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Estimating genome-wide regulatory activity
from multi-omics data sets using
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Abstract

Background: Gene regulation is one of the most important cellular processes, indispensable for the adaptability of
organisms and closely interlinked with several classes of pathogenesis and their progression. Elucidation of regulatory
mechanisms can be approached by a multitude of experimental methods, yet integration of the resulting
heterogeneous, large, and noisy data sets into comprehensive and tissue or disease-specific cellular models
requires rigorous computational methods. Recently, several algorithms have been proposed which model
genome-wide gene regulation as sets of (linear) equations over the activity and relationships of transcription
factors, genes and other factors. Subsequent optimization finds those parameters that minimize the divergence of
predicted and measured expression intensities. In various settings, these methods produced promising results in terms
of estimating transcription factor activity and identifying key biomarkers for specific phenotypes. However, despite their
common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the
background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm
used for solving the optimization problem and the data sets used for evaluation.

Results: Here, we review five recent methods of this class in detail and compare them with respect to several key
properties. Furthermore, we quantitatively compare the results of four of the presented methods based on publicly
available data sets.

Conclusions: The results show that all methods seem to find biologically relevant information. However, we also
observe that the mutual result overlaps are very low, which contradicts biological intuition. Our aim is to raise further
awareness of the power of these methods, yet also to identify common shortcomings and necessary extensions
enabling focused research on the critical points.
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Background
Gene regulation is one of the most important biological
processes in living cells. It is indispensable for adapting
to changing environments, stimuli, and developmental
stage and plays an essential role in the pathogenesis and
course of diseases. Mechanistically, the transcription of
DNA into RNA is predominantly controlled by a com-
plex network of transcription factors (TFs) (see Fig. 1).
These proteins bind to enhancer or promoter regions
adjacent to the genes they regulate [1], which may

enhance or inhibit the recruitment of RNA polymerase
and thereby activate or repress gene transcription [2].
Gene products also can be modified post-translationally
via microRNAs (miRNAs) degrading the transcript or
inhibiting their translation [3]. Besides, a multitude of
other mechanisms influence gene regulation, such as
chromatin remodelling [4], epigenetic effects [5], and
compound-building of transcription factors [2]. Distor-
tion of regulatory processes is inflicted with various
diseases [6, 7], especially with cancer [8, 9].
Due to this importance, many efforts have been

devoted to the elucidation of human regulatory relation-
ships and networks. Wide-spread experimental tech-
niques are transcriptome measurements to quantify gene
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and transcription factor co-expression [10], chromatin
immunoprecipitation (ChIP) on chips or followed by se-
quencing for identifying binding patterns of specific TFs
[11], and bisulfite sequencing to find epigenetic signals of
regulation [12]. Many large-scale datasets of such experi-
ments have been published and are available in public re-
positories such as the Gene Expression Omnibus (GEO)
[13], the Cancer Genome Atlas (TCGA) [14] or the
Encyclopedia of DNA Elements (ENCODE) [15]. Compu-
tational methods are also used, for instance, to identify
transcription factor binding sites (TFBS) [16] or to find
known TFBS within the genome (e.g., [17, 18]). Several
databases have been created which store relevant informa-
tion, such as lists of binding motifs (TRANSFAC [19] or
JASPAR [20]) or targets of regulatory miRNAs [21].
Such measurements and predictions are used by

network reconstruction algorithms to predict regulatory
relationships and regulatory networks [22]. A plethora of
different methods have been proposed, ranging from
purely qualitative methods [23] over simple statistical
approaches [24] to more advanced probabilistic frame-
works [25]. Early methods were plagued by insufficient
data and a general scarcity of background knowledge,
which led to rather unstable results [26]. This situation
has changed dramatically over the last years, as results
of more and more large screens have been made publicly
available [27] and also the knowledge on principal regu-
latory relationships has increased [28, 29]. This, in turn,
has increased the interest in methods which predict
genome-wide networks using a systematic, unified,
mathematical framework.
Here, we review five rather recent methods and con-

duct a quantitative comparison of their results with the
goal to identify their mutual strengths and weaknesses.
They all have in common that they assume both the set
of regulators (transcription factors or micro RNAs) to be
known and the topology of the regulatory network to be
given. By combining this background knowledge with

specific omics data sets, especially transcriptome data,
they try to infer the activity of regulators in a certain
experimental condition or disease using mathematical
optimization. All presented methods are global methods
in the sense that they compute activities genome-wide
(as much as represented by the underlying network),
thus removing the shortcomings of local methods which
ignore cross-talk between sub-models and global effects
within samples. The methods predominantly produce a
ranked list of regulators, sorted by their activity in a
given group of samples; given that a multitude of bio-
logical influences is ignored during inference, especially
kinetic and temporal effects, their goal cannot be to
produce absolute snapshots of regulatory activity. We
describe each method in detail and compare them with
respect to the most important properties, such as the
data being used, the method applied for deriving opti-
mized activity values, or the evaluation performed to
show effectiveness. We further implemented a quantita-
tive comparison including four of the presented methods
to objectively analyze their results. As contrast, we also
include ARACNE [30] as sixth method; this algorithm
uses only local reasoning and requires no background
knowledge, but is still rather popular.

Methods
We describe in detail five methods which infer transcrip-
tion factor activity from omics data sets using a back-
ground network of transcription factors and the genes
they regulate. All use some form of mathematical
optimization. To emphasize the common ground of
these at-first-sight rather different methods, we explain
their underlying models using a simple framework for
defining the relationships of transcription factors and
genes. This framework is presented first; it should be
understood as a least common denominator, not as a
proper method for network inference by itself. We then
describe five recently published methods for genome-

Fig. 1 Transcription of DNA into RNA. Transcription factors (TFs) bind to distal or proximal TF binding sites (TFBS) enhancing the binding of RNA
polymerase and activating the transcription of DNA into RNA
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wide TF activity estimation as extensions or constraints
to this general framework, namely the approach by
Schacht et al. [31] (estimation of TF activity by the effect
on their target genes), RACER [32], RABIT [33],
ISMARA [34] and biRte [35]. Additionally, we contrast
these more comprehensive methods with the local infer-
ence algorithm ARACNE [30], a popular tool for the de-
novo reconstruction of gene regulatory networks. Key
properties of all methods (input, mathematical model,
computation, output) are summarized in Table 1.

Mathematical framework
To combine regulatory networks and quantitative omics
data and to thereby deduce regulatory activity, all methods
described here use a genome-wide mathematical model.
Sample specific gene expression values gi,s, derived from
one biological condition, i.e., grouped into a single class,
for in total G genes and S samples need to be provided as
input. The background regulatory network is represented
as a directed graph where the nodes designate regulators
and regulated entities (mostly TFs and genes, but also
miRNAs, regulatory sites, or TF complexes) and directed
edges indicate a regulatory relationship between the two
connected nodes, for example the influence of a TF on the
expression of a gene (see Fig. 2).
We will use the variable t for regulators, i for regulated

entities, and bt,i for the strength of an edge from a TF/
miRNA t to a gene i representing, for instance, a binding
affinity. As abstract framework for explaining the differ-
ent methods we propose a simple linear model predict-
ing gene expression cgi;s of gene i in sample s in terms of
the activity of all T transcription factors βt,s, which regu-
late i, and the binding affinities bt,i. In contrast to Fig. 2,
where TFs can influence each other, this model ignores
TF – TF relations and feedback loops:

cgi;s ¼
XT
t¼1

βt;sbt;i

Given this model and a set of quantitative measure-
ments of gene expression gi,s, the goal of the mathemat-
ical optimization is to find parameters β such that the
sum of squared errors of measured vs predicted gene ex-
pression over all genes and samples is minimized using a
certain norm, for example the L2 norm:

min
XG
i¼1

XS
s¼1

gi;s−cgi;s
� �2

Estimation of TF activity by the effect on their target
genes [31]
The idea of this method is to use the expression levels of
TF’s target genes to infer their integrated effect (see

Fig. 3). The method uses expression data and database
curated TF binding information as input whereby the TF
– gene network is restricted to genes regulated by more
than 10 TFs and TFs with at least 5 target genes. The
model is closely related to the abovementioned general
framework, only adding a term for the sample specific
effect of a TF. Specifically, the activity of a TF is mod-
elled linearly by its cumulative effect on its target genes
normalized by the sum of target genes or the TF’s gene
expression level:

cgi;s ¼ cþ
X
t

βtbt;i θa;tactt;s þ θg;tgt;s
� �

where cgi;s denotes the predicted gene expression of
gene i in sample s, c is an additive offset, βt describes
the estimated activity of TF t and bt,i refers to the
underlying strength of the relation between TF t and
gene i reflecting the binding affinity. The estimated
effect of a TF in a certain sample is calculated via the
switch-like term in parentheses, where either the ac-

tivity definition actt;s ¼
X

i
bt;igi;sX
i
bt;i

or the gene expres-

sion of the TF itself gt,s is taken into account using
the restrictions θa,t, θg,t ∈ {0, 1} and θa,t + θg,t = 1. This
switch term represents a meta-parameter to find the
best model and has no biological interpretation. The
model outputs an activity value and the information
which switch parameter is chosen for each TF of the
reduced network.
During the optimization, the sum of error terms (abso-

lute value of the difference between predicted and mea-
sured gene expression) is minimized which is achieved
via mixed-integer linear programming using the Gurobi
5.5 optimizer.1 The authors of this method state that the
activity definition (see above) was used in 95% of their
test cases, but the switch-like combination of both terms
yielded still better optimization results. In the paper, the
optimization task is greatly simplified as the model is
computed for each gene separately and allows only a
maximum number of 6 regulating TFs. The TF – gene
network indicating the strength of a relation between a
TF and a gene is created for 1120 TFs using knowledge
from the commercial MetaCore™ database,2 ChEA [36]
and ENCODE [15]. Due to the restriction of the network
mentioned above, the actual model is then based on 521
TFs and 636 target genes only.
Evaluation of the results was performed using expres-

sion data from 59 cell lines of the NCI-60 panel [37, 38]
and from melanoma cell lines (“Mannheim cohort”)
[39]. A sample based leave-one-out and 10-fold cross
validation of predicted and measured gene expression
yielded Pearson correlation scores of about 0.6 for both
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data sets. A gene set enrichment analysis of the target
genes for TFs modelled by the activity definition yielded
64 significantly enriched concepts including cell cycle, im-
mune response and cell growth for the data from the
NCI-60 panel. Additionally, a t-test was computed be-
tween melanoma and other cell lines of the NCI-60 panel
to find differentially expressed genes of melanogenesis.
For the resulting genes, regulation models were built and
used to predict gene expression in the melanoma cell line
data set yielding good prediction performances.

RACER [32]
RACER (Regression Analysis of Combined Expression
Regulation) aims to integrate generic cell-line data with
sample-specific measurements using a two-stage regres-
sion (see Fig. 4). Firstly, sample-specific regulatory activ-
ities for TFs and miRNAs are calculated. Subsequently,
general TF/miRNA – gene interactions are derived.
Compared to our general framework, RACER includes

additionally miRNA binding information. It assumes a
linear combination, which is not further justified, of the
regulatory effects of TFs and miRNAs on mRNA level.
RACER can incorporate a variety of sample specific data
including mRNA and miRNA expression values, CNV
and DNA methylation. Optimization is applied twice to
reduce model complexity, where the method first infers
sample-specific TF and miRNA activities and uses these,
in a second step, to compute general TF/miRNA – gene
interactions.
In the first regression step, mRNA, miRNA, CNV and

DNA methylation data are used to calculate the sample
specific activities:

cgi;s ¼ cþ θCNV ;sCNV i;s þ θDM;sDMi;s þ
X
t

βt;s bt;i

þ
X
mi

βmi;s ci;mimiRNAmi;s

where cgi;s denotes the predicted gene expression of gene
i in sample s, c is an intercept, βt,s describes the esti-
mated activity of TF t in sample s and bt,i is the TF –
gene binding score for TF t and gene i. The parameter
βmi,s stands for the estimated activity of miRNA mi in
sample s and is multiplied by ci,mi, the number of con-
served target sites on 3’UTR of the target gene i for
miRNA mi, and by the expression level of miRNA mi in
sample s. θCNV,s (respectively θDM,s) are the regression
parameters for CNV signals CNVi,s (respectively DNA
methylation data DMi,s). Using βt,s and βmi,s from the
first regression step, TF – gene and miRNA – gene in-
teractions across all samples are calculated in a second
model:

cgi;s ¼ ~c þ ~θ i;CNVCNV i;s þ ~θ i;DMDMi;s þ
X
t

γ i;t βt;s

þ
X
mi

γi;mi βmi;s

where the sums apply only to a number of selected TFs
and miRNAs with nonzero binding signals bt,i > 0 and
conserved target sites ci,mi > 0. The resulting parameters
γi,t and γi,mi indicate the strength of a TF/miRNA – gene
relationship across all samples. To obtain robust esti-
mates, γi,mi is additionally weighted by the averaged ac-
tivities of the miRNA.
In each of the two regression steps, the optimization

criterion is to minimize the sum of squared errors with
L1 penalty on the linear coefficients to induce a sparse
solution and to set irrelevant parameters to zero after
the fitting. This sparse LASSO solution is obtained
through elastic-net regularized generalized linear models.
A supplementary feature selection procedure comparing
the full model to a restricted model leaving one TF or
miRNA out provides the most predominant TF/miRNA
regulators. TF binding scores are collected from the gen-
eric cell line of erythroleukemia cells K562 from ENCODE

Fig. 3 Flow chart of the approach by Schacht et al. The input data sets (marked in blue) are partly filtered and passed to a linear regression model
(yellow) which calculates an activity value for each TF (green)

Fig. 2 General scheme of a TF – gene network where all T TFs are
connected to each other and can regulate all of the G genes
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for 97 TFs and 16653 genes. Further, the number of con-
served target sites on 3’UTR is taken from sequence-
based information from TargetScan for 470 miRNAs and
16653 genes. The RACER method is implemented in R
and publicly available under http://www.cs.utoronto.ca/
~yueli/racer.html.
The method was evaluated using expression data from

an acute myeloid leukemia (AML) data set from TCGA
with 173 samples [40] via a sample based 10-fold cross
validation on the prediction of gene expression. To as-
sess the quality of predictions, the Spearman rank cor-
relation was calculated resulting in a reassuring value of
approximately 0.6. Further, the full model was compared
to models excluding one type of the input variables. The
full model performed best and a substantial reduction of
Spearman correlation was observed by omitting TF
regulation (20%) and DNA methylation (5%). RACER
also performed with competitive accuracy in predicting
known miRNA – mRNA and TF – gene relationships
compared to other methods like GenMiR++ [41] or EN-
CODE TF binding scores [15] using e.g., validated inter-
actions from the MirTarBase [42] and knockdown
studies. The feature selection procedure revealed 18 pre-
dominant transcriptional regulators in the AML dataset.
Using their associated targets, a functional enrichment
analysis showed that DNA repair and the tumor necrosis
factor pathway were enriched. When applying this panel
to cluster patients at different cytogenetic risks, the clus-
tering pattern of the regulatory activities was largely
consistent with the risk groups. Further, a literature sur-
vey on AML showed that many TF regulators among
the top predictions had a role in leukemogenesis.

RABIT [33]
Regression Analysis with Background Integration
(RABIT) is a method for finding expression regulators in
cancer by a large scale analysis across diverse cancer
types. It integrates TF binding information with tumor
profiling data to search for TFs driving tumor-specific

gene expression patterns (see Fig. 5). It can be applied to
predict cancer-associated RNA-binding protein (RBP)
recognition motifs which are key components in the
determination of miRNA function [43].
In contrast to our general framework, RABIT can, like

RACER, make use of CNV and DNA methylation data
additionally integrating promoter CpG content and pro-
moter degree information (total number of ChIP-seq
peaks near the gene transcription start site) and takes
RBP or TF binding information as regulatory input. The
computational model consists of three steps (see Fig. 5).
First, RABIT tests in each tumor whether the target
genes, identified by the BETA method [44], show differ-
ential expression compared to the normal controls in-
cluding a control for background effects from CNVs,
promoter DNA methylation, promoter CpG content and
promoter degree:

bgi ¼
X
f

θf Bf ;i þ
X
t

βtbt;i

where bgi represents the predicted differential gene ex-
pression between tumor and normal samples in gene i,
B includes values of the f different background factors
for gene i, b contains RBP or TF binding information
and θ and β are the respective regression parameter vec-
tors. The regression coefficients β are estimated by min-
imizing the squared difference between measured and
predicted gene expression. The regulatory activity score
for each TF/RBP is defined by a t-value (regression coef-
ficient divided by standard error) and its significance by
the corresponding t-test. If multiple profiles exist for the
same TF from different conditions or cell lines, the pro-
file with the highest absolute value of TF regulatory
activity score is selected. In a second step, a stepwise
forward selection is applied to find a subset of TFs
among those screened in step one optimizing the model
error. Lastly, TFs with insignificant cross-tumor correl-
ation are removed from the results.

Fig. 4 Scheme of RACER method. The input data sets (marked in blue) are passed to a two-step linear regression model (yellow) which calculates
sample specific activity values for each regulator and determines the most predominant regulators (green)
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Computationally, the regression coefficients are calcu-
lated via the efficient Frisch-Waugh-Lovell method. TF
binding information is taken from 686 TF ChIP-seq pro-
files from ENCODE representing 150 TFs and 90 cell
types. Additionally, recognition motifs for 133 RBPs and
their putative targets are collected by searching recogni-
tion motifs over the 3’UTR regions [45]. An implemen-
tation of the RABIT method can be downloaded from
http://rabit.dfci.harvard.edu/download.
RABIT was applied to 7484 tumor profiles of 18 can-

cer types from TCGA using gene expression, somatic
mutation, CNV and DNA methylation data. To system-
atically assess the results, the cancer relevance level of a
TF was calculated as percentage of tumors with the TF
target genes differentially regulated (averaged across all
TCGA cancer types). A comparison to cancer gene data-
bases, i.e., the NCI cancer gene index project [46], the
Bushman Laboratory cancer driver gene list [47, 48], the
COSMIC somatic mutation catalog [49] and the CCGD
mouse cancer driver genes [50], showed a consistent

picture. Further, RABIT’s performance was compared to
other regression models like LAR or LASSO where
RABIT had the best classification results when classify-
ing all TFs into three categories by NCI cancer index
and achieved better cross-validation error and shorter
running time. The regulatory activity of RBPs showed
that some alternative splicing factors could affect tumor-
specific gene expression by binding to target gene
3’UTR regions.

ISMARA [34]
In contrast to the previous three methods and to our
general framework which directly scores TFs or other
regulators, ISMARA (Integrated System for Motif Activ-
ity Response Analysis) infers the activity of regulatory
motifs (short nucleotide sequences) and thereby indir-
ectly deduces the effects of TFs and miRNAs (see Fig. 6).
ISMARA is a web service where no parameter settings
or specific processing of the input data, gene expression
or ChIP-seq data are necessary. It can also be used to

Fig. 5 Flow chart of RABIT method. The input data sets (marked in blue) are passed to a linear regression model (yellow) which calculates sample
specific activity values for each regulator and determines general regulatory activities (green)

Fig. 6 ISMARA model scheme. The input data sets (marked in blue) are passed to a linear regression model (yellow) which calculates motif activities
and determines associated regulators (green)
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calculate regulatory activity differences between samples
and consider replicates or data from time series.
ISMARA takes sample specific measurements and in-

formation about regulatory motifs for TFs and miRNAs
into account. Based on the input of gene expression data
or chromatin state measurements, the input signal is cal-
culated for each promoter in each sample. The input sig-
nal levels are modelled linearly in terms of the binding
site predictions and unknown motif activities:

cgp;s ¼ cp þ cs þ
X
m

Np;m βm;s

where cgp;s refers to the input signal for a promoter p in
sample s, cpand cs are intercepts for each promoter and
sample, Np,m summarizes the TF/miRNA binding site
predictions (sum of the posterior probabilities of all pre-
dicted TF/miRNA binding sites for motif m in promoter
p) and βm,s stands for the estimated motif activities. Like
in the other presented methods, the optimization criter-
ion is to minimize the sum of squared error terms
between predicted and measured gene expression. Pri-
marily, ISMARA provides the inferred motif activity pro-
files (βm,s) sorted by significance and a set of TFs and
miRNAs that bind to these motifs representing the key
regulators. Further, a list containing their predicted tar-
get promoters, associated transcripts and genes, a net-
work of known interaction between these targets and a
list of enriched gene ontology categories is displayed.
The web service ISMARA is available under http://
ismara.unibas.ch.
ISMARA employs a Bayesian procedure with a Gaussian

likelihood model and a Gaussian prior distribution for
βm,sto avoid overfitting. Information about regulatory
motifs is provided via the annotation of promoters
based on deep sequencing data of transcription start
sites. To obtain a set of promoters and their associ-
ated transcripts, the 5’ ends of mRNA mappings from
UCSC genome database are clustered with the pro-
moters. TF binding site predictions in the proximal
promoter region are collected using 190 position
weight matrices representing 350 TFs from JASPAR,
TRANSFAC, motifs from the literature and their own
analyses of ChIP-seq and ChIP-chip data. Addition-
ally, miRNA target sites for about 100 seed families
are annotated in the 3’UTRs of transcripts associated
with each promoter.
For evaluation, ISMARA was applied to data from

well-studied systems and results were compared to the
literature. Inferred motif activities were highly reprodu-
cible and even more robust than the expression profiles
from which motif activities were derived. When compar-
ing samples from 16 human cell types (GEO accession
number GSE30611) from younger and older donors,

ISMARA was able to identify a key regulator of aging-
related changes in expression of lysosomal genes. A joint
analysis of the human GNF atlas of 79 tissues and cell
lines [51] and the NCI-60 reference cancer cell lines [52]
revealed that many of the top dysregulated motifs were
well-known in cancer biology like HIF1A and has-miR-
205 miRNA. They also suggested novel predictions for
regulating TFs in innate immunity, mucociliary differen-
tiation and cancer.

biRte [35]
BiRte (Bayesian inference of context-specific regulator
activities and transcriptional networks) takes a mathem-
atically different approach compared to the abovemen-
tioned methods integrating TF/miRNA target gene
predictions with sample specific expression data into a
joint probabilistic framework (see Fig. 7). Compared to
our general scheme of a TF – gene network ( Fig. 2),
biRte takes the TF/miRNA – gene network without the
interactions between regulators to estimate regulatory
activities and infers the network between regulators in a
second step.
BiRte takes as input differential gene expression data

(mRNA), an underlying regulatory network including
TF/miRNA – target gene binding information and op-
tionally CNV data, miRNA and TF expression measure-
ments. As opposed to our general framework, biRte
defines a likelihood model for the set of active TFs/miR-
NAs (called regulators R which can be seen as hidden
variables) based on the entire gene expression data D
and certain model parameters θ:

LD;θ Rð Þ ¼ p DjR; θð Þ ¼
Y
D̂

p D̂jR; θ� �

¼
Y
D̂

Y
c

Y
i

p D̂icjRc; θ
� �

Here D represents the set of all available experimental
data including mRNA, CNV, miRNA and TF expression
data and Dic refers to its ith feature measured under ex-
perimental condition c. The condition specific hidden
state variables Rc are estimated with help of the Markov
Chain Monte Carlo (MCMC) method where a regulator
can switch from an active to an inactive state (switch) or
an inactive and an active regulator exchange their activ-
ity states (swap). Thereby, the posterior probability for
each regulator and condition to influence the expression
of its target genes is estimated. Simultaneously, a vari-
able selection procedure is applied to achieve sparsity of
the model. The optimization goal is not, as one would
expect, to return the configuration with highest poster-
ior probability among all sampled ones but to take
marginal selection frequencies during sampling into
account and filter those above a defined cutoff. After the
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determination of active regulators, the associated tran-
scriptional network containing TFs and miRNAs is
inferred from the observable differential expression of
target genes and target gene predictions for individual
regulators.
In practice, the stochastic sampling scheme based on

MCMC allows swap operations only when regulators
show a significant overlap of regulated targets. The vari-
able selection procedure is implemented via a spike and
slab prior [53] which can integrate prior knowledge
about the activity of regulators. To infer the associated
transcriptional network, Nested Effects Model (NEM)
[54] structure learning is applied. An input miRNA –
gene network is constructed based on MiRmap [55] for
356 miRNAs. The TF – target gene network with 344
TFs is compiled by computing TF binding affinities to
promoter sequences according to the TRAP model [56]
using data from ENSEMBL, TRANSFAC, JASPAR and
MetaCore™. An implementation of biRte is available for
R on Bioconductor under https://bioconductor.org/pack
ages/release/bioc/html/birte.html.
Several simulations were conducted to study model

behavior. On the basis of a human regulatory sub-
network and accordingly simulated expression data of
900 target genes biRte was compared to BIRTA [57],

GEMULA [58] and a hypergeometric test and further to
other network reconstruction algorithms like ARACNE
[30], GENIE3 [59] and GeneNet [60]. BiRte performed
best in regulator activity predictions including a favor-
able computation time and was robust against false
positive and false negative target gene predictions.
Additionally, biRte was applied to an E.coli growth
control and to a prostate cancer data set including 44
normal and 47 cancer samples from GEO (GSE29079)
with corresponding array data from 464 human miR-
NAs (GSE54516) and the results showed a principal
agreement with the biological literature.

ARACNE [30]
We compare ARACNE (Algorithm for the Reconstruction
of Accurate Cellular Networks) [30] as an established, yet
local, tool for the reconstruction of gene regulatory
networks to the previous five recent genome-wide
approaches. The algorithm is background knowledge-free
and identifies transcriptional interactions based on mutual
information including non-linear and non-monotonic
relationships and distinguishes between direct and indirect
relationships (see Fig. 8). ARACNE is a free tool available
under http://califano.c2b2.columbia.edu/aracne.

Fig. 7 Scheme of biRte method. The input data sets (marked in blue) are passed to a likelihood model (yellow) which determines active
regulators (green)

Fig. 8 ARACNE flow chart. The input data set (marked in blue) is used to calculate pairwise mutual information where indirect interactions are
removed (yellow) and which allow a reconstruction of the gene regulatory network (green)
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ARACNE uses as input only microarray expression
profiles and estimates candidate interactions by calculat-
ing the pairwise gene expression profile mutual informa-
tion I defined as

Iðgi; gjÞ ¼ Ii;j ¼ SðgiÞ þ SðgjÞ−Sðgi; gjÞ

where S denotes the entropy. Ii,j measures the related-
ness of genes gi and gj and equals zero if both are inde-
pendent. In a second step, the mutual information
values are filtered using an appropriate threshold de-
pending on the distribution of all mutual information
values between random permutations of the original
data set and indirect interactions are removed.
Computationally, a Gaussian kernel operator is used to

calculate mutual information scores. In a subsequent
step, the data processing inequality (DPI) [61] is applied
to remove probably indirect candidate interactions. The
DPI states that if the genes gi and gk interact only
through a third gene gj, then

Iðgi; gkÞ≤min
�
Iðgi; gjÞ; Iðgj; gkÞ

�

Thus, the least of the three mutual information scores
can come from indirect interactions only [30].
ARACNE’s performance was evaluated on the recon-

struction of realistic synthetic datasets [62] and on an
expression profile dataset consisting of about 340 B lym-
phocytes derived from normal, tumor-related and
experimentally manipulated populations [63] against
Relevance Networks and Bayesian networks. Regarding
the synthetic networks, ARACNE had consistently better
precision and recall values compared to the two other
algorithms and reached very good precision at signifi-
cant recall levels. It recovers far more true connections
and fewer false connections than the other methods with
better performance on tree-like topologies compared to
scale-free topologies. A reconstructed B-cell specific
regulatory network was found to be highly enriched in
known c-MYC targets where about 50% of the predicted
genes to be first neighbors were reported in the
literature.

Results
We described five recent methods for the genome-wide
inference of regulatory activity, namely the approach by
Schacht et al., RACER, RABIT, ISMARA, and biRte.
They all assume the topology of the regulatory network
to be known, cast activity estimation as an optimization
problem regarding the difference between predicted and
measured values, take different types of sample specific
omics data into account, and eventually produce a list of
regulators like transcription factors or miRNAs, ranked
by their estimated activities in the samples under study.

We also included ARACNE which is background
knowledge-free and uses only local dependency mea-
sures to reconstruct a regulatory network and indirectly
infer activities. All of the presented methods essentially
follow the same goal, i.e., accurate ranking of regulatory
activity, but differ in the types of measurements being
integrated, the background knowledge necessary for
their application, the complexity and refinement of the
underlying model of gene regulation, and the concrete
paradigm used for solving the optimization problem.
Most of the methods, except for the approach by
Schacht et al., are available online via a downloadable
implementation, a web service, or an R package provid-
ing an operable solution for the interested user. Whereas
an overview of the main features of each method ca be
found in Table 1, we now first compare the algorithms
regarding their general properties in a descriptive way.
The data sets used for evaluation vary between all

methods. Therefore, we further implemented an evalu-
ation framework to compare the method by Schacht et
al., RACER, RABIT and biRte in an objective and quanti-
tative way. We used experimental data of three publicly
available data sets from TCGA [64] and a regulatory net-
work as background knowledge. We first used only
mRNA expression data as input to the four methods to
ensure the result’s comparability, whereas in a second
evaluation step, also other omics data sets were included
where possible. We further analyzed the relevance of
regulators found by different methods using a literature
search.

General properties
Experimental data types included
The methods differ in the types of measurements being
integrated, which corresponds to the level of detail of
their model of gene regulations. All six methods use
mRNA as input. RACER, RABIT and biRte can also inte-
grate CNV, DNA methylation, TF/miRNA expression
data, or somatic mutations. ISMARA calculates an input
signal from microarray, RNA-seq, or ChIP-seq data.
Additionally, all presented methods use prior know-

ledge about the underlying regulatory network. These
networks are extracted from different data sources and
pre-processed in different manners. All methods require
at least knowledge about TF – gene relationships, yet
RACER, biRte and ISMARA also incorporate informa-
tion about miRNAs. When using RABIT, the user can
choose whether to provide TF or RNA binding protein
information. The approach of Schacht et al. and biRte
extract regulatory information partly from the commer-
cial MetaCore™ database, whereas the other methods use
only publicly available databases, like ENCODE, JASPAR
or TRANSFAC. The networks which are used for the
evaluations published in the respective papers are
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publicly available for the case of RACER (network for
16653 genes, 97 TFs and 470 miRNAs), RABIT (pre-
dicted binding scores of 63 RBP motifs and 17463 genes)
and biRte (network for E.coli including 160 TFs). Nei-
ther Schacht et al. nor ISMARA make this data
available.

Mathematical models of regulatory activity
The methods use different mathematical models to infer
regulatory activity. The approach by Schacht et al.,
RACER, RABIT and ISMARA use linear regression
whereas biRte applies a probabilistic framework. ARA-
CNE, as a local method, is based on mutual information.
RACER and RABIT can be seen as extensions of the ap-
proach by Schacht et al. since they essentially use the
same model structure but incorporate more input data
types and more classes of regulatory information. Fur-
ther, RACER applies a two-stage regression to infer
regulatory activity.

Optimization frameworks
For assessing regulator activities, Schacht et al., RACER,
RABIT and ISMARA minimize the sum of error terms
between measured and predicted gene expression. How-
ever, the methods use rather different algorithms for
solving the resulting optimization problem, and also
apply different constraints to achieve model sparsity,
robustness of inference, and feature selection. In the
approach by Schacht et al., the regression model is com-
puted for each gene separately and allows only a max-
imum number of six regulating TFs. RACER uses a
LASSO approach, while ISMARA follows a Bayesian
model that infers regulator activities as posterior distri-
butions. LASSO can be interpreted as a Bayesian model
using Laplacian priors instead of Gaussian priors in the
regression framework obtaining point estimates of the
regulatory activities and enforcing sparseness of the
solution [32]. In contrast, biRte uses a likelihood model
with a spike and slab prior to induce model sparsity.
This approach implements a selective shrinkage of
model coefficients such that estimates are less biased
compared to a LASSO prior [65]. With the help of the
spike and slab prior, sparsity can be controlled in a vari-
able dependent manner allowing the inclusion of prior
belief in the activity of each regulator [35].

Computed outputs
Schacht et al. and biRte determine activity of regulators
over all samples at once, whereas RACER and biRte first
infer sample-specific activities which are combined to
cross-tumor activities only in a second optimization
step. In contrast, ISMARA in first place infers motifs ac-
tivity; these activities are used to deduce the effects of
TFs and miRNAs by their motif binding profiles.

ISMARA primarily provides sample specific TF and
miRNA activity but also offers an option to group sam-
ples and compare average regulatory activity between
different conditions. Like biRte and ARACNE, it also
infers the network of the regulators themselves.

Methods and data sets used for evaluation
The type and extent of evaluation performed for the
different methods vary greatly. They range from direct
application to biological problems over the comparison
of results to the biological literature to simulation stud-
ies. All methods published evaluations results on pub-
licly available datasets, e.g., from the National Cancer
Institute, TCGA or GEO, but unfortunately address
different tissues and cancer types. Sample-based cross-
validation is applied in the work by Schacht et al.,
RACER, RABIT and ISMARA. The first two of these
methods use correlation coefficients between measured
and predicted gene expression for assessing prediction
quality. RACER, RABIT and biRte compare their results
to the outcome of other algorithms and to those of re-
stricted models, for example excluding one type of the
input variables. All methods search the literature to
compare their predictions to previously published stud-
ies on the respective biological question. Overall,
ISMARA provide the most extensive biological evaluation
using a battery of relevant use cases, whereas biRte excels
in systematic simulation studies. Sadly, there are very few
works which compare any of the methods presented on
the same problem; the only result we are aware of com-
pared ARACNE and biRte regarding their performance in
network reconstruction on simulated data, in which biRte
attained higher robustness against false positive and false
negative target gene predictions [35].

Quantitative comparison
Although certain evaluation steps were carried out for
all methods, results in the original papers are not com-
parable as they used different input datasets, different
background regulatory networks, and different evalu-
ation metrics. Therefore, in addition to the comparison
of general properties of the methods, we implemented
an evaluation framework using three independent and
publicly available test data sets to compare the method
by Schacht et al., RACER, RABIT and biRte in an object-
ive and quantitative way. All evaluated methods were
given the same regulatory network as input.

Data sets
For the evaluation we used experimental data from
TCGA [64] for three cancer types: Colon adenocarcin-
oma (COAD), liver hepatocellular carcinoma (LIHC)
and pancreatic adenocarcinoma (PAAD). For all three
cancer types, mRNA expression, CNV, DNA methylation
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and miRNA expression data is available for primary
tumor and normal tissue samples. These data sets are
openly accessible via the NCI Genomic Data Commons
Data Portal3 or the NCI Genomic Data Commons
Legacy Archive4 (DNA methylation data).
For mRNA gene expression we used processed RNA-

seq data in the form of FPKM (fragment per kilobase of
exon per million mapped reads) values. The files in-
cluded Ensembl Gene IDs which were converted to
HGNC symbols using the Ensembl [66] BioMart tool5 to
match the IDs of the TF – gene network. In two cases,
when multiple Ensembl Gene IDs mapped to one
HGNC symbol, we chose the gene with highest log2 fold
change between case and control group. miRNA expres-
sion was given as RPM (reads per million miRNA
mapped) measurements. Both mRNA and miRNA data
were centered using a weighted mean such that the
mean of the case group equaled the negative mean of
the control group, and normalized via a weighted stand-
ard deviation. CNV data was retrieved as masked copy
number segment where the Y chromosome and probe
sets with frequent germline copy-number variation had
already been removed. Chromosomal regions were
mapped to genes using the R package biomaRt [67]. If
multiple records mapped to one gene, the median of the
segment mean values was calculated. For DNA Methyla-
tion data we used the beta-values of Illumina Human
Methylation 450 arrays as methylation scores. Multiple
scores for the same gene were averaged within a sample.
We restricted our analyses to the samples for which all

four input data types were available. When multiple
measurements for one sample and data type were avail-
able, we used only the first one in alphabetical order of
the file name. After this selection procedure, 165 sam-
ples remained for COAD, 404 for LIHC and 180 for
PAAD. A list including sample and file information is
available in Additional file 1.
Together with the experimental data, all evaluated

methods were given the same regulatory network as
input. We used a publicly available human TF – gene
network [28] based on a text-mining approach and com-
plemented it with TF – gene interactions from the pub-
lic TRANSFAC6 database [19]. This network included
2894 interactions between 429 TFs and 1218 genes. The
network is provided in Additional file 2.

Evaluated methods
We conducted the quantitative comparison for the
method proposed by Schacht et al., RACER, RABIT and
biRte. ISMARA was not included since it is (a) only
available as a web service, (b) can only be used with its
own, proprietary underlying regulatory network model,
and (c) requires the upload of raw data which is prohib-
ited by TCGA’s terms of use. Also ARACNE [30] was

not included in the quantitative evaluation since it does
not use background knowledge and we therefore con-
sider its results as incomparable to the other methods.

� For the approach by Schacht et al. we re-implemented
their method as closely as possible to the original
design using Python and the Cuneiform workflow
language [68, 69]. Due to the high number of integer
parameters in the original method, the complexity of
optimizing the whole network at once would have by
far exceeded computational measures. Therefore, like
in the original paper, we computed the model for each
gene separately and restricted the number of
regulating TFs per gene to six. We added a second
step where we used these TF – gene interactions
building a sub-network to optimize TF activity
globally to describe the interplay of the TFs’ effects on
their target genes. As in the implementation of
Schacht et al., we used the Gurobi Optimizer.7

� For RACER we used the available R scripts8 and
extracted the resulting sample-specific regulatory
activities.

� RABIT published a C++ implementation which they
provide on their website9 and which we used with
the FDR option set to 1. As RABIT takes differential
expression into account, we used the difference of
expression values between case and control group as
input and ordered the TFs by t-value as proposed in
the RABIT paper.

� BiRte is available as a bioconductor R package. We
used R version 3.3.2 with biRte version 1.10.0 and
applied the method “birteLimma” to estimate
regulatory activities with the options niter and
nburnin set to 10000. As biRte has a randomized
component, the resulting TF activities are not
exactly the same for different runs. We averaged the
final activity scores over 1000 iterations of
birteLimma.

For our re-implemented method by Schacht et al. and
RACER we computed separate models for case and con-
trol group and ranked the TFs by their activity difference
between the two groups.
To ensure the result’s comparability, we first used only

mRNA expression data as input to the four methods. In a
second evaluation, we included also other omics data sets
where possible. BiRte was evaluated on mRNA and CNV
data, RABIT on mRNA, CNV and DNA methylation data,
and RACER additionally used miRNA expression as input.
We obtained lists with the regulators ranked according to
the absolute value of their computed activity for each
cancer type and method, with and without the use of
additional inputs. For each cancer type we calculated the
size of the overlaps in the four different results using the
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top 10 and top 100 regulators. The results for the top 10
regulators using either only mRNA or multiple omics data
sets as input are shown in Table 2.

Only mRNA as input
When only mRNA is used as input, one TF is commonly
found by the three methods RACER, RABIT and biRte in
each data set, respectively: PHOX2B for COAD, EPAS1
for LIHC and ELF1 for PAAD. A literature search of these
TFs and their targets revealed clear associations to the
respective cancer type. The TF obtained commonly for
COAD, PHOX2B, is related to TLX2, a gene which has
been shown to play a role in the tumorigenesis of

gastrointestinal stromal tumors [70]. EPAS1, which was
found in the LIHC top 10 TFs of three methods, is linked
to CXCL12, which plays an important role in metastasis
formation of hepatocellular carcinoma by promoting the
migration of tumor cells [71, 72]. For PAAD, three
methods ranked TF ELF1 high, which is related to 14
genes in our network, inter alia to BRCA2 and LYN.
Mutations in the BRCA2 gene have been implicated in
pancreatic cancer susceptibility [73, 74], whereas the
knockdown of LYN reduced human pancreatic cancer cell
proliferation, migration, and invasion [75]. These results
underline that the methods are able to find biologically
relevant information about regulation processes in cancer.

Table 2 HGNC Symbols of the top 10 regulators found by each method for COAD (using 165 samples), LIHC (404 samples) and
PAAD (180 samples) and the use of only mRNA data as input (left panel) and multiple input data sets (RACER: mRNA, miRNA, CNV
and DNA methylation; RABIT: mRNA, CNV and DNA methylation; biRte: mRNA and CNV; right panel). TFs with equal activity values
are marked with*. TFs found by several method’s top 10 are marked in bold (when found by RACER, RABIT and biRte), blue (RACER
and RABIT), red (RABIT and biRte) or yellow (RACER and biRte)
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Several TFs in the top 10 are found by two of the four
methods For instance, RACER and RABIT have four
common top 10 TFs (CDX2, NRF1 and MYC next to
PHOX2B) in the COAD data set. However, the top 10
TFs found by the method by Schacht et al. do not over-
lap with any top 10 TFs of the other methods in any
data set. The agreement of RACER, RABIT and biRte in
the top 10 TFs hints to the biological importance of the
found TFs since this overlap is statistical significant as
the probability of finding common TFs in three sets of
ten randomly chosen ones out of 429 TFs (p-value) is
below 0.006. Additionally, the methods do identify dif-
ferent TFs for different data sets, indicating the import-
ance of the actual cancer specific mRNA expression
values and that results are not dictated by the back-
ground network.
The results for the number of overlapping regulators

in the top 100 between the four methods and the three
different data sets are shown in Fig. 9. For RABIT, only
76 TFs for COAD (resp. 67 for LIHC and 57 for PAAD)
could be ranked since all other TFs had an activity value
equal to zero.
When looking at the overlap of three of the four

methods, the number of overlapping TFs is still the
highest for the triplet RACER, RABIT and biRte. For
the LIHC dataset two TFs are found in the top 100
of all four methods (E2F4 and SOX10). E2F4 is a
downstream target of ZBTB7, which was associated to
the expression of cell cycle-associated genes in liver
cancer cells [76]. Two target genes of E2F4, CDK1
and TP73 were also involved in liver cancer develop-
ment [77] and proposed as prognostic marker of poor
patient survival prognosis in hepatocellular carcinoma
[78]. Further, epigenetic alterations of the EDNRB
gene, a target of SOX10, might play an important role
in the pathogenesis of hepatocellular carcinoma [79].
Even if the result of four methods finding two com-
mon TFs is not statistically significant (p-value = 0.36),
their association to liver hepatocellular carcinoma
shows that the methods reach their goal of identifying
relevant TFs.

However, when comparing different data sets, the
methods tend to rank the same TFs under the top 100
to a greater or lesser extent. For example, the overlap of
all top 100 TFs of the three cancer types is only one TF
for RABIT and nine TFs for biRte, but 16 TFs for the
method by Schacht et al. and even 32 TFs for RACER.
Therefore, the results from RABIT and biRte seem to be
more cancer type specific and less dependent on the
regulatory network than the results from RACER. How-
ever, we did not specifically investigate the influence of
the underlying network and its topology on the results
which would be an interesting point for further research.

Multi-omics data as input
When not only taking mRNA into account but also
miRNA, CNV and DNA methylation, the results are
more difficult to compare between the methods, since
they all use a different way of combining different types
of data due to their models and implementations.
We are aware of the lower level of comparability of

this approach regarding the multi-omics results in con-
trast to a scenario, where all methods are evaluated on
the same set of input data. However, we intended to use
maximum set of input data for each method to cover
the effect of the use of multiple omics data sets com-
pared to only mRNA as input.
BiRte was evaluated on mRNA and CNV data, RABIT

on mRNA, CNV and DNA methylation data, and
RACER additionally used miRNA expression as input.
Whereas RACER and RABIT considered CNV or DNA
methylation data as one background factor and compute
only one activity value, biRte evaluated the influence of
each CNV separately.
The results (see Table 2, right panel) show that

RACER exclusively ranks miRNAs high; not a single TF
is found among the top 10 regulators. Also, the influence
of CNVs was high in LIHC and PAAD. However, the
TFs that RACER found in the top 10 when using only
mRNA data as input are still ranked high in the multi-
omics scenario, e. g the COAD top three TFs of the
mRNA results are ranked 13th, 16th and 14th in the

Fig. 9 Number of overlapping TFs in the top 100 of ranked TFs per method (for RABIT the overlap with the top 76/67/57 TFs (having activity > 0)
in COAD/LIHC/PAAD is shown)
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results of the multi-omics input. The difference of the
results coming from the two input types is less for
RABIT: seven TFs are still in the top 10 for COAD (8
for LIHC and 6 for PAAD) when using CNV and DNA
methylation additionally to mRNA data. Therefore, the
contribution of additional input data seems not to be
crucial for the performance of RABIT. BiRte considers
each CNV as a potential regulator which increases the
total number of regulators enormously. Still, two com-
monly present TFs in the top 10 of the COAD data set
(even six for LIHC and one for PAAD) are found by
either the sole mRNA input and the multi-omics
approach.
The overlap of the top 10 of RABIT and biRte in the

multi omics case is considerable with three TFs in LIHC
(HNF4A, EGR1 and MTF1; p-value = 0.001), and one TF
in PAAD (SPI1; p-value = 0.21). Three of them (HNF4A,
MTF1 and SPI1) were already found when using only
mRNA data as input.
The results for the use of different input data sets

show that the top ranked regulators are drastically chan-
ged when using additionally miRNA data in RACER, but
change less when only CNV or DNA methylation data is
provided in RABIT and biRte. However, the results from
multi omics analyses are difficult to compare since the
combination of input data sets is not consistent across
the three different methods.

Discussion
Background networks
A crucial input to the models is the underlying regula-
tory network which is needed to reduce the search space
for actual regulatory activity. However, the construction
of comprehensive TF/miRNA – gene regulatory net-
works is difficult for various reasons. Firstly, a compre-
hensive characterization of the human regulatory
repertoire is lacking since only about half of the esti-
mated 1,500–2,000 TFs in the mammalian genome is
known [80]. ChIP experiments, prone to a high false
positive rate [81], were used to identify TF binding pat-
terns but each assay is limited to the detection of one
TF in one condition and therefore TF binding has not
been characterized for many TFs in most cell types. Fur-
ther, the local proximity of a binding site to the tran-
scriptional start site of a gene does not automatically
implicate transcriptional regulation. With regard to post-
transcriptional regulators, the functions for only a few of
the around 1,200 different miRNAs have been experimen-
tally determined and current data on miRNA targets is
mostly based on computational predictions [82]. Gener-
ally, the knowledge about TF and miRNA binding is scat-
tered over the biological literature and different, partly
commercial, databases, impeding the construction of
comprehensive networks [28]. Therefore, any comparative

evaluation of the methods presented here would have to
make sure that the same background network is used for
each computation. Besides, studies on the impact of net-
work incompleteness or different error rates in networks
would be important to assess the ability of the methods to
cope with such common problems. Simulation studies will
be vital in this regard.

The graph view on regulation
The modelling of regulatory networks as graphs, as used
in all presented methods, is perhaps not the optimal rep-
resentation for the underlying biological regulatory pro-
cesses. A graph cannot easily account for important
effects such as TF complex formation and temporal and
spatial synchronization of activities. Furthermore, TF
binding is affected by chromatin state and the impact of
posttranslational modifications on transcriptional activity
which are difficult to include in a graph view on regula-
tion. The model’s dependence on the topological struc-
ture and the robustness to changes in the underlying
network have not been evaluated or discussed in any of
the presented methods even if these issues are known to
have a severe influence in network analysis [83].

Underlying mathematical model
Linear models, widely spread in different fields of sci-
ence, provide a simple and easily understandable design
but over-simplify the underlying biological processes.
Nonlinear behavior, e.g., saturation effects, cannot be
represented. Considering that the number of available
samples is typically relatively small, the incorporation of
many different data types and according parameters into
the model could result in excessively complex designs
prone to overfitting, but this issue lacks general aware-
ness. Only two of the presented methods incorporate
parameter priors (ISMARA and biRte), and two apply
cross validation techniques to estimate prediction per-
formance (method by Schacht et al. and RACER). Fur-
ther, the effect of temporal buffering between TF
binding and the actual effect on gene expression is not
included in any of the methods.

Comparability
All methods produce a ranked list of regulators. Com-
paring these results across different methods, even when
applied on the same data set and using the same back-
ground network, is difficult since no generally accepted
benchmarks are available. Therefore, there currently is
no objective measure to designate a best method. The
closest comparable evaluation effort we are aware of is
implemented in the “DREAM5 – Network Inference”
challenge [84], which targets gene regulatory network re-
construction. The invited participants reverse-engineered a
network from gene expression data, including a simulated
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network, and evaluated the results on a subset of known
interactions or the known network for the in-silico case.
The approach of GENIE3 [59] which trains a random for-
est to predict target gene expression performed best and
the integration of predictions from multiple inference
methods showed robust and high performance across di-
verse data sets. However, an extensive competitive evalu-
ation to determine active regulators based on a given
regulatory network has, to the best of our knowledge not
been carried out yet.
We therefore compared the results of four methods in

a quantitative way. The experimental data and the regu-
latory network we used as input are publicly available to
ensure transparency of our results. The results suggest
that the methods are able to find biologically relevant
information about regulation processes in cancer. How-
ever, the result overlaps are rather low (though some-
times statistically significant). This seems surprising as
all methods essentially follow the same goal, i.e., identi-
fication of the most differentially active TFs or genes.
We think further research is necessary to exactly
characterize the specific strengths of each method. Fur-
thermore, we did not investigate the influence of the
underlying network on the results, which is another
topic for further research.

Conclusion
Despite their often rather involved procedures and
models, none of the presented methods adequately
reflects the biological reality of regulatory activity in
cells. A specific disease phenotype is rarely caused by a
single gene but rather a product of the interplay of
genetic variability, epigenetic modifications and post-
transcriptional regulation mechanisms [85]. The pre-
sented methods ignore a multitude of such factors like
the effects of chromatin state and alternative splicing,
nonlinear relationships between regulatory activity and
gene expression, or kinetic and temporal effects. Fur-
thermore, TFs themselves regulate the expression of
other TFs forming feedback loops which are not consid-
ered in any of the presented methods. Nevertheless, the
methods apparently are able to detect strong signals and
produced promising results in terms of ranking tran-
scription factors by their activity and are thus valuable
tools for identifying biomarkers for specific phenotypes.

Endnotes
1http://www.gurobi.com/products/gurobi-optimizer
2http://lsresearch.thomsonreuters.com/pages/solu-

tions/1/metacore
3https://gdc-portal.nci.nih.gov
4https://gdc-portal.nci.nih.gov/legacy-archive
5http://www.ensembl.org/biomart/martview, release 87

6http://www.gene-regulation.com/pub/databases.html,
release 7.0

7version 6.04, available under a free academic license
8http://www.cs.utoronto.ca/~yueli/racer.html (accessed

17 October 2016)
9http://rabit.dfci.harvard.edu (accessed 05 February

2016)
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