieved for SE by SVM

on dataset MUS;.,. We can also see that SVM and RF
perform better than NB on these datasets.

The results above show that using the reliable negative
samples selected by our method indeed boosts the per-
formance of PRI prediction, and our method can serve
as a practical and effective method for computationally
predicting PRIs.

The effect of score threshold
To select negative samples, we have to set a score
threshold, and require that all candidate negative sam-
ples (protein-RNA pairs) have scores (defined in Eq. (1))
no larger than the threshold. So the value of threshold
will impact the quality of selected negative samples, and
will subsequently impact the prediction performance. The
smaller the threshold, the higher the quality of selected
negatives, and the smaller the number of negatives that
can be selected. So there is a tradeoff between the qual-
ity and the number of selected negatives. In this part, we
check the impact of score threshold on prediction perfor-
mance and thus suggest proper values for the threshold.
Here, we use AUC to evaluate prediction performance.
We randomly select 908 nonredundant positive PRIs of
Homo sapiens from PRIDB and NPInter, then construct
an equal number of negative samples by our method with
different score threshold values. Concretely, we generate
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Table 3 The improvement ratio (IR) values of different classifiers on different datasets
Dataset SYM RF NB

SE SP GM ACC SE SP GM ACC SE SP GM ACC
SO14 20.2 -12.8 24 3.1 4.5 58 5.1 5.1 107.2 0 439 23.1
SO1 25 0.23 14 1.0 44 1.0 27 2.1 484 30 236 1.4
NO 0.6 3.7 2.1 1.6 0.6 6.0 32 23 121 4.2 8.1 85
HOMO; 4 86.5 -354 9.8 53 42.1 17.2 29.0 30.8 -52.2 1204 26 50
HOMO1 109.2 12.3 533 252 654 29.0 46.1 355 -59.9 302.2 269 543
HOMO34 2.3 94.5 41.1 15.7 19.1 63.1 394 26.8 -30.3 403 =11 -4.6
MUS1 1 249.5 -634 13 68.7 3722 -18.7 95.9 539 -21.1 299.5 77.5 21.8
MUS1 7604 7.8 204.5 293 7514 =115 1745 16.7 326 -28.1 -24 6.7
MUS2 27 497.8 147.8 1.7 3.8 286.9 1004 319 -18.0 299.1 80.9 0

negative samples like this: give a threshold value st (st is
set to 0, 0.2, 0.4, 0.7 and 1.0 respectively), we select 908
protein-RNA pairs whose scores are closest to st. Thus, we
construct five PRI datasets. Finally, we evaluate the AUC
values of three classifiers RF, SVM and NB on the five
constructed datasets by 10-fold cross validation. Figure 7
shows the results. As we can see, for all the three classi-
fiers, with the increase of threshold value, the AUC value
shows a decreasing trend, which conforms to our expec-
tation. And when the score threshold is less than 0.7, the
prediction performance is stable.

Capability of finding new positive PRIs

In this paper, we define a score (Eq. (1)) to measure the
relationship between each protein and each RNA. The
smaller the score, the more possible this protein-RNA pair
is a negative PRI. Otherwise, the more possible it is a
PRI. So the merits of our method are two-fold. On the
one hand, we can use it to select highly credible negative
PRIs; On the other hand, it can be used to directly predict
positive PRIs.

1 r
RF ——
SVM
NB v
0.9 E/IA‘A\\ !
08}
B g e e v.
2 .
0.7 }
0.6} .
v
05 . . . . .
0 0.2 0.4 0.6 0.8 1
threshold
Fig. 7 AUC vs. score threshold (RF, SYM and NB)

We randomly select 908 nonredundant positive PRIs of
Homo sapiens from PRIDB and NPInter, and compute the
score of any protein-RNA pair not included in the posi-
tive set by our method. Among the screened protein-RNA
pairs, for each RNA we extract the top 4 protein-RNA
pairs in terms of the aggregated score AS defined in Eq. (1)
and requiring AS > 1, then we get 397 protein-RNA pairs
involving 107 unique RNAs and 96 unique proteins. We
search each protein-RNA pair against the NPInter and
PRIDB datasets, and find that 22 pairs have been validated
by biological experiments.

Furthermore, from the 397 protein-RNA pairs gotten
above, we filter out those pairs whose proteins appear
in PRIs of the NPInter and PRIDB datasets, and get 256
protein-RNA pairs involving 56 unique RNAs and 74
unique proteins. Then we annotate manually the 74 pro-
teins in the 256 protein-RNA pairs by the Gene Ontology
database, and we find that 64 (64/74~86.5%) proteins have
RNA binding, chromatin binding or nucleotide binding
functions, which play important roles in positive or nega-
tive regulation of transcription, gene expression and RNA
processing.

Figure 8 is a protein-RNA interaction network con-
structed by the true positive PRIs and the predicted ones.
The network includes 908 true PRIs represented by solid
line and 256 highly credible predicted PRIs represented
by dotted line. Based on our experimental results, we can
believe that these predicted PRIs are very possibly true
PRIs.

Conclusion

In this paper, we present a novel method FIRE for boosting
the performance of protein-RNA interaction prediction
by selecting high-quality negative protein-RNA pairs to
construct high-performance classifiers. Experiments over
18 PRI datasets show that the three compared classi-
fiers, including SVM, RF and NB all achieve better per-
formance on the negative sets selected by our method
than on the random negative sets. This means that our
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Fig. 8 The PRI network constructed by true PRIs and predicted ones
by our method. 256 predicted PRIs consist of 74 unique proteins and
56 unique RNAs. The yellow ellipses and purple diamonds represent
proteins and RNAs, respectively. The solid and dotted lines are the true
and predicted PRIs

method can screen highly-credible negative PRIs, and
thus can improve PRI prediction performance. As for
future work, we will further explore the interacting mech-
anism between protein and RNA, and propose new and
more effective methods to select reliable negative samples.
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