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Abstract

Background: An orphan disease is any disease that affects a small percentage of the population. Orphan diseases
are a great burden to patients and society, and most of them are genetic in origin. Unfortunately, our current
understanding of the genes responsible for inherited orphan diseases is still quite limited. Developing effective
computational algorithms to discover disease-causing genes would help unveil disease mechanisms and may enable
better diagnosis and treatment.

Results: We have developed a novel method, named as DIGNiFI (Disease causIng GeNe FInder), which uses Protein-
Protein Interaction (PPI) network-based features to discover and rank candidate disease-causing genes. Specifically,
our approach computes topologically similar genes by taking into account both local and global connected paths in
PPI networks via Direct Neighbors and Local RandomWalks, respectively. Furthermore, since genes with similar
phenotypes tend to be functionally related, we have integrated PPI data with gene ontology (GO) annotations and
protein complex data to further improve the performance of this approach. Results of 128 orphan diseases with 1184
known disease genes collected from the Orphanet show that our proposed methods outperform existing state-of-the-
art methods for discovering candidate disease-causing genes. We also show that further performance improvement
can be achieved when enriching the human-curated PPI network data with text-mined interactions from the
biomedical literature. Finally, we demonstrate the utility of our approach by applying our method to identifying novel
candidate genes for a set of four inherited retinal dystrophies. In this study, we found the top predictions for these
retinal dystrophies consistent with literature reports and online databases of other retinal dystrophies.

Conclusions: Our method successfully prioritizes orphan-disease-causative genes. This method has great potential
to benefit the field of orphan disease research, where resources are scarce and greatly needed.
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Background
The US Rare Disease Act of 2002 defined a rare dis-
ease, also referred to as an orphan disease, as any disease
that affects fewer than 200,000 inhabitants, equivalent
to approximately 6.5 patients out of 10,000 inhabitants
[1]. There are an estimated 8000 orphan diseases, and
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most of them are genetic in origin. Orphan diseases are
a great burden to patients and society because they com-
monly afflict people early in life and persist throughout
the lifetime. Some are even life-threatening [2, 3]. Discov-
ering genes causing these diseases would unveil disease
mechanisms and may enable better diagnosis and treat-
ment. Unfortunately, our current understanding of the
genes responsible for genetic orphan diseases is still quite
limited [4]. In addition, even though the advent of next-
generation sequencing has yielded great advances in our
ability to collect data about patients with rare diseases,
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successfully sorting through this information to correctly
identify the causal genes remains challenging [5]. There-
fore, developing effective computational algorithms for
the prioritization of candidate genes is a critical step in
the research pipeline. Several earlier studies have shown
that genes related to similar disease phenotypes tend to
be functionally related, since genes execute their functions
by interacting with one another through such means as
sharing similar expression profiles, participating in sig-
nal tranduction mechanisms [6–8]. Moreover, researches
have also shown that genes associated with phenotyp-
ically close disorders are likely to directly or indirectly
interact with each other in the protein-protein interac-
tion (PPI) network [8–11]. Based on this core concept
and the principle of “guilt-by-association” [12], we pro-
pose a novel method to explore PPI networks and discover
disease-causing genes.
Many computational approaches have been developed

and applied to prioritize candidate disease genes from
PPI networks [13–20]. Network-based disease-gene pri-
oritization approaches can be broadly grouped into two
categories: local similarity measures [14, 19] and global
similarity measures [13, 15]. Local similarity measures
consider whether two genes are directly connected or
have a shorter path in the PPI network. However, many
disease-causing genes don’t have such local connections
and can only be connected through distant paths in PPI
networks. For this reason, some groups have used global
similarity measures obtained via various methods such as
Random Walk with Restarts (RWR) to calculate the sim-
ilarity between candidate genes and known disease genes
[13]. Although these kinds of methods accurately cap-
ture global topological features of PPI networks, most of
them require extensive computation. For these reasons,
accurately identifying candidate genes through PPI net-
works remains challenging. In this paper, we propose a
method, DIGNiFI, that calculates the topological similar-
ity between two genes by considering local features based
on shared Direct Neighbors and global features by Local
RandomWalks (LRW) [21].
Meanwhile, because human-curated PPI data con-

tain various false-positive and false-negative interactions
[22–24], integrating multiple resources such as gene
expression profiles or GO annotations, is an alternative
way to reduce the potential bias of using PPI data as a sin-
gle resource for disease gene prioritization [18, 20, 25].
In addition, there is increasing evidence in genetic and
molecular biology that protein complexes and pathways
affect the interactions within groups of genes, pertur-
bations of which lead to similar diseases [26]. In this
work, we integrate GO annotations and protein complex
data (DIGNiFI+SimBio) to further improve our proposed
algorithm DIGNiFI. Also we apply these methods on an
enriched network [27] that we generated by combining

gene relations obtained based on proteins’ co-occurrences
in biomedical literature and PPI interactions from biolog-
ical experiments. All the algorithms were tested on 128
orphan diseases with at least five known genes down-
loaded from Orphanet [28]. The results demonstrate
that our approach outperforms four state-of-the-art algo-
rithms: VS [14], RWR [13], SPranker and SPGOranker
[18]. VSmethod uses shortest paths to assess the closeness
between two genes and RWR uses Random Walk with
Restart to measure the distance between two genes, while
SPranker uses shortest paths with weights to calculate the
similarity between two genes and SPGOranker combines
SPranker with GO functional annotations.
Furthermore, we apply our method to predict poten-

tial causative genes for several orphan eye diseases. Our
top predictions include many genes with known associ-
ations with similar eye diseases and are consistent with
literature reports and online databases. This case inves-
tigation of our method demonstrates its capability to
discover causative genes for orphan diseases and suggests
that other prioritized genes from our approach may be
excellent candidates for further investigation.

Methods
DIGNiFI algorithm
The core assumption of disease gene prioritization from
a PPI network is that genes that share topological sim-
ilarities tend to be associated with phenotypically close
disorders and may cause the same or similar diseases
[8, 11, 29]. Such a “guilt by association” principle has been
widely used to prioritize candidate disease genes. Hence,
the most important task in using PPI network is mea-
suring the similarity between known genes and candidate
genes. In order to rank the candidate genes, we use two
different ways to calculate the similarity: one is designed
for directly connected genes and the other is for indirectly
connected genes in the PPI network.
A PPI network can be presented as a graph G(V ,E,W ),

where a set of nodes (V ) denotes proteins together while
a set of edges (E) denotes interactions between proteins
with different edge weights (W ). Given a protein v ∈ V ,�v
represents the combination of v’ neighbors and v. From a
topological view, if two genes share more common direct
neighbors, those two genes are likely to be more simi-
lar. Hence, given a protein pair vi and vj, we calculate the
similarity between them by using Eq. 1.

Sim
(
vi, vj

) =
{
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(
vi, vj

)
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where w(vi, vj) = 1 if vi and vj directly connect with each
other or if vi = vj, otherwise w(vi, vj) = 0. Kvi denotes the
total edge weights that link to vi, and we use the maximum
of K in order to depress the hub node effect. The value of
LRWvivj is derived by Eq. 3 according to [21].

LRWvivj(t) = Kvi
M

πvivj(t) + Kvj
M

πvjvi(t) (3)

whereM is the number of links in the network and πvivj(t)
is the vj-th value of πvi(t) and πvi(t) is calculated by

πvi(t + 1) = PTπvi(t) (4)

in which, πx(0) is a N ∗ 1 vector (N is the number of
nodes in the network) which the vi-th is equal to 1 and
others are 0. P is the transition probability matrix, with
Pvivj = avivj/kvi representing the probability that a random
walker staying at node vi will walk to vj in the next step,
where avivj equals 1 if vi and vj are connected, 0 otherwise.
For two connected nodes, we use DN, which emphasizes
the similarity of common direct neighbors, to calculate
the similarity between them. In addition, we also con-
sider that this approach may result in hub nodes receiving
inappropriately high ranks, since they are connected to
more nodes but are not necessarily the most directly sim-
ilar genes. So we use maximum weight to penalize the
hub nodes. At the same time, we use LRW to calculate
the similarity between two indirectly connected nodes.
One difficulty with general random-walk-based similar-
ity measures is that they sensitively depend on parts of
the network far away from the source nodes [30]. For
example, the walker has a certain probability to go too far
away from a source node to a target node even though
they may in reality be close to each other. Using the
LRW method can counteract this dependence and assign
high similarity scores to the target node and the nodes
nearby. Besides, the t step Local Random Walk algorithm
has lower computational complexity than other random
walk based algorithms and is suitable for scale and sparse
networks [21]. As most disease genes connect with each
other through calculable steps and as the PPI network is
a large-scale yet sparse network [31, 32], LRW is a high-
performance way to calculate the similarity between genes
in the PPI network.
For a given disease d, if Sdk denotes the set of known

genes, then the probability of a new candidate gene vc
to be a causal gene is evaluated by the sum similarity
scores between all known genes and the candidate gene,
as shown in Eq. 5:

Scorevc =
∑

vi∈Sdk
Sim(vi, vc) (5)

After calculating the total score, we rank candidate
genes of the given disease by their total scores. Figure 1

shows the flow chart of using DIGNiFI to prioritize dis-
ease causing genes for a query disease. As the similarity
scores of DN and LRW can be pre-calculated, the com-
plexity of ranking candidates genes depends only on the
number of known genes when given a new disease.

Integration with biological resources
It is well known that PPI data contain various false positive
and false negative links. Therefore, integrating different
data resources with PPI data should reduce the bias of
using PPI data as a single resource and increase the abil-
ity of the PPI network to prioritize disease-causing genes.
Recent research has demonstrated that genes with simi-
lar phenotypes often share common molecular signatures
such as biological function, as measured by GO annota-
tions [8]. Also, protein complex data is distinct from PPI
network data, with clear, biologically relevant distinctions.
For example, PEX26, PEX16 and PEX3 are three causal
genes of Zellweger Syndrome. These genes don’t have any
direct interaction in the PPI network, but do form a real
protein complex. Hence, we integrate GO annotations and
protein complex data to further improve our method.

Gene ontology annotation
The Gene Ontology project [33] provides a collection of
well-defined biological terms for annotating genes and
describing the characteristics of their gene products. GO
annotation terms cover three separate fields: biologi-
cal process, molecular function, and cellular components
[34]. Many computational methods have used semantic
similarity to calculate the similarity between two con-
cepts in a taxonomy [35]. We employed a modification
of a previous method [36] to calculate two genes’ seman-
tic similarity by considering the number of common GO
terms and how many genes the common GO terms have
annotated. Specifically, we calculate two genes’ similar-
ity based on their shared GO terms including biological
process, molecular function and cellular component GO
terms. For a given GO term, we define the annotation size
of a GO term as the number of genes with that GO term.
We then calculate the semantic similarity between two
genes by the annotation size of their common GO terms.
Thus, if two genes share a smaller annotation size of GO
term, they are considered functionally more similar.
To describe the algorithm clearly, we first give some def-

initions. For a given gene vi , suppose it is annotated with
m different GO terms. Sk(vi) denotes a set of annotated
genes with the GO term gk , whose annotation set includes
vi, where 1 ≤ k ≤ m. Suppose n is the number of com-
mon GO terms between gene vi and vj, where n ≤ m.
Sk(vi, vj) denotes a set of annotated genes on GO term gk
whose annotation set includes both vi and vj, where k ≤ n.
Then, the semantic similarity of two genes based on GO
annotations is calculated by the following formula:
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Fig. 1 The flow chart of using DIGNiFI to prioritize diseases causing genes

SimGO
(
vi, vj

) = −log
mink|Sk

(
vi, vj

) |
|Smax| (6)

wheremink|Sk(vi, vj)| is the minimum size of Sk(vi, vj) and
Smax is the maximum size of annotation among all GO
terms.

Protein complex
Protein complexes are direct manifestations of the bio-
logic interconnectivity of genes. It is likely that variants
of genes whose protein products form complexes together
may lead to similar disease phenotypes. Indeed, pro-
tein complexes have already been successfully used to
predict disease-causing genes [37, 38]. However, these
approaches overlook the information of the actual protein
complexes by only using formed protein complexes based
on topological properties (neighbors or densely connected
subsets). Furthermore, these previous studies did not con-
sider any of the unique characteristics of each protein
complex.Many groups have demonstrated that dense sub-
graphs in a PPI network generally correspond to protein
complexes [39, 40], and some studies show that if the
nodes of a subgraph have more internal weight (or edges)
than external weight (or edges), it will be more likely to
form a group [41]. Thus the density and internal weight
ratio of protein complex in a PPI network can be an index

for the richness of protein interactions within the com-
plex. In other words, proteins are more similar if they are
in a more dense protein complex. Considering the two
issues, we use the internal weight ratio [42] and the density
to assign a network reliability score to an actual complex
Ck . The formula is shown by Eq. 7:

Score(Ck) = density(Ck) ∗ win(Ck)

win(Ck) + wbound(Ck)
(7)

where, win(Ck) is the total edges’ weight within a complex
and wbound(Ck) is the total weight of edges that connect
the complex with the rest of the network. The density of a
protein complex Ck is defined as Eq. 8:

density(Ck) = 2 ∗ |ECk |
|VCk | ∗ (|VCk | − 1)

(8)

where ECk and VCk denote the edges and nodes in the
complex respectively. Then, the Score(Ck) can quantify
the richness and reliability of the interactions with Ck .
If two genes are in M same protein complexes, the

similarity score between them is calculated as:

SimCOM(vi, vj) =
∑

k∈M
Score(Ck) (9)
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Finally, in order to integrate biological similarity (Sim-
Bio) with topological similarity (DIGNiFI), parameters α

and β are used. The total score of a candidate gene with a
known gene is calculated as:

Sim
(
vi, vj

) = (1 − α − β)DIGNiFI
(
vi, vj

)

+ αSimGO
(
vi, vj

) + βSimCOM
(
vi, vj

)

(10)

Then, a candidate gene of a query disease is ranked by
summing up the similarity scores between the candidate
gene and the known genes of that disease.

Results and discussion
Data sources
Protein-protein interaction (PPI) data were downloaded
from release 9 of the Human Protein Reference Database
(HPRD) [43]. After removing duplicates and self-linked
interactions, we obtained 9453 human genes and 36,867
interactions. Orphan diseases with causal genes were
downloaded from Orphanet [28]. We selected all orphan
diseases that had at least five causal genes found in the
protein interaction network, resulting in 128 diseases and
1184 total genes.
The PPI network contains a number of false neg-

ative interactions because many interactions remain
undetected by biological experiments. Nevertheless, the
biomedical literature contains descriptions of many PPIs
that are not catalogued in HPRD. For this reason in this
paper, we also used the gene2pubmed dataset [44], which
contains curated information about gene descriptions in
PubMed articles, to test if combining protein relations
mined from literature would be helpful for prioritization
of disease-causing genes. We assumed that if mentions of
different genes co-occur in an abstract, those genes are
likely to have some types of interactions (direct or indi-
rect). Note that we chose simple co-occurrence instead of
advanced text mining techniques because relation extrac-
tion between bio-concepts remains challenging [45–47].
Thus to ensure high quality results from literature, we set
a rather high threshold (the same pair needs to occur in
30 or more PubMed articles in this study), resulting in the
selection of 16,118 gene interactions, 9600 of which over-
lapped with interactions in HPRD and 6518 did not. We
merged these 6518 literature-mined interactions with the
existing HPRD data.

Experimental setting and evaluation criteria
Leave-one-out cross-validation was used to compare the
proposed method with four state-of-the-art methods:
RWR (with restart probability set to 0.8), VS, SPranker
and SPGOranker (combining SPranker with GO func-
tional annotations). Furthermore, we also compared DIG-
NiFI with LRW which calculates the similarity between

two genes using Local Random Walk no matter whether
these two genes are directly connected or not. In each
round of cross-validation, one causal gene within an
orphan disease, as the target gene, was removed. The
remaining known causative genes for that disease were
used as seed nodes, and each method was evaluated by
the number of overall successes of ranking the target gene
among top k. Specially, if the similarity score is equal to
zero, then the rank of that candidate gene will be the size
of the total candidate gene set. Considering the fact that
the predicted top-ranked results are more important in
practice, we utilized k values ranging from 1 to 10 in this
paper, and the ratio of successful validation trails was used
as the criterium for determining the “success rate”. In each
cross validation trial, one target gene mixed with 99 ran-
domly selected genes formed a set of 100 candidate genes.
The step t of DIGNiFI is 3 as suggested by [48], and the
default values of α and β in this paper are both to be 0.1.

Experimental results
The top-k-ranking results of each algorithm on the HPRD
dataset are presented in Fig. 2. To perform these experi-
ments, we manipulated the values of α and β to evaluate
the contribution of each of these DIGNiFI modifications
separately. Keeping β fixed as 0.0, only GO informa-
tion is used (DIGNiFI+SimGO) and the best performance
is obtained when α = 0.1. While when α = 0.0
only complex information is used (DIGNiFI+SimCOM)
and the best performance is gained by setting β to
0.3. When k = 1, the DIGNiFI+SimBio achieved the
best performance with α = 0.1 and β = 0.1, its
success rate is 48.65% (576/1184). Out of 1184 genes,
DIGNiFI+SimGO successfully prioritized 553 (46.71%),
and LRW+SimCOM successfully prioritized 414 (34.97%).
By contrast, the success rates of DIGNiFI, LRW, VS,
RRW and SPranker were 34.54% (409/1184), 30.74%
(364/1184), 31.67% (375/1184), 29.48% (349/1184) and
31.84% (377/1184), respectively. Among all these five
topological-feature-based methods, DIGNiFI performs
best. The SPGOranker prioritization method, which also
incorporates GO functional information, correctly pre-
dicted 421 genes, achieving a success rate of 35.56% and
outperforming all others except DIGNiFI+SimGO and
DIGNiFI+SimBio, which still surpassed SPGOranker by
34.36% and 36.81% respectively. Figure 2 shows that the
DIGNiFI+SimBio consistently performs best throughout
a range of k values from 1 to 10. Interestingly, these
experiments also demonstrate that although VS performs
better than RWR when k equals to 1, its performance
only marginally improves with increasing k value. This
is because VS only calculates two-node similarities by
taking into account only proteins with direct interac-
tions or shared neighboring nodes. If causal genes have
more than one hop or step between them, VS is not able
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Fig. 2 Performance comparison of different algorithms

to identify their similarity. Furthermore, although ND-
LRW+SimCOMdoes not correctly identify as many genes
as DIGNiFI+SimGO and SPGOranker which both use GO
information, it still outperforms the other methods that
only use topological information, especially when k = 1.
These results demonstrate the effectiveness of the DIG-
NiFI algorithms and integration of biological resources
improves the ability to detect disease-causing genes.

Analysis of the results when k = 1
To further determine the performance of these meth-
ods, we analyzed the intersection of each result with
k = 1. The intersection results are shown in Table 1.
Both the columns and rows represent the method used.

The values in the table reflect the number of overlap-
ping predictions generated by the corresponding column
and row methods. DIGNiFI+SimBio understandably cov-
ers a high percentage of other methods since it identifies
the greatest number of true disease-causing genes, includ-
ing more than 100 different genes that were not detected
by any other method. DIGNiFI+SimCOM with only 414
successful top-one predictions, surprisingly covers nearly
85% of the genes identified by other topological-feature-
based methods. This indicates that both protein complex
and GO annotations can help improve the performance
for prioritization of disease-causing genes from another
side. Interestingly, this table also demonstrates that dif-
ferent methods succeeded in identifying different genes.

Table 1 Results of each algorithms with k = 1

Method DIGNiFI DIGNiFI SPGOranker DIGNiFI DIGNiFI SPranker RWR VS
+SimBio +SimGO +SimCOM

DIGNiFI+SimBio 576 479 331 332 329 324 276 306

DIGNiFI+SimGO 479 553 310 315 313 299 264 294

SPGOranker 331 310 421 328 331 315 280 314

DIGNiFI+SimCOM 332 315 328 414 349 301 296 334

DIGNiFI 329 313 331 349 409 302 288 331

SPranker 324 299 315 301 302 377 261 287

RWR 276 264 280 296 288 261 349 278

VS 306 294 314 334 331 287 278 375
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In order to determine if the results are significantly dif-
ferent from each other, we use two-tailed Student t test
to compare the ranking results. The p-values between
the ranking results from DIGNiFI+Simbio and other four
methods are less than 0.05 (SPGOranker: 9.65E − 26,
SPranker: 1.51E − 27, RWR: 3.58E − 23, VS: 1.39E − 70),
which suggests that the differences between our methods
and other state-of-the-art methods are not by chance.

Analysis of the effect of α and β

To analyze the effect of parameters α and β , we tested
our prediction algorithms using values of α and β from
0.0 to 1.0 with 0.1 increments. The results with k = 1
are shown in Table 2. When the parameters both equal
to 0.0, the result is derived by DIGNiFI only. When α =
0.0, the results are obtained by DIGNiFI+SimCOM while
when β = 0.0 the results are from DIGNiFI+SimGO.
From the table, we can see that the results obtained
from integrating PPI networks with biological informa-
tion are much better than the results obtained from using
topological similarity alone. Furthermore, the combined
approach using both GO annotations and topological sim-
ilarity outperforms the GO annotations approach. This
indicates that functional and topological similarity con-
tribute unique information to gene prioritization. Table 2
demonstrates that the success ratio for top one predic-
tion is very low when using protein complex data alone.
This may be due to the relatively small number of known
protein complexes. When fusing protein complex data
and topological similarity, although the results increase
only slightly and some of them are not as good as using
DIGNiFI, the best result of DIGNiFI+SimCOM show
that it still can detect 82 different true disease causal
genes than DIGNiFI+SimBio according to Table 1. These
results show that even though protein complex data is
not as rich as PPI network and GO annotation data,
integrating real protein complex data still helps to improve

prioritization of disease causal genes. This indicates that
we may obtain improvements in the ability of prioritiz-
ing disease-causing genes with enhancement of protein
complex data.

The results on literature enriched PPI network
For the reasons described previously in “Data sources”
subsection, we used data from gene2pubmed to enrich
the PPI network from HPRD. Figure 3 shows the best
results of DIGNiFI and DIGNiFI+SimBio on both the
original and enriched networks. The DIGNiFI and DIG-
NiFI+SimBio prediction algorithms perform consistently
better on the enriched network than on the original net-
work. These results indicate that the quality of PPI net-
work affects the performance of gene prioritization. Since
the performances of these methods improve after inte-
grating even simple co-occurrence-based literature pro-
tein interactions into the PPI network, it is likely that
further, systematic enhancements to the existing PPI net-
work will result in continued improvements in disease
gene prioritization performance.

Case study: prioritizing causal genes for inherited eye diseases
We further examined the capabilities of our method DIG-
NiFI+SimBio by predicting genes for a collection of four
eye diseases, all of which involve degeneration of the
retina: Retinitis pigmentosa (RP), Leber congenital amau-
rosis(LCA), Usher syndrome Type 1, and Congenital sta-
tionary night blindness (CSNB). All these diseases belong
to a collection of rare, inheritable disorders called reti-
nal dystophies. We include a brief description of each in
Table 3. Orphanet contains lists of known genetic associ-
ations with these disorders, but another manually curated
resource, the Retinal Information Network (RetNet), con-
tains more comprehensive information about the genes
related to these and other retinal dystrophies.We used the
known genes listed in Orphanet as seed genes to predict

Table 2 Results with different values of parameters α and β with k=1

α
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 397 398 388 414 403 407 405 406 394 394 78

0.1 546 576 570 562 552 545 552 534 530 539 -

0.2 553 530 548 549 531 539 552 516 531 - -

0.3 524 547 551 546 529 532 517 518 - - -

0.4 542 524 548 515 539 523 525 - - - -

0.5 542 552 538 527 507 530 - - - - -

0.6 514 524 515 523 520 - - - - - -

0.7 523 518 528 512 - - - - - - -

0.8 528 515 527 - - - - - - - -

0.9 527 518 - - - - - - - - -

1.0 518 - - - - - - - - - -

Bold is best result
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Fig. 3 Performance comparison of different networks

additional genes that might be associated with these dis-
eases. Specifically, for each disease, we ranked all genes in
PPI network except the known genes in order to obtain the
top ten predictions. We then compared our predictions
with genes in RetNet to evaluate their validity.
As mentioned previously, a key assumption of PPI-

network-based approaches to gene prioritization is that

genes that share topological similarities tend to be asso-
ciated with phenotypically close disorders. Therefore, we
hypothesized that the genes that DIGNiFI+SimBio would
predict from the Orphanet seed genes for a given reti-
nal dystrophy would overlap with either the known genes
listed in RetNet for that condition or the known genes
for other retinal dystrophies. There were three possible

Table 3 The top-ten predictions for four inherited retinal dystrophies

Disease/Syndrome Description # of Known genes Top 10 predictions Missing

Retinitis pigmentosa A collection of blinding conditions
involving bilateral degerneration of
rod and cone photoreceptors and
resulting in progressive vision loss.
Symptoms generally begin in child-
hood with the loss of peripheral
vision, and most patients are legally
blind by the age of 40

44
BBS4, GNAT1, RORB,
MYO7A, MKKS, RBP4,
PAX6, RPGRIP1, CDH23,
MYO5A

ARL3, HK1

Leber congenital amauro-
sis

A disease involving early degenera-
tion of the retina as well as defects
in the cornea and leading to severe
vision loss in infancy

9
RBP4, BBS4, RGS9,
GNAT1, RPGR, USH2A,
CNGB1, RHO, RP1, ARL6

none

Usher syndrome type 1 A form of retinitis pigmentosa
that involves hearing impairment in
addition to vision loss

5
DFNB31*, USH2A*,
CLIC5, MYO3A, MYO15A,
KPTN, IQCB1, BBS4, RP1,
NPHP4

CEP250, HARS

Congenital stationary
night blindness

A non-progressive, inherited disor-
der of the retina that from birth
causes a number of vision prob-
lems, including difficulty seeing in
low light conditions

8
CNGA1, GUCY2F, CNGB1,
RCVRN, RGS9, OPN4, RP1,
RPE65, GNB1, OPN1LW

GNB3, RDH5

* = overlap with RetNet gene; Underline = overlap with a different retinal dystrophy; Bold = literature support
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outcomes of interest for each disorder we investigated.
DIGNiFI+SimBio-predicted genes might (1) overlap with
gene curations in RetNet for that disorder; (2) overlap with
genes known to cause similar retinal disorders; or (3) not
overlap at all with any known associations between genes
and retinal dystrophes. It was also possible that DIG-
NiFI+SimBio might not prioritize genes that nevertheless
had known associations in RetNet. Table 3 contains the
results of this analysis.
The genes in the third column of Table 3 are hypo-

thetical genes listed in order of their likelihood to be
associated with a given disease as determined by DIG-
NiFI+SimBio. Two of the gene predictions generated by
DIGNiFI+SimBio overlapped with known genes in Ret-
Net. These genes, DFNB31 and USH2A, were the top
two predictions for Usher Syndrome, Type 1. It is inter-
esting to note that both genes are actually known to be
associated with Usher Syndrome, Type 2. Although these
specific hypotheses would thus not likely have practi-
cal utility for researchers or clinicians, they offer striking
support for the validity of DIGNiFI+SimBio’s predictions.
Furthermore, nearly all predicted genes for each retinal

dystrophy overlapped with RetNet lists of genes for other
retinal dystrophies. This overlap demonstrates that it is
possible to use the topological features of PPI networks
to identify functionally related and likely interdependent
genes. The fourth column of Table 3 contains six genes
that are listed in RetNet but not in Orphanet as hav-
ing an association with the four retinal dystrophies we
investigated. These genes were not in the top 10 predic-
tions from DIGNiFI+SimBio but were in the PPI network.
In investigating these genes, we found their ranks were
17(ARL3), 13 (HK1), 20(CEP250), 11(HARS), 33(GNB3)
and 14(RDH5) respectively.
In addition to comparing our predictions with curations

in RetNet, we also conducted a literature review for each
disorder and its set of predicted genes. We performed this
review by executing semantic searches for the relevant
genes and diseases using entity-tagging tools in PubTa-
tor [49, 50]. Our search identified specific support for 10
of the 40 DIGNiFI + SimBio gene prioritizations, includ-
ing at least one for each of the retinal dystrophies we
studied. In some cases, the support was very strong. For
example, PMID: 26900326 is a recent paper that reports

Table 4 Literature support for genes predicted by DIGNiFI+SimBio

Disease Gene PMIDs Comments

Retinitis pigmentosa GNAT1 26472407 The first report of homozygous loss-of-
function GNAT1 mutations leading to RP.

Retinitis pigmentosa RBP4 23189188 Report of an association between the gene
RBP4 and a form of early onset, progressive,
autosomal recessive retinitis pigmentosa

Retinitis pigmentosa MKKS 26900326 This gene is typically associated with Bardet-
Biedl syndrome (BBS), but this report identi-
fies a case of a MKKSmutation resulting in RP
in the absence of any other typical features
of BBS except polydactyly

Usher syndrome type 1 MYO3A 19390476 This gene is known to cause deafness, which
is a distinguishing feature of Usher syndrome

Usher syndrome type 1 MYO15A 25404053 This gene is integrated in the ‘Usher interac-
tome’, and although mutations of this gene
have not been shown to lead to retinal dys-
function, they have been shown to cause
hearing loss.

Leber congenital amaurosis BBS4 22219648 Report of a novel variant of this gene causing
LCA

Leber congenital amaurosis RPGR 24981858, 20090203 RPGR is a receptor for RPGRIP1, and RPGRIP1
is known to associate with LCA

Leber congenital amaurosis GNAT1 19672311 GNAT1 is a transducer molecule that leads to
Bcl-2-mediated apoptosis of neurons in the
presence of mutated RPE65

Leber congenital amaurosis USH2A 18826961 This article discusses how USH2A is linked to
LCA through the gene NINL (in the article,
NINL is referred to as NLP).

Congenital stationary night blindness RPE65 25307992 Review article that contains a table listing
RPE65 as a known causative gene for CSNB
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an association between the gene MKKS, which has tra-
ditionally been associated with Bardet-Biedl syndrome,
and retinitis pigmentosa. DIGNiFI + SimBio prioritized
MKKS among the top ten novel genes from PPImost likely
to contribute to retinitis pigmentosa. Although retinitis
pigmentosa is one of the findings of Bardet-Biedl syn-
drome, the case reported in this study is unique because
the retina findings resulting from this mutation caused
retinitis pigmentosa in isolation of the other findings of
Bardet-Biedle syndrome. Table 4 contains the results of
the most relevant support that we identified in our litera-
ture investigation of the predicted genes.
Although we identified support for many gene predic-

tions through the literature and curations in RetNet, many
genes remained without representation in any of these
knowledge sources. These truly novel genetic hypotheses
are strong leads for future research and discovery.

Conclusion
In this paper, we propose a new algorithm, DIGNiFI, to
prioritize causal genes for inherited orphan diseases. DIG-
NiFI considers both local and global features of genes
in the PPI network and specifically uses Local Random
Walks to identify global features. Leave-one-out cross-
validation experiments with DIGNiFI show that DIG-
NiFI outperforms other algorithms that use topological
features especially with ranking the top gene. We also
explored the benefits of incorporating biological infor-
mation from GO annotations and protein complex data
into PPI network predictions. The resulting algorithm,
DIGNiFI+SimBio, does indeed attain enhanced perfor-
mance in predicting disease-causing genes. Furthermore,
we reconstructed a PPI network by merging protein inter-
actions from HPRD with protein interactions extracted
from the literature using co-occurrence. Test results
using DIGNiFI and DIGNiFI+SimBio on this text-mining
enriched PPI network indicate not only that the sparse-
ness of the PPI network limits gene prioritization but
also that PPI relationships mined from biomedical liter-
ature can improve the quality of the PPI network and
enhance gene-prioritization performance. Lastly, we use
DIGNiFI+SimBio to predict genes involved in a set of four
inherited retinal dystrophies. We found near-universal
involvement of the predicted genes with retinal diseases
and identified supporting literature for several of the
hypothesized gene-disease associations. Taken together,
these results demonstrate the relevance of our prediction
method and indicate its potential utility in the field of
orphan disease research, where resources are scarce and
greatly needed.
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