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cytokines in the evolution of severe
dengue
S. D. Pavithra Jayasundara1*, S. S. N. Perera1, Gathsaurie Neelika Malavige2 and Saroj Jayasinghe3

Abstract

Background: Dengue causes considerable morbidity and mortality in Sri Lanka. Inflammatory mediators such as
cytokines, contribute to its evolution from an asymptotic infection to severe forms of dengue. The majority of previous
studies have analysed the association of individual cytokines with clinical disease severity. In contrast, we view
evolution to Dengue Haemorrhagic Fever as the behaviour of a complex dynamic system. We therefore, analyse the
combined effect of multiple cytokines that interact dynamically with each other in order to generate a mathematical
model to predict occurrence of Dengue Haemorrhagic Fever. We expect this to have predictive value in detecting
severe cases and improve outcomes. Platelet activating factor (PAF), Sphingosine 1- Phosphate (S1P), IL-1β, TNFα and
IL-10 are used as the parameters for the model. Hierarchical clustering is used to detect factors that correlated with
each other. Their interactions are mapped using Fuzzy Logic mechanisms with the combination of modified Hamacher
and OWA operators. Trapezoidal membership functions are developed for each of the cytokine parameters and the
degree of unfavourability to attain Dengue Haemorrhagic Fever is measured.

Results: The accuracy of this model in predicting severity level of dengue is 71.43% at 96 h from the onset of illness,
85.00% at 108 h and 76.92% at 120 h. A region of ambiguity is detected in the model for the value range 0.36 to 0.51.
Sensitivity analysis indicates that this is a robust mathematical model.

Conclusions: The results show a robust mathematical model that explains the evolution from dengue to its serious
forms in individual patients with high accuracy. However, this model would have to be further improved by including
additional parameters and should be validated on other data sets.
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Background
Dengue is a mosquito borne viral disease transmitted by
female mosquitoes of the species Aedes aegypti and
Aedes albopictus. In the recent decades there has been a
dramatic increase of the dengue incidences around the
world [1]. Each year around 500,000 people with severe
dengue are hospitalized, with a large proportion being
children. Out of those affected around 2.5% result in
death [1]. Dengue has been a national concern in Sri

Lanka with several outbreaks occurring and the inci-
dence and severity of these epidemics keeps increasing
[2]. Most infected person are asymptomatic, and develop
dengue fever (DF), while a minority proceed to serious
forms of dengue, dengue haemorrhagic fever (DHF) or
dengue shock syndrome (DSS), which can be fatal [3]. A
key mechanism of severity is leakage of fluid from blood
vessels to surrounding tissues and the resultant drop in
volumes within the vascular compartment and
hypotension. This occurs for about 48 h and is referred
to as critical phase [4]. At present there is no specific
drugs against the illness. Therefore, early clinical diagno-
sis and careful body fluid management is critical to care
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of the severe ill [5]. In relation to early diagnosis,
attempts have been made to identify early markers of
dengue and cytokines that predict severity [6–8].
Increased vascular permeability is a main cause of DHF

and cytokines, inflammatory lipid mediators and dengue
NS1 antigen are thought to significantly contribute to this
increase in vascular permeability [9–11]. Hence, several
studies have attempted to identify the relationships
between cytokines and dengue. In this study, we have
attempted to use several cytokines and other inflamma-
tory mediators to develop a mathematical model to pre-
dict the likelihood of developing DHF. For this model we
have chosen three cytokines and two inflammatory lipid
mediators due to their association with vascular leak in
dengue and also with severe clinical disease. Sphingosine
1-phosphate (S1P), is a signalling lipid mediator and is
considered to be important in maintaining endothelial
barrier integrity [12]. It was shown that levels of S1P, were
found to be low in DHF patients especially during the crit-
ical phase of acute dengue [13]. IL-1β was also found to
associate with increase in vascular permeability and is
thought to be predominantly released from platelets in
patients with acute dengue [14]. IL-1β is shown to be
released from dengue virus infected monocytes, which is
thought to be due to the activation of the inflammasome
[15, 16]. IL-10 levels have also shown to be higher in
patients with DHF especially during secondary infections
[17, 18]. In addition, it was recently shown that higher
concentrations of NS1 antigen and serum IL-10 levels are
associated with severe clinical disease in acute dengue
infection [6, 19]. However, although IL-10 levels were
found to be significantly higher in patients with DHF, it
was not a good predictive marker when used alone due to
the high variability [6]. Although TNF-α was initially
found to be associated with DHF [20], more recent studies
again has shown variable results [21, 22]. A main draw-
back of these studies is that they focus on the association
of individual cytokines with clinical disease severity.
However, when identifying markers of DHF it is important
to take into consideration the dependencies and inter-
action of inflammatory mediators [23].
In recent times there has been an interest in the utility

of a systems science approach that captures the combined
and inter-related effects of multiple parameters in deter-
mining severity of illnesses [24]. Our study is an attempt
to take a systems science view of severity and develop a
mathematical model to capture the combined effect of
multiple inflammatory mediators that are elevated in
dengue. Therefore, in this study our objective is to develop
a mathematical model that can detect patients proceeding
to DHF level at an early stage by analysing the combined
effect from the parameters sphingosine 1-phosphate
(S1P), Interleukin- 1β (IL-1β), Tumor Necrosis Factor
(TNF-α), Platelet Activating Factor (PAF) and Interleukin

-10 (IL-10). It was recently shown that higher concentra-
tions of NS1 antigen and serum IL-10 levels are associated
with severe clinical disease in acute dengue infection [19].
The current study uses some of the published data and
other sources to model the impact of multiple immune
and other variables in predicting severity of dengue.
In our study a fuzzy logic based model is proposed to

analyse the combined effect of inflammatory mediators
to determine severity level of dengue. Fuzzy logic is now
commonly used to model biological problems as it has
the strength to handle imprecise information and uncer-
tainties associated with decision making [25].

Methods
Preliminary analysis
The sample used for preliminary analysis and model valid-
ation consists of 11 adult patients with DF and 25 adult
patients with DHF, recruited from the Colombo South
Teaching Hospital, Sri Lanka. Model validation was
supported through pre-existing data in [13] and [19]. The
classification as to DF or DHF is performed according to
2011 WHO guidelines [1]. The patients in the sample are
admitted at varying time points from onset of fever
ranging from 72 to 144 h from onset of fever. Data are
collected at several time points for a particular individual
patient, each time point being 12 h apart. The number of
times a patient is measured differs from individual to
individual and hence there are missing values as not all
time points are measured for all of the patients. Missing
values are handled using multiple imputation.
Hierarchical clustering is performed on the parameter

variables and the resulting dendrogram at 96 h from
onset of fever is shown in Fig. 1. The clusters are formed
at increasing level of dissimilarity and squared Euclidian
Distance is used. SPSS statistical software is used to
cluster the variables. It can be seen that S1P and IL-1β
merges first, being the closest pair of clusters and TNF-
α, IL-10 and PAF shows similar behaviour, resulting in
two main clusters and the same two clusters could be
seen for 96 and 120 h of onset of illness for DHF
patients. These clustering output is used in deciding how
to aggregate parameters with the Hamacher operator.

Model development
Our model to determine dengue severity by analysing
the combined effect of cytokines and inflammatory
mediators is modelled using fuzzy logic concepts. With
the ambiguity and vagueness associated with decision
making in dengue and medicine in general, fuzzy logic is
commonly used in modelling these phenomena as it has
the ability to explain the uncertainties associated with
these complex systems. Fuzzy models have the ability to
handle these imprecise components and perform with
high accuracy as fuzzy models are robust to variation in
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symptom parameters [26]. Dengue pathogenesis is com-
plex and still not fully understood [27]. Disease severity
can depend on dengue serotype [28] and it is believed
that antibody dependent enhancement can also play a
role in determining severity [29]. Disease diagnosis itself
include uncertainties as symptoms could vary from
patient to patient, similar symptoms can be common to
various diseases and human reasoning itself is imprecise
[25]. Therefore, strict rules as in classical logic is not suit-
able to handle biological problems that involve inherent
uncertainty. Also, fully stochastic models cannot be
adopted as the underlying probability distributions are un-
known [30]. Fuzzy logic provides a platform to interpret
vague human descriptions in natural linguistic terms and
can successfully handle imprecision and uncertainty and is
a useful modelling tool especially under limited data [31].
Study in [32] has used fuzzy expert system to detect

asthma and chronic obstructive pulmonary disease.
Using parameters such as fever, nocturnal symptoms,
oral steroids etc. the model produced a scale of 1-10 to
measure the severity level of asthma, tuberculosis and
chronic obstructive pulmonary disease. Fuzzy expert
system for diabetes has also been developed [33]. In this
system triangular membership functions with Mamdani
Inference was used and it achieved an accuracy of
85.03%, which was higher than previously developed
methods to detect diabetes. Two approaches based on
Artificial Neural Networks (ANN) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) were used for identi-
fying heart disease from a large data set on patients in
[34]. In another study, the fuzzy system for detecting
heart disease had a 94% accuracy to that of a medical
expert’s decision [35]. Similar fuzzy expert systems to
diagnose liver disorders are also available [36]. This ex-
pert system used triangular and trapezoidal membership
functions and the achieved accuracy was 91%. Fuzzy IF-
Then rule based study was carried out for the diagnosis
of the haemorrhage and brain tumour disease to
determine the probability of disease [37]. All these fuzzy
expert systems are rule based and MATLAB fuzzy logic
tool box was used, but in our model we didn’t use a rule
based approach, rather we used fuzzy intersection
operator, Hamacher product and the Ordered Weighted
Aggregation (OWA) operator.

Approach to model development
In classical logic every statement is either true or false.
But, in medical diagnosis it is not possible to make
decisions based on these crisp distinctions. In fuzzy logic
this strict convention is reduced and allows partial
membership in a set. The degree to which a particular
member belongs to a set is denoted by the degree of
fuzziness and this is mapped through a fuzzy member-
ship function [38]. Each element of a fuzzy set is
mapped into a real number in the interval [0, 1].

Fig. 1 Dendrogram resulting in hierarchical clustering performed on the five cytokine and inflammatory mediators S1P, IL-1β, TNF-α, PAF and
IL-10 on DHF patients at 96 h from onset of illness. SPSS statistical software is used to cluster the variables and squared Euclidian Distance is used
as the distance measure. In the model development these parameters are combined with the Hamacher product and OWA operator according
to this clustering output
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The row values of cytokine and inflammatory mediator
values are ‘fuzzified’ through their respective membership
functions. As the objective of this study is to consider the
combined effect from the parameters, Hamacher and
OWA operators are selected as suitable fuzzy operators to
combine parameters. Impact from the important variables
to the model is intensified through fuzzy ‘concentration’.
The model outputs a final value which measures the unfa-
vourability to attain severe dengue. Based on this index
value it can be decided whether this patient is a potential
DF or a DHF patient.
For technical details of fuzzy set, membership

functions, Hamacher operator and concentration see
Additional file 1 (A1).

Membership function development
The five inflammatory mediators S1P, IL-1β, TNF-α,
PAF and IL-10 are analysed in combination. When de-
veloping membership functions, knowledge acquisition
from interviews with medical experts is a common
practice [31, 39, 40]. Furthermore, previous studies that
are carried out to determine the influence from these in-
dividual cytokines on dengue disease severity are also
used to determine membership values. This enabled
to develop our model independently of sample data.
Since the rate of change of cytokines is not significant
over time, trapezoidal membership functions are used
to ‘fuzzify’ the input parameter values. Trapezoidal
membership functions are commonly used to model
problems in biology because of its easy construction
and interpretation [35, 36]. In our model the
membership functions measure how unlikely it is to
develop DHF.
Above 50% of patients with DHF have shown S1P

levels below 0.5 μM at some time point in their ill-
ness and only 10% of DF patients show S1P levels
below 0.5 μM. For the membership function for S1P
the cut off value for DHF patients is chosen as
0.5 μM. Also it shows that when compared with DF
patients, DHF patients have significantly lower S1P
levels throughout the course of illness [13]. The
membership function for S1P is, μS(x),

μS xð Þ ¼
0 ; x≤0:5

x−0:5 ; 0:5 < x < 1:5
1 ; x≥1:5

8
<

:
ð1Þ

DF patients have shown to have an IL-1β level ranging
from 0 to 33.7 pg/ml with a median of 30.5 pg/ml and
DHF patients an IL-1β range of 0–62.3 pg/ml with a
median of 33.5 pg/ml [41]. Therefore, the membership
function for IL-1β is, μβ(x),

μβ xð Þ ¼
1 ; x≤30:5

33:5−x
3

; 30:5 < x < 33:5

0 ; x≥33:5

8
><

>:
ð2Þ

IL-10 concentration of DHF patients has shown a
median 110.8, SD ± 27.1 pg/ml and DF patients a
median of 15.5, SD ± 5.3 pg/ml. IL-10 levels are signifi-
cantly elevated in DHF patients than in DF patients [42].
The membership function for IL-10 is, μ10(x),

μ10 xð Þ ¼
1 ; x≤20

110−x
90

; 20 < x < 110

0 ; x≥110

8
><

>:
ð3Þ

The mean value for TNF-α for DF patients is indicated
as 14.10, SD ± 24.0 pg/ml and for DHF patients mean
29.95, SD ± 39.5 pg/ml. TNF-α is higher in DHF and
shock patients than in DF patients [43]. In the model
the membership function for TNF-α is, μα(x),

μα xð Þ ¼
1 ; x≤15

30−x
15

; 15 < x < 30

0 ; x≥30

8
><

>:
ð4Þ

PAF levels are found to be significantly higher in DHF
patients [10]. Also in that study 72% of DF patients
never showed a rise of PAF level above 100 ng/ml and
median PAF level for DHF patients is 335.2 ng/ml while
DF patients indicate to have a median value of 47.63 ng/
ml. Therefore, the membership function for PAF in the
model is, μP(x),

μP xð Þ ¼
1 ; x≤10

100−x
90

; 10 < x < 100

0 ; x≥100

8
><

>:
ð5Þ

The trapezoidal-shaped membership functions are
illustrated in Fig. 2.

Choice of fuzzy operator
Since the overall combined effect from S1P, IL-1β, TNF-
α, IL-10 and PAF is considered to determine the severity
level, the proposed operator must satisfy certain proper-
ties [44]. Let Y, Z be two cytokine parameters and UY(x),
UZ(x) measure their respective degree of unfavourability
to attain DHF. Then,

a. If Y is favourable to DHF and Z is favourable to
DHF, then UY∩ Z(x) < min(UY(x), UZ(x)).

b. If UY(x) <UZ(x) < 1, then the effect that a decrease
of UY(x) has on UY∩ Z(x) may depend on UZ(x).

c. If UY(x) and UZ(x) < 1, then the effect that an
increase of favourability level of Y has on UY∩ Z(x)
can be erased by a decrease of favourability of Z.
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Since the Hamacher product as defined in A1-(1) pos-
sesses these three properties it is used in our model to
combine the effect from cytokine parameters. Hamacher
operator has been previously used successfully to
combine the effect that rain fall and temperature can
have on dengue disease transmission [30].

Development of the model
With clustering results as shown in Fig. 1 we are able to
divide the five parameters mainly into two groups; one
with S1P and IL-1β and the other with TNF-α, IL-10
and PAF. Therefore, the Hamacher product is separately
used on the two main cytokine groups as shown in Eqs.
(6), (7) and (8).
In the model the three parameters TNF-α, PAF and

IL-10 are subjected to ‘concentration’ as previous studies
clearly indicate that these parameters are significantly el-
evated in DHF patients than in DF patients [10, 17, 43].
Therefore, in order to amplify the effect from these
cytokines and to allocate them a higher weight in the
model, the membership values of TNF-α, PAF and IL-10
are concentrated.
The Hamacher product between S1P and IL-1β is

H1 ¼ μS xð Þ � μβ xð Þ
μS xð Þ þ μβ xð Þ−μS xð Þ � μβ xð Þ ð6Þ

where μS(x), μβ(x) are the membership values of S1P and
IL-1β obtained from (1) and (2) respectively.
The Hamacher product between TNF-α and IL-10 is

H ¼ μα xð Þγ � μ10 xð Þφ
μα xð Þγ þ μ10 xð Þφ−μα xð Þγ � μ10 xð Þφ where γ; φ > 1

ð7Þ
Where μ10(x) , μα(x) are the membership values of

TNF-α and IL-10 obtained from (3) and (4) respectively.
Here TNF-α and IL-10 are concentrated by γ amount.
The Hamacher product between TNF-α, IL-10 and PAF is

H2 ¼ H � μp xð Þδ
Hþ μp xð Þδ−H � μp xð Þδ

where δ > 1 ð8Þ

where μp(x) is the membership values of PAF obtained
from (5) and H is obtained in (7). Here PAF values are
concentrated by δ amount. The Hamacher operator value
resulting from S1P, IL-1β (6) and the Hamacher operator
value resulting from TNF-α, IL-10 and PAF (8) is
combined through the OWA operator defined in A1-(2).
So the OWA operator used in the model is

OWA ¼ λ �MAXIMUM H1;H2ð Þ þ 1‐λð Þ
�MINIMUM H1;H2ð Þ ð9Þ

where λ is OWA weight defined in A1-(3).

Model parameters
In the model the parameters TNF-α, PAF and IL-10 are
concentrated by 1.1, 1.2 and 1.1 respectively. Accor-
dingly, the model parameter values of γ, δ and φ are 1.1,
1.2 and 1.1 respectively. PAF is concentrated more than
the other two as it plays a highly significant role in

Fig. 2 Model membership functions for S1P, IL-1β, IL-10 TNF-α and PAF
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determining severity. Concentration is limited to a small
amount as otherwise it would affect the operator values
of DF patients.
The optimal λ value is determined by analysing the

accuracy of the model for various values of λ. Table 1
summarizes these results. λ = 0.2 and λ = 0.3 make the
DF operator values too biased towards DHF patients. In
fact, when λ = 0.2 at 120 h from onset of illness 7 out of
8 DF patients are misclassified. When λ = 0.4, model per-
forms well when all three time points are considered
and it is better in classifying DF patients. Therefore, op-
timal λ is chosen as 0.4. Thus, from A1- (3) and A1-(4)
by letting l = 0.3 and m = 0.8 the OWA weights chosen
for the model are 0.4 and 0.6.
The ‘orness measure’ of the model as calculated

according to A1-(5) is 0.4. This means that the OWA
operator does not work entirely as an AND operator
and to some degree (orness measure of 0.4) it works
as an OR operator. Hamacher product acts as an
AND operator, thus it further reduces the operator
values making the model to be too biased towards
DHF patients. But, by using OWA operator to
aggregate the Hamacher product of S1P, IL-1β and
the Hamacher product of TNF-α, IL-10 and PAF it
allows to compensate the over intensification caused
from Hamacher product to a certain extent and pro-
vide a better way to distinguish DF and DHF patients.

Construction of ambiguous region
The overall ambiguous region is determined by using
ambiguous regions of individual cytokines. In this re-
gion it cannot be determined specifically whether the
patient is DHF or a DF patient. The ambiguous levels
of individual cytokines are determined using the cyto-
kine values which result in around 0.5 degree of
membership values. As the membership functions are
developed independently of sample data, the resulting
overall ambiguous region also becomes independent
of sample data. The individual ambiguous levels that
are used for each parameter are 0.9–1.2 pg/ml for
S1P, 30.7–31 pg/ml for IL-1β, 17.5–19 pg/ml for
TNF-α, 38–40.5 pg/ml for IL-10 and 48–50 ng/ml for
PAF. Separate ambiguous levels of the cluster S1P,IL-
1β and the cluster from IL-10,PAF,TNF-α is given in
Fig. 3(a) and (b) respectively and the final ambiguous
region of the model is displayed in Fig. 3(c).

Algorithm of the fuzzy decision support system

INPUT - Input the fuzzy set for S1P, IL-1β, TNF-α,
PAF and IL-10
OUTPUT - Operator value which measures
unfavourability to attain DHF.

PROCEDURE

1: Input the crisp values (raw patient data) on
cytokines S1P, IL-1β, TNF-α, PAF and IL-10.

2: Generate the fuzzy membership values for each
cytokine using respective membership functions.

3: Concentrate the membership values of TNF-α,
PAF and IL-10 by 1.1, 1.2 and 1.1 respectively.

4: Obtain Hamacher product (H1) of the variables
S1P and IL-1β,

H1 ¼ μS xð Þ � μβ xð Þ
μS xð Þ þ μβ xð Þ−μS xð Þ � μβ xð Þ

where μS(x), μβ(x) are the membership values of S1P and
IL-1β respectively.

5: Obtain Hamacher product (H) of the variables TNF-α
and IL-10

H ¼ μα xð Þ1:1 � μ10 xð Þ1:1
μα xð Þ1:1 þ μ10 xð Þ1:1−μα xð Þ1:1 � μ10 xð Þ1:1

where μα(x), μ10(x) are the membership values of TNF-α
and IL-10 respectively.

6: Obtain Hamacher product (H2) of the variable PAF
and H

H2 ¼ H � μp xð Þ1:2
Hþ μp xð Þ1:2−H � μp xð Þ1:2

where μp(x) is the membership values of PAF and H is
obtained in step 5.

7: Obtain the OWA operator of H1 and H2 with
weights 0.4 and 0.6

8: Output final operator value measuring
unfavourability to attain DHF.

END
MATLAB codes are provided in Additional File 2.

Table 1 λ values and model performance

λ Accuracy at 96 h
from onset of illness

Accuracy at 108 h
from onset of illness

Accuracy at 120 h
from onset of illness

0.2 76.19% 85.00% 62.96%

0.3 71.4% 85.00% 62.96%

0.4 71.4% 85.00% 76.92%
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Results
Model operator regions
Three main regions are identified in the model; non se-
vere (DF), severe (DHF) and ambiguous region. If the
model output value is below 0.36 the patient is consid-
ered as DHF and if the model output value is above 0.51
the patient is considered as DF. A region of ambiguity is
detected in the model for the value range 0.36 to 0.51.
In this region it cannot be determined specifically
whether the patient is DHF or a DF patient.

Model validation
The model is validated at 96, 108 and 120 h from on-
set of fever using DF and DHF patients in the sample
as shown in Figs. 4, 5 and 6 respectively. The model’s
validation at these time points is justified as the crit-
ical phase occurs often after the third day of fever,
usually around the fifth or sixth day of illness with
defervescence [45]. The model is validated using sam-
ple data collected from Colombo South Teaching
Hospital. The sample included data for S1P, IL-1β,
TNF-α, IL-10 and PAF collected at various time
points from onset of illness. The data collected from
patients were given as input to the model, which

would then output a value that measure the disease
severity level. This was done separately for 96, 108
and 120 h from onset of fever. Depending on this
model output value it can be determined whether the
patient is DF, DHF or in the ambiguous region. In
the sample data set the medical experts had made a
final diagnosis of the patient and have made the
classification as to whether the patient is DF or DHF
based on the 2011 WHO guidelines [1]. So, as to
assess the validity of our developed model we
compared the model output result with the medical
expert’s result. Then if the model decision and the
medical expert’s decision are the same it was consid-
ered as a correct output from the model and if the
two decisions differ, it was considered as an incorrect
decision from the model (misclassification).
Using these validation results the accuracy of the

model is determined. The accuracy of the model is cal-
culated as

Accuracy ¼ correctly classified DHF þ correctly classified DF
Total DHF þ Total DF

:

When determining the accuracy the patients that fall in
the ambiguous region are not considered as misclassified

Fig. 3 Ambiguous region for first cluster of cytokines (S1P, IL-1β) (a), second cluster of cytokines (IL-10, TNF-α, PAF) (b), final ambiguous region in
model (c). Ambiguous region is indicated by the white colour region. This is the region in where it is not possible to make a precise decision as
to whether the patient is severe or non-severe based on the model value
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as ambiguity does not suggest an incorrect classification.
The model’s accuracy at 96,108 and 120 h from onset of
fever is displayed in Table 2.
Both DHF and DF patients in the test sample are

validated using the model. Table 3 illustrates the distri-
bution of DF and DHF patients according to the region
which they are categorized by the model. At 120 h from
onset of fever there are four DHF patients (21.05%) with
model operator values above 0.6. However, when the
model operator values over time for these patients is
observed, it can be seen that at time points before 120 h
the model has indeed identified them as DHF patients,
revealing the model’s capability to perform as an early
predictive marker.
Also, as seen from Table 3, high percentage of DF

patients has fallen into severe and ambiguous regions.

Furthermore, in four instances, patients with DF have
shown operator values below 0.36. This indicates that
the model is slightly biased at moving patients to severe
region.
The model’s behaviour as it changes over time is ana-

lysed for individual patients. Fig. 7 shows this behaviour
for three DHF and three DF patients. On admission
most DHF patients as seen in Fig. 7 (b) and (c) show an
operator value in the ambiguous region or in non-severe
region, but as time progresses they move onto severe re-
gion and remains in this region for some time. However
as shown in Fig. 7 (a) and (c) as they reach their final
time point, they indeed move onto non-severe region.
Therefore, from Fig. 7 it can be seen that the model
indeed follows the expected clinical behaviour of DHF
patients.

Fig. 5 Model validation results for DHF (left) and DF (right) patients at 108 h from onset of fever. H1 refers to the Hamacher result of S1P and
IL-1β and H2 refers to the Hamacher result of TNF-α, PAF and IL-10. The interpretation of the colours, regions and dots of this figure are as same
as that is given in Fig. 4

Fig. 4 Model validation results for DHF (left) and DF (right) patients at 96 h from onset of fever. H1 refers to the Hamacher result of S1P and IL-1β
and H2 refers to the Hamacher result of TNF-α, PAF and IL-10. In the scale, values closer to 1 (blue shaded area) represent non severe (DF) region
and the scale values closer to 0 (red shaded area) represent severe region (DHF). The ambiguous region in where it is difficult to make a precise
decision as to whether the patient is heading towards severe or non-severe region is indicated in the white region. The black dots represent the
model output result of each patient and the severity level can be determined depending on the region the patient falls into. For the figure on left
(DHF) we expect more patients to fall in the red shaded area while for the figure on right (DF) we expect more patients to fall in the blue
shaded area
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Sensitivity analysis
Sensitivity analysis is performed in order to determine
how the model operator values and the categorization of
patients would change when the degrees of fuzziness are
changed. In Fig. 8 the boundary values of each of the
membership functions are changed by a small amount
and the behaviour of the lower and upper limit of the
ambiguous regions are analysed. The existing ambiguous
region has a lower limit of 0.36 and upper limit of 0.51.
As it can be seen from Fig. 8 as the boundary values of
each of the membership functions are changed by a
small amount the lower and upper limit of ambiguous
regions do not change rapidly indicating a robust model.
In the model the parameters TNF-α, PAF and IL-10

are concentrated by 1.1, 1.2 and 1.1 respectively. A
sensitivity analysis is performed on the weights on which
the parameters are concentrated in order to determine
how the ambiguous regions would change accordingly.
As it can be seen from Fig. 9 as the concentration
weights of the three parameters are changed by a small
amount the lower and upper limit of ambiguous regions
do not change rapidly indicating a robust model.
From Figs. 8 and 9 it can be concluded that this is a

robust model and the classification of patients as to
whether DF or DHF would not change when the model
parameters are subjected to a small change from their
existing values.

Discussion
The model developed to predict the dengue severity
performs well with considerable accuracy at all time
points with the highest accuracy of 85.00% being
achieved at 108 h from onset of fever. At 108 h from on-
set of fever, none of the DHF patients are misclassified
or have fallen into the ambiguous region. This is impor-
tant as at this time point the model does not succumb
to the more serious error of misclassifying DHF patients.

However, model performance at 96 h from onset of fever
needs to be further improved as early detection would
help clinicians to institute appropriate treatment before
the patient enters the critical phase of infection [45]. At
96 h from onset of illness, 43.5% of DHF patients are
classified as non-severe, though they are correctly classi-
fied at the next time point of 108 h. This discrepancy is
likely to be due to the cytokine changes not being
maximal at 96 h.
Also, in the model DF patients tend to get classified as

either ambiguous or severe. Although our approach
eliminates the possibility of classifying severe patients as
non-severe, this is not ideal as when non severe patients
are classified as severe we would not be able to meet up
with the optimal resource allocation. The model is
biased towards DHF detection because of the use of
Hamacher product. The Hamacher product with the
intersection operation, is able to intensify the risk level
when the combined effect of cytokines is considered. To
reduce this over intensification to a certain extent and to
provide a better way to distinguish between DF and
DHF patients the OWA operator is used as it compen-
sates the over intensification caused due to the use of
Hamacher product as it works with an ‘orness measure’.
Majority of the previous studies that have been

conducted to analyse the association of cytokines and in-
flammatory mediators on dengue severity have focused
on analysing the effect with respect to individual
cytokines [6, 10, 13, 17, 18, 43]. However, as it was

Fig. 6 Model validation results for DHF (left) and DF (right) patients at 120 h from onset of fever. H1 refers to the Hamacher result of S1P and
IL-1β and H2 refers to the Hamacher result of TNF-α, PAF and IL-10. The interpretation of the colours, regions and dots of this figure are as same
as that is given in Fig. 4

Table 2 Model accuracy for 96, 108 and 120 h from onset of
fever

Time from onset of fever Model accuracy

96 h 71.43%

108 h 85.00%

120 h 76.92%
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discussed in the introduction section, it is of importance
to consider the combined effect from cytokines as the
interactions, inter dependencies and compensations be-
tween parameters can have an impact in determining
disease severity than when it is analysed individually
[23]. As, the Hamacher product possess these properties
it was used in our study to consider the cumulative
effect from these parameters [44].
Several effective models have been developed based on

fuzzy rules for the detection of dengue severity level. In
the model in [46] the Mamdani fuzzy inference system is
based on physical symptoms and laboratory reports as in-
puts. The clinical symptoms include fever, gastro intestinal
symptoms, headache, body aches, skin rash, and retro-
orbital pain. The system gives the output as “no dengue”,
“probable dengue” and “confirmed dengue”. In the mobile
application for dengue detection using fuzzy logic, the
inputs are fever, skin rash, spontaneous haemorrhaging
and tourniquet test [39]. These symptom-based models
are useful and work with accuracy, especially in a field set-
ting. However, these symptoms are not specific to dengue
(e.g. other diseases such as chikungunya too have very
similar symptoms) making it difficult to determine in the

presence of co-existing epidemics [5]. In contrast, our
model is based on cytokines and is more applicable in a
health care setting where blood sampling is available. It is
based on our understanding of the pathogenesis. Severe
dengue affects the function of endothelial cells and inflam-
matory mediators are known to play a role in dengue
disease severity [6, 7, 9, 10, 13, 18]. Therefore, our model
is more objective as it relies on the measurements of the
blood, rather than on symptoms. To our knowledge this is
the first attempt at developing a fuzzy logic based decision
system for dengue severity prediction based on combined
interaction of cytokines and inflammatory mediators.
An ANFIS approach is used in [47] to construct diag-

nostic models using symptoms of dengue patients. In
this study, initially an ANFIS model is developed and
then it is further improved by using clustering algorithm.
This model achieved an accuracy of 86.13%. ANFIS uses
properties of ANN in developing fuzzy membership
functions. An ANN approach in [48] classified the risk
of dengue patients with an accuracy of 96.27%. To use
ANN and ANFIS techniques it requires a larger data set
as the data set has to be divided as training data set and
testing data set and the model is trained using this

Fig. 7 Change of model values over time for 3 DHF patients (a, b, c) and 3 DF (d, e, f) patients. Ambiguous region is shaded. Region above the
shaded area is non-severe region and the area below is severe region

Table 3 Distribution of DF and DHF patients in severe, ambiguous and non-severe regions at 96, 108 and 120 h from onset of fever

Time from onset of fever Patient severity level Percentage in severe region Percentage in ambiguous region Percentage in non-severe region

96 h DHF 29.4% 47.1% 43.5%

DF 50% 25% 25%

108 h DHF 100% 0% 0%

DF 0% 75% 25%

120 h DHF 73.68% 5.26% 21.05%

DF 28.57% 42.85% 28.57%
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sample training data set. The models based on these
methods have acquired higher accuracy than our model.
However, with the limited data set that we have, (at 96 h
from onset of fever number of DHF patients 17, DF
patients 4. At 108 h from onset of fever number of DHF
patients 16, DF patients 4 and at 120 h from onset of fever
number of DHF patients 19, DF patients 8) ANN or ANFIS
method is not feasible. As we could not afford to use the
sample data to develop the model, the model membership
values were determined through previous studies [10, 13,
41–43] thus, making it being independent of sample data.
This gave us the opportunity to fully utilize the limited data
set for model validation. Also, with our approach no over-
fitting error occurs as the model is independent of data.

Boruta algorithm, which works well on significantly
larger data sets was used in [23] to incorporate the effect
of interdependency between cytokines. A classification
and regression tree (CART) analysis performed on a
cohort of Thai children analysed at 72 h from onset of
illness achieved a 97% sensitivity in detecting patients
who proceeded into DSS [49]. This decision tree algo-
rithm used white blood cell count, percent monocytes,
platelet count and haematocrit to make decisions. CART
decision tree based on clinical and laboratory parameters
including platelets, IL-10 and lymphocyte resulted in a
model with an accuracy of 84.6% for DHF and 84.0% for
DF and identified IL-10 and platelet counts as the most
informative parameters [50]. Even with limited data with

Fig. 8 Change of lower and upper boundary values of the ambiguous region when the cut off (boundary) values of the membership functions
are changed within a small range of the cytokines IL-1β (a), IL-10 (b), PAF (c), S1P (d), TNF- α (e). The blue line represents the lower level of the
ambiguous region and the red line represents the upper level of the ambiguous region. Behaviour of the ambiguous region for a change in the
lower cut off value of the membership function is displayed in the left of figure and the behaviour of the ambiguous region for a change in the
upper cut off value of the membership function is displayed in the right of figure of each (a), (b), (c), (d) and (e)
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the fuzzy approach that we took, we were able to achieve
an overall accuracy of 85.00% at 108 h from onset of
fever. If much larger data set was present we could have
adopted an approach of decision tree or ANN as a better
selective approach on how the variables could be com-
bined with the Hamacher and OWA operator and can
look into improving the accuracy of our model. How-
ever, the limited small data set that we have, restricted
us from using these machine learning techniques.
As we are working with a small sample size and in

order to generalize our model performance we com-
pared our model with previously developed models that
are based on different techniques and also, performed a
sensitivity analysis. Sensitivity analysis is highly impor-
tant when working with a small sample size as, in these
limited sample sizes, a small change in the patient deci-
sion can hugely affect the overall model performance.
However, from Figs. 8 and 9, it can be seen that for a
small change in the cut off values of the membership
functions and the concentration levels the patient
categorization remains unchanged. Therefore, even
though we are working with a small sample size, sensi-
tivity results indicate that the model is robust to change.
Although this mathematical model performs with high

accuracy and is robust there are certain limitations and
further improvements that can be incorporated to the
model. As previous studies have shown that S1P levels
are significantly correlated with platelet counts in DHF
patients [10] and IL-10 levels are significantly and

inversely correlated with lymphocyte counts [6], the per-
formance of the model when cytokines are modelled
with other clinical parameters such as lymphocyte and
platelets need to be further analysed. Also for better
generalization, the model needs to be further validated
on other larger data sets and also on samples which
include children, as the tested sample only consisted of
adult patients and had only 11 DF patients.

Conclusions
This study is an attempt to build a mathematical model,
to address the combined effect of cytokines and immune
mediators S1P, IL-1β, TNF-α, PAF and IL-10, and deter-
mine the severity of dengue at an early stage. We devel-
oped a mathematical model using fuzzy logic operators,
Hamacher and OWA operators. Our model is different
from a majority of previous studies as, rather than
considering the individual effect of cytokines, the
combined effect from several cytokines is considered.
The model performs well in 96, 108 and 120 h from

onset of fever and performs best with an accuracy of
85% at 108 h from onset of fever. With the high
accuracy level of the model it could be used as a useful
asset to determine patients proceeding to DHF level at
an early stage, and thereby to reduce the mortality rate
and make optimal use of available resources. However,
the model’s tendency to overestimate the risk of DF
patients is a concern. Sensitivity analysis indicates that
the model is robust.

Fig. 9 Behaviour of ambiguous region for a change in concentration weights for IL-10 (a), PAF (b), TNF-α (c). The blue line represents the lower
level of the ambiguous region and the red line represents the upper level of the ambiguous region
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