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Abstract

Background: Network querying algorithms provide computational means to identify conserved network modules
in large-scale biological networks that are similar to known functional modules, such as pathways or molecular
complexes. Two main challenges for network querying algorithms are the high computational complexity of
detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of

the query results.

Results: In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these
issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the
network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden
Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess
the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The
proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently
extended by maximally reducing the network conductance of the identified subnetworks.

Conclusions: Performance assessment based on real PPl networks and known molecular complexes show that
SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The
source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA.

Background

Protein-protein interaction (PPI) plays pivotal roles in
understanding biological systems. Diverse functional
modules in cells, such as signaling pathways and protein
complexes, involve numerous proteins and their functions
are governed by the intertwined interactions among these
proteins. For this reason, to better understand the func-
tions and roles of proteins in cells, it is critically important
to investigate how groups of proteins collaborate with
each other to perform certain biological functions and
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achieve common goals, in addition to studying the func-
tions of individual proteins. Recent advances in technolo-
gies for high throughput measurement of protein-protein
interactions have enabled genome-scale studies of pro-
tein interactions, and systematic analyses of the available
PPI networks may reveal new functional network mod-
ules and unveil novel functionalities of the proteins that
are involved in such modules. Recent investigations of
PPI networks show that functionally important network
modules (e.g., molecular complexes and pathways) are
often well conserved across networks of different species
[1, 2]. These observations clearly point to comparative
network analysis [3] as a promising solution for effectively
analyzing large-scale PPI networks, detecting common
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functional modules that are embedded in the networks,
and predicting the functions of proteins that comprise
these modules.

Network querying is one possible way of comparatively
analyzing biological networks, which can be especially
useful when prior knowledge of functional modules is
available for a given species. As implied in its name, net-
work querying aims to find out whether a target network
(typically, belonging to another species) contains network
modules that resemble the module that is being used as
the query [3]. This provides an efficient way of trans-
ferring knowledge between species, since we could use
computational means to predict potential network mod-
ules in a new (or less-studied) species that may have
similar functions, structures, and underlying mechanisms
to well-studied modules in other species.

Several network querying algorithms have been pro-
posed so far [4-10]. PathBLAST [4] has been designed
to identify conserved signaling pathways. However, it
can only handle linear pathways and its high com-
putational complexity places a stringent restriction on
the maximum length of the pathway that could be
searched. QPath [5] can search for longer pathways
and QNet [6] can search for linear pathways as well
as trees, but both algorithms are not suitable for large
queries due to their high computational cost. To over-
come restrictions on the topology of the query network,
several network querying algorithms have been pro-
posed that can identify network modules with arbitrary
topology [7-10]. For example, TORQUE [7] finds a con-
nected subnetwork of matching proteins in the target
network based on sequence similarity, without explicitly
utilizing the topological structure of the query network in
identifying conserved functional modules. NatalieQ [10]
formulates the network alignment problem as an integer
linear programming problem, and solves the optimization
problem using Lagrangian relaxation combined with a
branch-and-bound approach. RESQUE [8] adopts a semi-
Markov random walk (SMRW) model to estimate the
node correspondence between the query and the target
networks, based on which it iteratively reduces the target
network by removing irrelevant nodes. Once the target
network has been sufficiently reduced, RESQUE identifies
the best matching subnetwork either by the Hungarian
method or by identifying the largest connected subnet-
work. Another recent algorithm, called Corbi [9], mea-
sures the node correspondence between networks based
on a conditional random field (CRF), after which the
matching subnetwork is identified through an iterative
bi-directional mapping.

Most of the aforementioned network querying methods
consider both node similarity and topological similar-
ity between the query and the target networks to detect
matching subnetworks in the target network. Node
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similarity between nodes that belong to different net-
works is typically measured based on sequence similarity.
Topological similarity between (sub)networks are mea-
sured in various ways to capture the molecular interaction
patterns that are conserved across networks. Incorpo-
rating both types of similarities has been shown to be
crucial in making biologically relevant predictions about
conserved functional modules [1-3, 11]. However, one
important aspect of network module detection that is
often neglected in network querying is that such mod-
ules are often well separated from the rest of the network.
In fact, this separability has played critical roles in “non-
comparative” network analysis methods that aim to detect
modules or sub-communities in a given network [12—14],
since molecules in a functional module tend to be densely
connected to other molecules in the same module but
loosely connected to nodes that are not part of the mod-
ule. Although identifying densely connected subnetwork
modules is not the main objective of network querying,
explicitly incorporating separability criterion into com-
parative network analysis methods has strong potentials
to enhance the quality of the predictions [15].

In this paper, we propose a novel network querying algo-
rithm called SEQUOIA (Significance Enhanced QUerying
Of InterAction networks). The proposed algorit}ms built
on the following important concepts: (i) effective esti-
mation of node correspondence — or overall functional
similarity between nodes in different networks — by sensi-
bly combining sequence similarity and interaction pattern
similarity through a random walk model; and (ii) min-
imization of network conductance of potential network
modules, thereby identifying matching modules in the tar-
get network that are well separated from the rest of the
network. In our proposed algorithm, we first estimate the
node correspondence based on a context-sensitive ran-
dom walk model [16, 17], and select a seed network based
on the estimated node correspondence scores. Then, the
seed network is iteratively extended by adding the nodes
that maximally reduce the conductance of the subnet-
work. Finally, the significance enhanced querying result
is achieved by keeping the nodes with acceptable exten-
sion reward scores, which are updated for every node at
each extension step. Through extensive evaluations based
on real biological complexes, we show that SEQUOIA
can remarkably enhance the biological significance of the
network querying results by estimating the node corre-
spondence based on the CSRW model and minimizing the
conductance of matching network modules.

Methods

Problem formulation and overview of the proposed
method

Suppose that we have a query protein-protein interaction
(PPI) network represented by a graph Go = (Vg,&9),
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which has a set of nodes Vg = {v1,vy,...} and set of
edges Eg = { ei,j}. A protein in the query network is rep-
resented as a node v; € Vg in the graph Gg and the
interaction between two proteins v; and v; is represented
by an edge e;;, whose weight w;; reflects the strength (or
confidence) of the interaction. Similarly, suppose we are
also given a target PPI network represented by a graph
Gr = (V7,E7). We define the size of a network as the
number of nodes in the given network, hence the size of
the query network is |Vg| and that of the target network
is |Vr|. Typically, in a network querying problem, the
size of the target network is significantly larger than the
query network (i.e., |Vg| < [V1]). We assume that a pair-
wise node similarity score s (Vq, vt) is available Vv, € Vg
and Yv; € V7, reflecting the molecular level similarity
between the proteins in the query network and the target
PPI network. In this study, we use the BLAST bit score
as the pairwise node similarity score as in most network
querying and alignment algorithms.

The main objective of network querying is to find the

conserved subnetwork QT = (]A)T, c‘fq—) within the tar-

get PPI network G+ = (V,E7) that bears the largest
overall functional similarity to the given query network
Go. Therefore, we can formulate the network querying
problem as the following optimization problem:

G5 = argmaxf (U7, Go), M

QTEGT

where Gr is the set of all possible subnetworks of the tar-
get PPI network, and f (G, gy) is a function that measures
the overall functional similarity between two networks G,
and G,

The network querying problem can be reformulated as
a subgraph isomorphism problem, whose goal is to find a
bijection between two graphs. In order to find a one-to-
one mapping, deleted nodes can be modeled as dummy
nodes so that an inserted node in the query network can
be mapped to a dummy node in the target network, and
vice versa. The subgraph isomorphism problem is known
to be NP-complete [18], hence the existence of a polyno-
mial time algorithm for solving the problem is unknown.
Furthermore, it is also not straightforward to quantita-
tively estimate the overall functional similarity f (Gx, Gy)
between two networks G, and G, in such a way that is
biologically meaningful. As a result, it is practically chal-
lenging to effectively formulate the optimization problem
in (1) and solve the problem for large-scale networks
in a computationally efficient manner [6-8]. A reason-
able way to estimate this functional similarity is to define
f (Gx,Gy) by sensibly combining the node similarity and
the topological similarity between the networks under
comparison [3]. Given a reasonable f (gx, (]y), heuristic
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optimization schemes may have to be employed to make
the optimization problem (1) computationally tractable.

In our proposed network querying algorithm SEQUOIA,
we first pre-process the target network by removing non-
homologous nodes and inserting pseudo-edges between
nodes that are likely to share similar functionalities. Next,
the query and the target networks are compared and node
correspondence scores are estimated using the context-
sensitive random walk (CSRW) model [16]. The resulting
scores are used to select a “seed network” that consists
of target nodes that have strong correspondence to query
nodes. The seed network is extended by iteratively adding
the nodes that maximally reduce the network conduc-
tance of the extended network, through which SEQUOIA
aims to find a subnetwork that is densely connected within
the subnetwork while sparsely connected to the rest of the
target network. This has the effect of identifying a subnet-
work in the target PPI network that closely matches the
query, and at the same time, has strong potential to be a
functional network module. Finally, the extended subnet-
work is pruned by removing potentially irrelevant nodes
that contribute little to making the network dense, which
improves the functional coherence of the querying results,
as will be demonstrated later.

The context-sensitive random walk (CSRW) model

Here, we briefly review the CSRW model [16] that is
used for estimating the correspondence between nodes
in the query and the target networks. To accurately esti-
mate the node correspondence, it is desirable to effec-
tively integrate the node similarity (sequence similarity
between proteins) and topological similarity (similarity
between interaction patterns for different proteins), as
mentioned previously. However, as depicted in Fig. 1,
inserted and deleted nodes in the conserved network can
make effective estimation of the node correspondence

Deleted node

Query network

Target PPI network

Fig. 1 lllustration of network querying, which aims to identify the
subnetwork region in the target network that best matches the given
query. Gray colored nodes in the target network are irrelevant to the
query network. In the example shown, the pink colored node in the
query network is deleted in the target network, while the blue colored
node is inserted in the target
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difficult. The CSRW model has been recently proposed to
explicitly model such node insertions and deletions, while
integrating the two types of similarities to compute the
node correspondence scores.

At a given moment, the random walker in the CSRW
model is located at a node pair (v4,v;), where v, is a
node in the query network and v; is a node in the tar-
get network. At each step, the walker makes a random
move to neighboring nodes, where it switches between
two different types of modes of random walk — namely,
simultaneous walk on both networks and individual walk
on one of the networks — depending on the surrounding
“context” of the walker’s current location. For example,
if v; and v; have neighboring nodes with positive node
similarity, the random walker simultaneously moves on
both networks to such nodes. Otherwise, it randomly
selects one of the networks and randomly moves only
on the selected network. Further details of the CSRW
model can be found in the supplementary material (see
Additional file 1: Section S1). In the long run, the ran-
dom walker is designed to simultaneously visit node pairs
with better correspondence (i.e., with higher node simi-
larity and topological similarity) more frequently. Based
on the design, the long-run proportion of time that the
random walker simultaneously visits a given pair of nodes
can be used as a probabilistic measure of the correspon-
dence between the nodes [16]. This long-run proportion
of time, or the steady-state probability of the CSRW
model, can be efficiently computed in practice using the
power method, as real PPI networks tend to be very
sparse [8, 19]. We use the steady-state probability of the
context-sensitive random walker as the node correspon-
dence score ¢ (Vq, Vt) ,¥vg € Vg and Vv; € V7, and the
node correspondence scores for all node pairs can be con-
cisely written in a |Vg| x |V| dimensional matrix C. The
context-awareness of the CSRW model makes it robust
to potential node insertions/deletions, and the model has
been shown to be useful for estimating node correspon-
dence [16]. In fact, the CSRW-based node correspondence
scores have been recently applied to multiple network
alignment [17], where they have been shown to clearly
enhance the overall alignment accuracy.

SEQUOIA network querying algorithm

Before computing the node correspondence scores based
on the CSRW model, we perform two pre-processing
steps. First, we reduce the target network by removing
potential non-homologous nodes. Specifically, we remove
every node v; in the target network whose node similar-
ity s (vg, v¢) never exceeds a given threshold T}, for any
of the query nodes v, € Vg. In this study, we set the
threshold T}, as 0, such that a node is kept in the target
network if it has at least one query node with nonzero
similarity score. Removing target nodes that do not have
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any homologous node in the query network can signifi-
cantly reduce the computation time as well as the memory
requirement. Second, since removing non-homologous
nodes may make the target network disconnected, we
insert a pseudo-edge between nodes that are likely to
share similar functionalities, motivated by the fact that
proteins with direct interactions are more likely to share
similar functionalities [20]. For this purpose, we assumed
that any two nodes in the target network are likely to
share similar functionalities and may potentially have a
direct interaction if they have a common node in the query
network with high node similarity. However, to refrain
from inserting too many false-positive pseudo edges, we
only insert a pseudo edge if the two nodes under consid-
eration belong to different subnetworks that are discon-
nected from each other. Since current PPI networks are
incomplete and noisy — with many false positive inter-
actions as well as false negative interactions [21, 22] —
adding pseudo-edges to the reduced target network can
lead to more reliable querying results, as will be demon-
strated in our simulation results. Further details of the
pre-processing step can be found in the supplementary
material (see Additional file 1: Section S2) with an illustra-
tive example.

After pre-processing the target network, the CSRW
model is used to estimate the correspondence between
nodes in the query and the target networks. The result-
ing node correspondence score matrix C is normalized to
obtain the normalized score matrix C using the normal-
ization method proposed in [19]:

-1
C=§[IL-C+C~]R]. (2)

The matrix C is a [Vg| x |V7| dimensional matrix con-
taining the normalized node correspondence scores, Ji,
is a [Vg| x |Vg| dimensional diagonal matrix with the

diagonal term Ji. (,9) = 1 /ZlVTl (Vq, Vt), and JR is a
|V7| x| V7| dimensional diagonal matrix with the diagonal

term Jr (t,t) = 1 / Zl;?' c vq, vt) This normalization
step aims to estimate the relative significance between
corresponding nodes, which has been shown to be use-
ful for comparing networks of different size [19]. Based
on the normalized correspondence score C, we iteratively
select N seed nodes in the target network based on the

following rule:

l_[ (1=2(vgve)) |- 3)

vg€VoQ

arg min
Ve

The above selection rule aims to identify the nodes
in the target network that have a large number of
highly corresponding nodes in the query network. The
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score ¢ (vg,v¢) will be close to 1 for a highly cor-
responding node pair (v4, ). Therefore, the product
[T,evo (1 — ¢ (vgv¢)) will approach 0 for a target node
vt (i.e., a potential seed node) that has a large number of
query nodes v, € Vg with a high node correspondence
score ¢ (vq, vt). This is based on an assumption that a tar-
get node with a larger number of relevant nodes in the
query network may be more likely to be involved in sim-
ilar functions as the query network compared to a node
that has fewer corresponding nodes. After selecting the
Nq seeds, we find the largest connected subnetwork based
on the N seed nodes, which is referred to as the seed net-
work. In this work, we set No = |[Vg]| so that the size of
the seed network does not exceed the size of the query
network.

Once the seed network is obtained, we iteratively extend
the network by adding nodes that can make the extended
network well-separated from the rest of the network. To
this aim, we estimate the conductance of the subnetwork
and define the extension reward score for each node as
follows. First, given a network G = (Vg,&g), suppose
that we have a Gaussian surface enclosing the subnetwork
H = (Vy,Ex) such that H C G. Then, the conductance
¢ of the subnetwork H is defined as the number of edges
that pass through the surface divided by the volume of the
subnetwork (i.e., the number of edges that are enclosed by
the surface) [23, 24]. The conductance of the subnetwork
*H is given by

Hei,j|i € Vy,j € V?-_l}’

min (vol V), vol (V5;)) , @

¢ (M) =

where H = (Vg\Vi, Eg\Ex), and vol Vy) = Y. d (w),
ueVxy
where d (1) is the degree of the node u. In a network

querying problem, since the conserved subnetwork is typ-
ically significantly smaller than the rest of the target PPI
network, the volume of the querying result is also much
smaller than the volume of the rest of the target network,
i.e., vol V) <K vol (Vﬁ). Hence, the conductance of the
subnetwork H becomes

[{eijli € Vi) € Vi
[{eijlirj € Vil

Heiﬂi € Vy,j € V’FLH _

¢ (H) = vol (Vy)

(5)

Second, we define the extension reward score for a given
node as the number of newly added neighboring nodes
during the extension step. That is, in each extension step,
when we add a new node, all neighboring nodes in the
extended subnetwork will get an extra extension reward
score of 1. Based on the extension reward score, we can
measure the contribution of each node towards making
the subnetwork dense. A node with a higher extension
reward score interacts with a larger number of newly
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added nodes, playing a more significant role in making the
subnetwork dense after adding the new nodes.

In each extension step, we add the node which is
densely connected to the nodes within the extending
network and loosely connected to the nodes out of the
extending network, in order to minimize the conductance
defined in (5). We repeat the extension steps until there
is no more neighboring node that can reduce the cur-
rent conductance by more than 5 percent or until the
size of extending network exceeds twice the size of the
query network, whichever occurs first. Once the exten-
sion process comes to an end, we remove all nodes
whose extension reward score does not exceed a cer-
tain threshold. This is to enhance the functional coher-
ence of the final querying result, since nodes with fewer
interactions are relatively less likely to share similar func-
tionalities with other neighbors. However, the original
seed nodes are kept in the final result, even if their
extension reward score is not large, since those nodes
have high node correspondence to nodes in the query
network. In this study, we set the threshold for node
removal as 0, so that nodes that do not interact with
any of the newly added nodes are removed in the final
querying result. The overall procedure of the proposed
SEQUOIA network querying algorithm is summarized in
Algorithm 1.

Results and discussion

Datasets and experimental set-up

To assess the performance of SEQUOIA, we carried
out network querying experiments based on the real
PPI networks of three different species — H. sapiens
(human), S. cerevisiae (yeast), and D. melanogaster (fly) —
obtained from [25]. PPI networks in [25] were originally
obtained from the STRING database [26], but interac-
tions between proteins without experimental validation
were removed. The human PPI network contains 12,575
proteins and 86,890 interactions, the fly PPI network
contains 8624 proteins and 39,466 interactions, and the
yeast PPI network contains 6136 proteins and 166,229
interactions.

As the query networks, we used protein complexes
obtained from [7], comprised of complexes in three
species: H. sapiens, S. cerevisiae, and D. melanogaster. Fur-
thermore, we expanded the query set by adding the latest
version of human complexes obtained from CORUM [27],
and yeast complexes from SGD [28] (as of Jan. 5, 2015).
Finally, as in [7, 8], we selected connected complexes
of size 5~25 and used them as our query networks
(863 complexes in total). We assessed the performance
of SEQUOIA based on the 863 real protein complexes,
where 293 human complexes were searched against the fly
PPI network, 289 human complexes were searched against
the yeast PPI network, 141 yeast complexes were searched
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Algorithm 1: SEQUOIA network querying algorithm

Data: Query and target network, pairwise node
similarity score
Result: Best matching subnetwork in the target
network for the given query

begin
1 Data pre-processing: i) Removing
non-homologous nodes and ii) Inserting
pseudo-edges
2 Compute the normalized node correspondence
C using Eq. (2)
3 Select the seed network Gs = {Vs, £s} using

Eq. (3)
while |Gs| <2- NQ or Yeyrrent < B - Pprevious do
4 Find the set of neighboring nodes A/ of the
network Gs
5 Compute the conductance ¢; for the extended
network {Vs U v}, for each vy, Vv, e N
6 Find the node v/ = arg min ¢;
t
7 Extend the network Gg, i.e., Vs = {Vs U v}
and €5 = {55 U e,',j} ,Vie Vs, Vj € vy
8 Update the current conductance
Pcurrent = Pr*
9 Update the extension reward score
r(ve) =rve) +1,Yv, € N (vg)
end
10 Remove nodes in Gs whose extension reward

score is 0 while keeping the initial seed nodes.
end

against the human PPI network, and 140 yeast complexes
were searched against the fly PPI network. Since there
are only a small number of test cases for querying fly
complexes against human and yeast PPI networks, we
excluded those experiments in this study.

The performance of SEQUOIA was compared against
several state-of-the-art algorithms, which include:
RESQUE [8], Corbi [9], NatalieQ [10], HubAlign [29],
and LocalAli [30]. Although HubAlign and LocalAli are
global and local network alignment algorithms, respec-
tively, we used those algorithms to identify conserved
subnetworks as network querying can be viewed as a
special case of pairwise network alignment. For Corbi, we
used the default parameters for the gap penalty and set
the option for the query type as 1, which is for general
network querying. For HubAlign, we used the default
parameters (i.e, A = 0.1 and « = 0.7). We also used
the default parameter for NatalieQ. For LocalAli, we set
the minimum number of extension (-minext) to 0 and
the maximum number of extension (-maxext) to 25,
since the size of the query networks ranged between 5
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to 25. Default values were used for other parameters.
Since LocalAli identifies multiple local complexes as its
output, we selected the complex with the best score as the
querying result of LocalAli.

Performance assessment metrics

To assess various aspects of the network querying algo-
rithms, we defined several performance metrics. First, we
used the matching score to count the number of matches
for each query and target species pair [31]. Given two
biological complexes Q and C, the matching score is com-
puted based on the Jaccard index between the nodes in the
two biological complexes as follows:

Van Vel
VouVe|

where Vy is the set of nodes in the complex X. If the
matching score is greater than the threshold, the two
complexes were regarded to be a match. As in [31],
we set the threshold for the matching score as 0.5. To
count the number of matches, we used the known bio-
logical complexes as our gold standard reference C =
{C1,Cy,...,Cn}. Given the querying result Q;, if there
is at least one matching complex C; in the gold stan-
dard reference, we counted Q; as a match. Then, we
report the total number of matches for each query
and target species pair. That is, given the querying
results @ = {Q1,Q2,..,Qum} for the M query com-
plexes, we count the total number of querying results
|{Qilmatch_score (Q;, Cj) > 0.5,¥C;j € C,VQ; € Q}|.

Next, we defined two different types of hits that respec-
tively measure: 1) the accuracy of the obtained querying
results and 2) the capability of detecting novel functional
network modules with strong biological significance. The
former counts the number of querying results whose
annotation is identical to the functional annotation of the
query network so that it can assess the capability of a given
algorithm to identify the conserved functional modules.
The latter counts the number of querying results with
strong biological significance, regardless of whether or not
they have the same functional annotation as the query,
so that it can be used to assess the ability of the network
querying algorithm to predict novel potential functional
modules in the target PPI network.

To evaluate the accuracy of the querying results, we
picked the most significantly enriched GO term of the
query network (referred to as the significant GO term).
Note that the most significantly enriched GO term
denotes the GO term with the lowest false discovery rate
(FDR) corrected p-value. To this aim, we performed GO
enrichment tests for the query network and the query-
ing result. If the significant GO term in the query is also
enriched in the network querying result and if its FDR
corrected p-value is less than a threshold, we regarded

match_score (Q,C) = (6)
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the querying result as a significant hit. However, a higher
number of significant hits does not necessarily imply that
the network querying algorithm yields accurate results,
since the querying results may potentially include a large
number of functionally irrelevant proteins (i.e., proteins
whose annotation does not include the significant GO
term). For this reason, in order to assess the accuracy of
the querying results, we additionally defined two impor-
tant performance metrics: the significant specificity (SPE)
and the significant functionally coherent (FC) hit. Sig-
nificant SPE is defined as the relative proportion of the
proteins annotated with the significant GO term among
the proteins included in the querying result. Based on this
definition, an accurate querying result with fewer irrele-
vant proteins will have a higher significant SPE. Significant
FC hits were defined as hits that satisfy the following
two conditions: 1) FDR corrected p-value should be less
than a certain threshold and 2) at least 50% of the pro-
teins included in the querying result should be annotated
with the significant GO term. A network querying algo-
rithm that can yield a larger number of significant FC hits
can be viewed as being more accurate and being capa-
ble of making better predictions that are biologically more
significant.

Next, in order to assess the capability of detecting novel
potential functional network modules, we investigated the
biological significance of the querying results. To this aim,
we performed the GO enrichment test only for the query-
ing result (i.e., not for the query network) and selected
the GO term with the smallest FDR corrected p-value as
the most significantly enriched GO term. If the FDR cor-
rected p-value of the most significantly enriched GO term
of the querying result is less than a threshold, we regarded
the querying result as a hit. A querying result with a small
FDR corrected p-value can be viewed as being biologically
significant, even if the most significantly enriched GO
term of the querying result and that of the query network
do not match. As a result, for a given network querying
algorithm, we can assess its capability of detecting poten-
tial functional network modules by measuring the number
of hits. Furthermore, we defined the specificity as the rel-
ative proportion of proteins (in the querying result) that
are annotated with the most significantly enriched GO
term among all proteins included in the querying result.
As before, we defined a hit as being functionally coherent
(FC) — hence called a FC hit — if the FDR corrected p-value
is less than a certain threshold and if more than 50% of
the proteins in the retrieved result are annotated with the
most significantly enriched GO term.

We used the latest version of GO:TermFinder [32]
for the GO enrichment test, and analyzed the query-
ing results based on three different ontology aspects: 1)
cellular component (CC, GO:0005575), 2) biological pro-
cess (BP, GO:0008150), and 3) molecular function (MF,

Page 7 of 11

GO:0003674). In the following, we mainly present the
assessment results based on the ontology aspect of “cellu-
lar component’, and simulation results for other ontology
aspects — i.e., “biological process” and “molecular func-
tion” — are included in the supplementary material (see
Additional file 1: Section S4). The ontology and annota-
tion files for the three species considered in our study
have been downloaded from Gene Ontology Consortium
[33, 34] (as of Feb. 9 2015). Then, we removed all GO
terms without experimental evidence. That is, we only
used GO terms having one of the following evidence
codes: ‘EXP; ‘IDA;, ‘IPT, ‘IMP; ‘IGI, and ‘IEP’ Additionally,
due to the hierarchical structure of GO terms, certain GO
terms are annotated to a large number of proteins, where
such commonly appearing GO terms would not be very
informative. In order to use the GO terms that are infor-
mative, we computed the information content (IC) for
each GO term as recommended in [33]. IC is defined as

IC (g) = —log, ’roc|j|(g)" (7)

where g| is the total number of proteins with the GO term
g and |root (g)’ is the number of proteins under the root
GO term of the GO term g. Note that there are three root
GO terms: cellular component (CC, GO:0005575), bio-
logical process (BP, GO:0008150), and molecular function
(ME, GO:0003674). In this study, we only used the GO
terms whose information content is at least 2.

Comparison of the querying results to the gold standard
reference sets

Figure 2 shows the number of matches for each query-
target species pair. The figure shows that SEQUOIA vyields
the largest number of matches among all tested algo-
rithms for all query-target pairs. When querying human

100
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[ 1RESQUE-M
[ Corbi

[ HubAlign

M [ NatalieQ
[_JLocalAli

80 -

40 |

Number of matches
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Ik

Yeast - Fly

0 1 L 1 L 1
Human-Fly  Human - Yeast Yeast-Human

Fig. 2 Number of matches for each query and target species pair (i.e.,
query species — target species)
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complexes against the fly and the yeast PPI networks,
SEQUOIA clearly outperforms other methods. When
querying yeast complexes against the human and the fly
PPI networks, NatalieQ shows comparable performance
to SEQUOIA, although SEQUOIA still yields a larger
number of matches compared to all other methods. Over-
all, SEQUOIA resulted in 188 matches, which is almost
32 percent more compared to the number of matches
achieved by the next best algorithm, NatalieQ.

Assessing the accuracy of the network querying results
Figures 3 and 4 shows the number of significant hits
and significant FC hits for all 863 querying results. As
we can see in Fig. 3, SEQUOIA yields a larger number
of significant hits compared to other algorithms. This
means that SEQUOIA can more accurately identify con-
served functional network modules with the significant
GO term, (i.e., the most significantly enriched GO term in
the query network). RESQUE family yielded similar num-
ber of significant hits at the p-value threshold of 0.05, but
SEQUOIA outperformed both RESQUE-C and RESQUE-
M when a smaller p-value threshold was used. Except for
SEQUOIA and RESQUE-C, the number of nodes in the
querying result is generally smaller than that in the query
network for other tested algorithms. As a consequence,
many algorithms may fail to identify inserted nodes and
yield fewer significant hits.

Figure 4 shows that SEQUOIA vyields a larger num-
ber of significant FC hits compared to other algorithms.
This implies that SEQUOIA produces more accurate
querying results that are functionally more coherent.
Compared to SEQUOIA, the number of significant FC
hits for Corbi decreases quickly as the p-value thresh-
old decreases. Interestingly, although RESQUE family
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Fig. 3 Number of significant hits for the 863 query complexes
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Fig. 4 Number of significant functionally coherent (FC) hits for the
863 query complexes

shows similar performance in terms of the number of
significant hits, the number of significant FC hits for
RESQUE-C is much smaller than RESQUE-M. This result
shows that using a more sophisticated method to pre-
dict the best matching subnetwork would be needed
to obtain better querying results that are functionally
more coherent. In fact, RESQUE-C uses a relatively
simple approach to find the best matching subnet-
work, which is to find the largest connected subnet-
work in the reduced target network, and this may
increase the chances of including a larger number of
functionally irrelevant nodes in the final querying result.
SEQUOIA results in higher significant hits as well as
higher significant FC hits by minimizing the network
conductance of the matching subnetwork and filtering
out potentially irrelevant nodes based on the exten-
sion reward score. Detailed querying results for dif-
ferent query and target species pairs can be found
in the supplementary material (see Additional file 1:
Section S4).

The number of identified nodes included in the query-
ing results and the number of nodes annotated with the
most significant GO term are summarized in Table 1. The
table shows that NatalieQ and RESQUE-M achieve higher
significant SPE compared to SEQUOIA, but it should be
noted that SEQUOIA can identify a much larger num-
ber of “annotated nodes” while keeping relatively higher
significant SPE compared to other algorithms. The total
number of identified nodes is comparable for SEQUOIA
and RESQUE-C, although SEQUOIA results in a much
higher significant SPE compared to RESQUE-C. From the
perspective of potential knowledge transfer from a well-
studied species to a less-studied species, the ability to
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Table 1 Significant SPE for the ontology aspect of “cellular

component”
Identified nodes  Annotated nodes® Significant SPE

SEQUOIA 9537 2568 0.269
RESQUE-C 10,213 2115 0.207
RESQUE-M 7000 1941 0277
Corbi 4761 1149 0.241
HubAlign 7342 1526 0.208
NatalieQ 5452 1745 0320
LocalAli 6220 892 0.143

@Annotation corresponding to the most significantly enriched GO term in the query
network

achieve higher significant SPE is critical, as it implies that
the network querying algorithm may be able to annotate
the proteins in the querying result more accurately.

Capability of detecting novel functional network modules
Figures 5 and 6 shows the number of hits and the number
of FC hits for various FDR corrected p-value thresholds.
Feasible hits in each figure correspond to the total number
of query complexes, which is the maximum number of hits
that can be achieved. As we can see in Fig. 5, SEQUOIA
clearly outperforms other algorithms for various p-value
thresholds. For example, at a p-value threshold of 1E-
10, SEQUOIA yields 29% more hits than RESQUE-C,
which is the next best algorithm. This results indicate
that SEQUOIA has stronger potentials to identify novel
protein complexes compared to other state-of-the-art
algorithms.

Next, we compared the number of FC hits for differ-
ent network querying algorithms. Figure 6 shows that
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SEQUOIA clearly outperforms other algorithms. For
example, SEQUOIA can identify 11% more FC hits than
NatalieQ at a p-value threshold of 0.05 and almost twice
as many FC hits compared to RESQUE and NatalieQ at
a p-value threshold of 1E-15. LocalAli and NatalieQ fail
to yield querying results in some test cases (i.e., these
algorithms cannot identify any protein node in the tar-
get network). LocalAli and NatalieQ may not perform
robustly under certain conditions (e.g., for certain query
topology), which may result in a smaller number of hits.
The results in Fig. 6 show that SEQUOIA’s performance is
more robust compared to many other algorithms, and that
SEQUOIA can more effectively detect conserved network
modules with high functional coherence.

Finally, we also evaluated the functional coherence of
the querying results for each algorithm. To this aim, we
selected the most significantly enriched GO term in the
querying result obtained by each algorithm for each query,
and compute the relative proportion of proteins anno-
tated with the most significantly enriched GO term. The
results are summarized in Table 2. With the exception
of NatalieQ, SEQUOIA achieves the highest SPE com-
pared to all other algorithms. Although NatalieQ results in
the highest SPE, SEQUOIA can identify about 66% more
annotated nodes (i.e., proteins annotated with the most
significant GO term) compared to NatalieQ, while achiev-
ing a comparable SPE. This indicates that SEQUOIA can
effectively identify a larger number of protein nodes that
are functionally coherence than the other tested algo-
rithms.

Computation time
Figure 7 shows the box plot for the computation time
for each network querying algorithm. For RESQUIE,
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Table 2 SPE for the ontology aspect of “cellular component”

|dentified nodes Annotated nodes? SPE
SEQUOIA 9537 5531 0.580
RESQUE-C 10,213 5002 0492
RESQUE-M 7000 3856 0.551
Corbi 4761 2486 0522
HubAlign 7342 3822 0.521
NatalieQ 5452 3324 0.610
LocalAli 6220 2170 0.349

@Annotation corresponding to the most significantly enriched GO term in the
querying result

we used the MATLAB script version 1.0 and MAT-
LAB version 2014b. Executable binaries for NatalieQ,
HubAlign, and LocalAli were obtained by compiling their
source code using a C++ compiler. For Corbi, we used
its R package and tested the algorithm on Windows.
Except for Corbi, all other algorithms were tested on
Mac OS X. All computer simulations were performed
on a desktop computer equipped with a 2.4 GHz Intel
i7 processor and 8 GB memory. For certain queries,
NatalieQ and LocalAli may require a very long time
(which is significantly longer than the average computa-
tion time), and such outliers were excluded when draw-
ing the box plot for readability. As shown in Fig. 7,
the computation time of SEQUOIA is comparable to
that of the RESQUE family, but it is much faster com-
pared to other algorithms. On average, SEQUOIA yields
the querying result in less than 0.06 second, and in
98% of the test cases, the algorithm needs less than a
second to find the subnetwork that best matches the

query.
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Fig. 7 Boxplot of the computation time for different algorithms for
the 863 queries
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Conclusions

In this paper, we proposed SEQUOIA, a novel network
querying algorithm that can enhance the biological
significance of the query results. In order to identify
conserved subnetwork regions in the target network
that are similar to a given query network, the algo-
rithm compares the two networks and estimates the node
correspondence scores by using the context-sensitive ran-
dom walk model. Inspired by the pair hidden Markov
model that has been widely used in the comparative
sequence analysis, the CSRW model effectively captures
the similarities between graphs by explicitly accounting
for potentially inserted/deleted nodes. Based on the esti-
mated CSRW node correspondence scores, SEQUOIA
identifies high-scoring regions (referred to as the seed
networks) in the target network that bear considerable
similarity with the query network. The seed network
is further extended by adding neighboring nodes that
reduce the network conductance of the extended net-
work by the largest amount. This extension step identi-
fies nearby proteins that are densely connected to other
nodes in the potential network module, thereby effectively
recruiting proteins that are likely to share similar func-
tions with other proteins in the module. The final query
result is obtained after pruning the matching subnetwork
by removing any irrelevant nodes, thereby enhancing
the separability and coherence of the identified network
module. As we have shown through extensive numerical
simulations based on 863 real biological complexes, our
network querying algorithm SEQUOIA yields accurate
query results with enhanced biological significance.

Additional file

Additional file 1: Section S1.Review of the context-sensitive random
walk model. This section provides detailed description of the context-
sensitive random walk model. Section S2:lllustration of the pre-processing
step. This section provides detailed description of the pre-processing step
with an example. Section S3: Flow chart for SEQUOIA with a toy example.
Section S4: Performance assessment for various GO ontology aspects. This
section presents performance assessment results for various GO ontology
aspects: cellular component, biological process, and molecular function. It
also shows results for various query and target network pairs. Section S5:
Performance improvement through post-filtering based on extension
reward scores. Results in this section show the effectiveness of the pruning
step based on the extension reward scores for enhancing the biological
significance of the querying results. (PDF 1800 kb)
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