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Abstract

Background: Kinetic models of biochemical systems usually consist of ordinary differential equations that have
many unknown parameters. Some of these parameters are often practically unidentifiable, that is, their values cannot
be uniquely determined from the available data. Possible causes are lack of influence on the measured outputs,
interdependence among parameters, and poor data quality. Uncorrelated parameters can be seen as the key tuning
knobs of a predictive model. Therefore, before attempting to perform parameter estimation (model calibration) it is
important to characterize the subset(s) of identifiable parameters and their interplay. Once this is achieved, it is still
necessary to perform parameter estimation, which poses additional challenges.

Methods: We present a methodology that (i) detects high-order relationships among parameters, and (ii) visualizes
the results to facilitate further analysis. We use a collinearity index to quantify the correlation between parameters in a
group in a computationally efficient way. Then we apply integer optimization to find the largest groups of
uncorrelated parameters. We also use the collinearity index to identify small groups of highly correlated parameters.
The results files can be visualized using Cytoscape, showing the identifiable and non-identifiable groups of
parameters together with the model structure in the same graph.

Results: Our contributions alleviate the difficulties that appear at different stages of the identifiability analysis and
parameter estimation process. We show how to combine global optimization and regularization techniques for
calibrating medium and large scale biological models with moderate computation times. Then we evaluate the
practical identifiability of the estimated parameters using the proposed methodology. The identifiability analysis
techniques are implemented as a MATLAB toolbox called VisId, which is freely available as open source from GitHub
(https://github.com/gabora/visid).

Conclusions: Our approach is geared towards scalability. It enables the practical identifiability analysis of dynamic
models of large size, and accelerates their calibration. The visualization tool allows modellers to detect parts that are
problematic and need refinement or reformulation, and provides experimentalists with information that can be
helpful in the design of new experiments.
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Background
The development of mechanistic (kinetic) models in
order to quantitatively describe the dynamics of biolog-
ical phenomena is one of the core research themes in
systems biology. During the last decade, fostered by the
greater availability of the necessary experimental data,
the development of large (up to genome-scale) kinetic
models has become one of the main objectives in the
field, as well as in related areas such as synthetic biol-
ogy, metabolic engineering, or industrial biotechnology
[1–10]. More recently, the first steps towards compre-
hensive whole-cell models have been taken [11], which
has great potential for applications e.g. in personalized
medicine [12]. However, the development of these large-
scale integrated dynamic models poses severe challenges
[13, 14]. Those associated with model building are com-
mon to the more general problem of reverse engineering
of biological systems [15]. In this context, parameter esti-
mation (i.e. model calibration) is arguably one of the
most studied [16–19], yet more challenging step in model
building.
Parameter estimation in nonlinear dynamic models can

be an extremely hard problem mostly due to the following
issues [15]: lack of identifiability, ill-conditioning, multi-
modality and over-fitting. The latter three can be handled
via global optimization and regularization methods, as
reviewed and illustrated recently [20]. The present paper
begins by continuing the line of work in [20], addressing
these three issues. To this end we introduce a combina-
tion of a global optimization metaheuristic, eSS [21], and
an efficient local search method, the adaptive algorithm
NL2SOL [22]. By using this optimization technique jointly
with regularization it is possible to reduce the calibration
times of large dynamic models and simultaneously avoid
over-fitting. We show this for models from the recently
presented BioPreDyn benchmark collection [23]. Then we
focus on the remaining issue, that is, identifiability anal-
ysis of large dynamic models. Our aim is to develop a
methodology which (i) is able to characterize high-order
relationships among parameters, and (ii) scales up well
with model size. Thus, our objective goes beyond find-
ing the subset of identifiable parameters: we also aim to
systematically characterize the space of non-identifiable
parameters, and to facilitate the advanced analysis of the
results with scalable visualization tools.
Identifiability analysis aims at establishing whether it

is possible to determine the values of the unknown
model parameters [24]. It is common to distinguish
between structural and practical identifiability. Struc-
tural or a priori identifiability analysis decides whether
the model parameters are uniquely determinable based
on the model formulation, which includes the dynamic
equations, observation functions and stimuli [25]. A
parameter θ of the model is structurally identifiable if

y(θ) = y(θ ′) ⇔ θ = θ ′, where y denotes the model
predictions, which are observable in the experiments. A
parameter θ is structurally locally identifiable if for almost
any value θ∗ there is a neighbourhood V (θ∗) in which
the above relationship holds. It is globally identifiable if
the relationship holds in all the range of values of the
parameter. If there is some region with non-zero mea-
sure where the relationship does not hold, θ is structurally
unidentifiable. Structural identifiability analyses usually
involve a high computational burden, which makes them
difficult to apply to large models [26–28]. Furthermore,
structural identifiability is only a necessary but not suffi-
cient condition for identifiability. Very often a structurally
identifiable parameter is practically unidentifiable, that
is, its value cannot be determined with precision due
to limitations in the available data. This can be quanti-
fied using practical or a posteriori identifiability analysis,
which provides confidence intervals of the parameter val-
ues. The two main sources of practical non-identifiability
are (1) lack of influence of a parameter on the observ-
ables, and (2) interdependence among the parameters.
Obviously, if a parameter does not influence the observ-
ables (case 1) it is not possible to determine its value.
The second situation, in which the effect on the observ-
ables of a change in one parameter can be compensated by
changes in other parameters, can also prevent parameter
identification. Both problems are related to the sensi-
tivities of the observables to changes in model param-
eters. While (1) is related to the average sensitivity of
the model outputs to a specific parameter, (2) can be
investigated based on the collinearity of the parametric
sensitivities [29].
In this paper we combine global optimization and reg-

ularization techniques to calibrate medium and large
scale biological models (in this context, we will use the
term “medium-scale” for models with 10 to 50 param-
eters and “large-scale” for models with more than 50
parameters). Then we evaluate the practical identifia-
bility of estimated model parameters using sensitivity
analysis and collinearity measures. We determine the
largest identifiable subsets of parameters, characterize the
interplay among non-identifiable groups of parameters,
and visualize the results using Cytoscape. The visual-
ization tool shows the identifiable and non-identifiable
groups of parameters together with the model struc-
ture in the same graph. In this way, modellers can
detect parts that are problematic and need refinement
or reformulation, and experimentalists obtain informa-
tion that can be helpful in the design of new exper-
iments. The methods for identifiability analysis and
visualization presented here have been implemented as
a MATLAB toolbox called VisId, which is available
from GitHub (https://github.com/gabora/visid) and as
Additional file 1.

https://github.com/gabora/visid
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Methods
Parameter estimation with regularization and global
optimization
Mathematical model
We consider deterministic models of biological systems
that can be described by nonlinear ordinary differential
equations (ODEs) in the following form:

dx(t, θ)

dt
= f (x(t, θ),u(t), θ), (1)

y(x, θ) = g(x(t, θ), θ), (2)
x(t0) = x0(θ), t ∈ [

t0, tf
]
. (3)

Here x ∈ R
Nx denotes the state vector (often con-

centrations), f describes the interactions among the state
variables (often constructed from the reaction rate func-
tions), and u(t) denotes the input variables (stimuli). The
parameter vector θ ∈ R

Nθ contains the (positive) parame-
ters, e.g. reaction rate coefficients or Hill exponents. Their
values are often unknown and must be estimated from
data.
The model variables x are mapped to the measurable

output variables y ∈ R
Ny , also known as observables or

model predictions, by the observation function g. These y
signals are the quantities that can be experimentally mea-
sured. We will denote by yijk the model prediction for
the j-th observed quantity in the k-th experiment at time
ti ∈[ t0, tf ]. The corresponding measured data is denoted
by ỹijk .

Parameter estimation
The goal of parameter estimation is to determine the val-
ues of the unknown parameter vector θ . This is usually
done by minimizing a distance between model predic-
tion yijk and measured data ỹijk . One of the simplest,
but yet general, choices of this distance is the weighted
sum-of-squares

QLS(θ) =
Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1
wijk

(
yijk (x(ti, θ), θ) − ỹijk

)2 ,

(4)

where Ne is the number of experiments, Ny,k is the num-
ber of observed compounds in the k-th experiment, and
Nt,k,j is the number of measurement time points of the j-th
observed quantity in the k-th experiment, and the weights
are denoted by wijk . The total number of data in all exper-
iments is denoted by ND = ∑Ne

k=1
∑Ny,k

j=1
∑Nt,k,j

i=1 1. In order
to simplify the index triplet, from now on we will use only
one index, i.e. the weights and observables are denoted by
wi and yi for i = 1, 2 . . .ND.

Then the parameter estimation problem is formulated
as an optimization problem in the following form:

minimize
θ

QLS(θ) + α�(θ) (5)

subject to θmin ≤ θ ≤ θmax, (6)
dx(t, θ)

dt
= f (u(t), x(t, θ), θ), (7)

y(x, θ) = g(x(t, θ), θ), (8)
x(t0) = x0(θ), t ∈ [

t0, tf
]
. (9)

Here �(θ) is a a regularization term, which is described
in the following subsection, and θmin and θmax are lower
and upper bounds of the parameter values. The parameter
vector θ̂ that solves this minimization problem is called
the optimal parameter vector or the parameter estimates.

Regularization
Large scale dynamic models are often over-parametrized,
turning the estimation of their parameters into an ill-
posed problem [30]. This means that the minimum of the
least-squares cost function (4) is non-unique, or that even
a very small perturbation of the data results in very differ-
ent estimated parameters. Furthermore, due to the large
number of degrees of freedom, these models tend to cap-
ture the artificial dynamics of measurement noise. This is
known as overfitting [31, 32] and it usually results in poor
predictive capability of the calibrated model.
Regularization techniques incorporate a priori knowl-

edge about the parameter values to make the problem
well-posed. The regularization parameter α in (5) bal-
ances the strength of this knowledge; its value can be
found by regularization tuning methods [33]. Here we fol-
lowed the guidelines presented in [20] and chose a small
regularization parameter (α = 0.1), since we assume that
we do not have good a priori estimates of the parameters.
Regarding the regularization function, �(θ), we chose

the Tikhonov regularization framework tomatch the form
of the penalty to the least squares formalism of the objec-
tive function. In this case the penalty is a quadratic penalty
function,

�(θ) =
(
θ − θ ref

)T
WTW

(
θ − θ ref

)
, (10)

whereW ∈ R
Nθ×Nθ is a diagonal scaling matrix and θ ref ∈

R
Nθ is a reference parameter vector, which is problem

dependent and determined by the available information
about the model parameters.

Global optimization
We solve the minimization problem defined by (5)–(10)
using optimization. Since the cost function (5) is usually
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multi-modal (i.e. it usually has several local minima)
[34–37], it is necessary to use an efficient global
optimization method. Deterministic global optimization
methods [38–42] can guarantee global optimality
of the solution. However, their computational cost
increases exponentially with the number of param-
eters, which makes them unsatisfactory for large
scale models. Stochastic and metaheuristic methods
[17, 18, 35, 36, 43, 44], on the other hand, do not provide
such guarantees, but are often capable of finding adequate
solutions in reasonable computation times.
For this reason we use a method called enhanced scatter

search (eSS) [21], which is an advanced implementation
of a population-based algorithm called scatter search. The
scatter search metaheuristic works by evolving a number
of solutions (population members), which constitute the
reference set (RefSet). Members of this set are selected
due to their quality and diversity. They are updated at
every iteration by combining them with other RefSet
members and, occasionally, by applying an improvement
method. This improvement consists of a local search to
speed-up the convergence to optimal solutions. In the
present work we have chosen NL2SOL [22] as a local
method. NL2SOL is a quasi-Newton algorithm with trust
region strategy that exploits the structure of the nonlin-
ear least squares problem. Note that the combination of a
global method (scatter search) with a local one makes eSS
a hybrid algorithm.

Practical identifiability analysis
The shape of the cost function (5) in the surroundings
of its optima determines the local identifiability of the
parameters. We assess parametric identifiability in two
consecutive steps:

1. First we calculate the sensitivity of the model outputs
(observables) with respect to changes in the
parameters. Those parameters which have no effect
(or very little) on the observed signals are classified as
non-identifiable. Note that this label is assigned on
an individual basis, that is, taking only into account
the effect of each parameter individually.

2. Even if a parameter influences the model output, it
may still be unidentifiable if its effect can be
compensated by changes in other(s) parameter(s).
Hence in the second step we consider the interplay
among parameters, aiming at finding groups of
parameters which are non-identifiable due to their
collinearity.

Note that, while it would be possible at least in princi-
ple to perform both steps simultaneously, in practice the
curse of dimensionality hampers the application of such a
global sensitivity approach to large models [45, 46].

Sensitivity analysis
The analysis of parametric sensitivity of kinetic models
has a long tradition in model analysis [47, 48]. For the
dynamical system (1)–(2), the parametric sensitivities of
the observables can be accurately calculated by solving the
forward sensitivity equations:

dXi(t)
dt

= ∂f (x,u, θ)

∂x
Xi(t) + ∂f (x,u, θ)

∂θ
for i = 1, . . . ,Nθ

(11)

si(t) = ∂g(x, θ)

∂x
Xi(t)+ ∂g(x, θ)

∂θ
for i = 1, . . . ,Nθ (12)

si(t0) =
{
0 if θi is a model parameter
1 if θi is an initial condition for i = 1, . . . ,Nθ .

(13)

Here Xi = ∂x
∂θi

denotes the sensitivity of the state vector
with respect to the i-th parameter and the vector si = ∂y

∂θi
is the sensitivity of the observables with respect to this
parameter. This calculation requires the solution of the
Nx × Nθ ordinary differential Eq. (11) with initial condi-
tions (13) for each experiment. The numerical solution is
determined for the time points for which there are exper-
imental data available, and then the algebraic Eq. (12)
are evaluated. If the partial derivatives of the dynamic
equations are not available, an alternative is to calcu-
late the sensitivities using finite differences or automatic
differentiation.
The sensitivities of the observables are scaled using the

same weights as in Eq. (4), resulting in scaled sensitivities
for an output j and a parameter i:

[
s̃i
]
j = √

wj
∂yj
∂θi

. (14)

For each parameter we calculate an overall scoring
called root mean squared sensitivity, s̃msqr

i , to take into
account changes in time or across experiments [29, 49]:

s̃msqr
i =

√√
√
√
√

1
ND

ND∑

j=1
s̃2ij for i = 1, . . . ,Nθ . (15)

Below a certain threshold the parameters are consid-
ered non-influential to the outputs. We set the threshold
to four orders of magnitude smaller than the maximum
root mean square value (15). Parameters whose sensitiv-
ity falls below this cut-off value are considered practically
non-identifiable and they are kept out of further analysis.
The procedure is summarized in Algorithm 1.
We remark that the outcome of the sensitivity calcula-

tions depends not only on the parameters, but also on the
choice of initial conditions and external stimuli, which can
have a strong influence in the practical identifiability of a



Gábor et al. BMC Systems Biology  (2017) 11:54 Page 5 of 16

Algorithm 1 Finding sensitive model parameters
Require: Obtain vector of calibrated parameters → θ̂ =

[ θ̂1, . . . , θ̂Nθ ] (solve Eqs. (5)–(10))
1: Parameter index set I ← {1, 2, . . . ,Nθ }
2: Compute the sensitivity matrix at the optimal param-

eter vector → s(θ̂) (solve Eqs. (11)–(13))
3: Compute the weighted sensitivities → s̃ (solve

Eq. (14))
4: Find the sensitive parameters by ranking the mean-

square values of the sensitivity columns as in Eq. (15)
and setting a cut-off value. The corresponding index
set → Isensitive ⊂ I

model. If insufficiently excitatory stimuli or initial condi-
tions result in poor practical identifiability, a solution –
if it is possible to carry out additional measurements –
is to design and perform a new experiment to generate
maximally informative data [17].

Collinearity of parameters
Interplay among influential parameters can result in an
unidentifiable model, because a variation in the cost func-
tion value due to a change in a parameter can be compen-
sated by changes in other parameters. Pairwise interplay
can be detected by plotting contours of the cost function
versus pairs of parameters. Largely eccentric contours or
“valleys” show that the cost function is almost unchanged
in one direction, and the two parameters are highly corre-
lated. This approach has two drawbacks: it involves a large
computational effort and is limited to interplay between
pairs of parameters. To compute higher dimensional inter-
actions we use a different measure: the collinearity of
parametric sensitivities.
To calculate collinearity we first normalize the scaled

sensitivities (14) as follows:

s̄i = ŝi
‖ŝi‖ for i = 1, . . . ,Nθ . (16)

This normalization avoids biases caused by differences
in the absolute values of the individual sensitivity vectors.
Let us consider a set K of k parameters and their corre-

sponding sensitivity vectors. The parameters are linearly
dependent if there exist k constants αi �= 0 such that

α1s̄K1 + α2s̄K2 + . . . αk s̄Kk = 0 (17)

If the above relation does not hold, the set is indepen-
dent. When the equality (17) holds only approximately,
the parameters are nearly dependent or nearly collinear.
The degree of collinearity among a set of parameters
can be measured by the collinearity index, CIK , which is
defined as [29]:

CIK = 1
min‖α‖=1 ‖S̄Kα‖ = 1

√
λK ,min

. (18)

where S̄k is the sensitivity matrix built from the k sen-
sitivity vectors, S̄K =[ s̄K1 , s̄K2 . . . s̄Kk ], and λK ,min is the
smallest eigenvalue of S̄TK S̄K . The larger the collinearity
index is, the more dependent the corresponding param-
eters are. Brun and co-authors [29] proposed to classify
a subset of parameters as identifiable if their collinear-
ity index is smaller than a threshold which they chose as
CIK < 20. Roughly speaking, a value of 20 means that 95%
of the variation in the model output caused by changing
one of the parameters in the subset can be compensated
by changing the other parameters in the set.
Other approaches for finding parameter correlations

using sensitivity-based measures have been previously
proposed in the literature. Li and Vu presented two meth-
ods [50, 51] that search for relationships among param-
eters in the context of a priori identifiability analysis (i.e.
with noise-free, continuous data). The method in [50]
provides a necessary but not sufficient condition for iden-
tifiability of nonlinear systems, which need to be fully
observed (i.e. they must satisfy y = x). The method in
[51] removes the requirement of measuring all the sys-
tem states, replacing it with the restriction that the model
must be linear. We remark that the method proposed in
the present manuscript does not have these limitations:
it can be applied to partially observed, nonlinear systems
with noisy, discrete-time measurements.

Largest identifiable subset
As explained in the previous subsections, a subset of
parameters is considered identifiable if its elements are
influential and their sensitivity vectors are not collinear.
We are interested in finding the largest set of parameters
for which the collinearity of the corresponding sensitiv-
ity vectors is below the chosen threshold, CIK < 20. Such
a set of parameters represents all the degrees of freedom
in the model. This means that perturbing a parameter not
included in this set has an effect in the model predictions
that can be compensated (at least by 95%) by changing
other parameters in the set. However, a perturbation in a
parameter belonging to the set cannot be compensated by
changes in the remaining parameters.
Several methods have been developed for finding the

group of identifiable parameters [30, 52, 53]. Iterative
selection methods apply a step-wise procedure to select
one parameter at a time, until no more parameters can be
added to the identifiable set. In each step the parameter to
be included is selected based on an optimality criteria. For
example, the modified Gram-Schmidt orthogonalization
method [54] projects all the remaining sensitivity vectors
to the subspace spanned by the already selected sensitivity
vectors, and includes the parameter corresponding to the
one with the largest projection value. This step is repeated
until the largest projection value falls below a threshold,
which means that the next parameter would significantly
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interplay with the parameters already included. The com-
putational cost of this method scales up well with the
number of sensitivity vectors. However, the drawback of
iterative procedures such as this one is that the solution
might not be the global optimum, that is, it might fail to
find the largest identifiable subset.
Alternatively, we propose to solve the problem of finding

the largest identifiable subset of all the estimated parame-
ters using combinatorial optimization. To this end we for-
mulate it as a (nonlinear) integer optimization problem,
where the goal is to maximize the number of sensitivity
vectors included in the set, with the constraint that the
corresponding collinearity index is below a threshold CI∗.
This algorithm can be stated as

maximize
i∈{0,1}Nθ

Nθ∑

k=1
ik (19)

subject to Si=cat({sk |ik =1, for k = 1, . . . ,Nθ }) (20)
CI(Si) < CI∗ (21)
ik is a binary variable for k = 1, . . . ,Nθ

(22)

where the binary variable ik indicates if the k-th param-
eter is included (ik = 1) or not included (ik = 0) in the
identifiable group of parameters. The sensitivity matrix
corresponding to the selected parameters is Si, and ‘cat’
stands for the concatenation of the column vectors in the
constraint (20). The collinearity index of this matrix is
CI(Si) and it is determined by computing the minimum
eigenvalue as in (17).
This combinatorial optimization problem has an expo-

nentially scaling computational cost, and thus its solution
requires an efficient algorithm. We chose the Variable
Neighbourhood Search (VNS) technique [55], which is
a heuristic global optimization method for integer opti-
mization problems. We used the version of VNS included
in the MEIGO Toolbox [56], which is implemented in
MATLAB.
We modified this initial formulation of the problem

described in Eqs. (19)–(21) after finding that its solution
is often not unique: even after maximizing the number
of parameters in the subset, there may be multiple sub-
sets that yield a collinearity index below the threshold CI∗.
Indeed, we found large variability in the solutions if no ini-
tial guess was specified. Therefore, we reformulated the
optimization problem in two ways, as described in the
following paragraphs.
As a first modification, we transformed the collinear-

ity requirement (21) from a ‘hard’ to a ‘soft’ constraint
(or penalty). The modified optimization problem
reads as

maximize
i∈{0,1}Nθ

Nθ∑

k=1
ik − P1(i) − P2(i) (23)

subject to Si = cat ({sk | ik = 1, for k = 1, . . . ,Nθ })
(24)

P1(i) = 1
2
CI(Si)/CI∗ (25)

P2(i) =
{
0 if CI(Si) < CI∗

α
(
CI(Si) − CI∗

)β otherwise
(26)

ik is a binary variable for k = 1, . . . ,Nθ

(27)

As above, the binary variable ik indicates if the k-
th parameter is included (1) or not included (0) in the
selected group of parameters. The penalty P1 is a mono-
tone increasing (linear) function of the collinearity index
CI(Si), such that P1 is 0.5 when the collinearity equals to
the threshold. Due to this small value, P1 does not influ-
ence the size of the largest subset below the threshold. In
this way, when multiple sets of the same size co-exist, the
set with smaller collinearity index is always favoured. This
results in an unique solution of the optimization problem
if there are no sets with identical collinearity index. The
second penalty function P2 represents a soft constraint
that is active when the collinearity exceeds the threshold.
The steepness of this constraint is tuned by the values of
α and β , which we set to α = 1 and β = 2.
Our second improvement of the formulation of the

optimization problem consists in providing a good ini-
tial guess of the solution using QR decomposition. The
rank revealing QR decomposition algorithm, or rrqr [57],
rewrites a matrix S as

�S = QR, (28)

where Q is an orthogonal matrix, R is an upper triangular
matrix, and� is a permutation matrix. Due to the proper-
ties of this decomposition, the permutationmatrix defines
a reordering of the columns of S. In this re-ordered matrix
Sro = �S, the most orthogonal columns are located in the
left. In other words, the first n columns of the reordered
matrix define a linear subspace, and the (n + 1)-th col-
umn has the largest projection value on this subspace
among the remaining Nθ − n columns located to the right
of the n-th column. The outcome of the rrqr technique
is similar to that of the aforementioned Gram-Schmidt
orthogonalizationmethod, but its implementation ismore
efficient.
We applied rank revealing QR decomposition to the

sensitivity matrix, following the procedure described in
Algorithm 2. Then, we used the resulted ordering of the
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sensitivity vectors to initialize the global optimizer. In this
way we improved the performance of the global optimizer,
which often found larger sets with collinearity index below
the threshold value. The whole procedure for identifying
the largest non-collinear subset of parameters is summa-
rized in Algorithm 3.

Algorithm 2 Finding the largest identifiable subset of
parameters by rank revealing QR decomposition (rrqr)
Require: Find sensitive parameters by Algorithm 1 →

Isensitive
Require: Define collinearity threshold: CI∗
1: Number of sensitive parameters: Nsp =

cardinality(Isensitive)
2: for all i ∈ Isensitive do
3: Normalize the sensitivity columns: s̄i ← ŝi

||ŝi||
(Eq. (16))

4: end for
5: Form S̄ ← cat({s̄i | i ∈ Isensitive}), where ‘cat’ stands

for concatenation of a set of column vectors.
6: [Q,R, p, r]← rrqr(S̄), where vector p contains the

permutation vector
7: for i = 2 to Nsp do
8: Sss ← S̄(:, p(1 : i))
9: CIss = collinearity(Sss)

10: if CIss > CI∗ then
11: indexLargestIdSetQR = p(1 : i − 1)
12: break
13: end if
14: end for
15: return indexLargestIdSetQR

Algorithm 3 Finding the largest identifiable subset of
parameters by VNS
Require: Find sensitive parameters by Algorithm 1 →

Isensitive
Require: Find largest set by Algorithm 2 →

indexLargestIdSetQR
Require: Define collinearity threshold: CI∗
1: number of sensitive parameters: Ns =

cardinality(Isensitive)
2: xinit = zeros(1,Ns)
3: xinit(indexLargestIdSetQR) = 1
4: solve optimization (23)–(27) using xinit as initial guess

The procedure presented in this subsection has similar-
ities with the one proposed by Chu and Hahn [54]. One
difference is that we maximize the subset size for a given
collinearity threshold, whereas Chu andHahn adopted the

opposite approach, i.e., maximizing parametric identifi-
ability for a pre-specified subset size. Additionally, both
methods differ in the optimization technique: we use
Variable Neighbourhood Search, which has better scala-
bility than the genetic algorithm chosen in [54]. Recently,
Nienałtowski et al. [58] have proposed a method for
finding clusters of correlated parameters using so-called
canonical correlation analysis (CCA). CCA is an extension
of Pearson correlation for measuring multidimensional
correlations between groups of parameters. Given two
groups of parameters of sizes m and n, with m < n,
calculation of the canonical correlations provides mmea-
sures, which are summarized in a single measure, called
MI-CCA. This similarity measure represents the mutual
information between the two groups, although it should
be noted that average mutual information is equivalent to
canonical correlation only if the random variables follow
an elliptically symmetric probability model. Nienałtowski
et al. use MI-CCA to cluster parameters until an identi-
fiable subset is reached. This approach is sequential and
yields a single parameter subset, which is possibly not
maximal. In contrast, the methodology described here
combines an initial sequential phase with a subsequent
combinatorial optimization procedure. The second phase
yields several identifiable parameter subsets and usually
improves the initial solution.

Finding all largest subsets
As mentioned above, the largest non-collinear subset of
parameters is not unique. To realize this, imagine that we
have a non-collinear set of the parameters, and consider
an additional pair of highly collinear parameters. Since we
may add either of these two parameters to the set, but
not both of them, we have two potential solutions. The
optimization algorithm described above would choose the
option with a lower collinearity index.
However, we may also be interested in enumerating

all the possible sets, instead of only one. Finding all the
largest subsets is a combinatorial problem too, which is
computationally expensive. A naive approach for solving
it could be to generate all possible sets of parameters and
compute the corresponding collinearity index. However,
note that if two parameters θ1 and θ2 are collinear, then
any sets including the pair {θ1, θ2} are highly collinear.
Using this fact, we developed an incremental procedure
for the systematic determination of the sets. We start by
considering all possible pairs of parameters and determin-
ing their collinearity. Then we extend only those pairs
which have a small collinearity index, by considering all
possible combinations of a third parameter. This proce-
dure is repeated until either all the sets are highly collinear,
or there is only one set containing all the parameters. In
this way, summarized in Algorithm 4, we can find all the
largest subsets of non-collinear parameters.
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Algorithm 4 Finding all the largest identifiable subset of
parameters
Require: Sensitivity matrix S at the optimal parameters
Require: Define collinearity threshold: CI∗
1: Given the sensitivity matrix S =[ s1, . . . sNθ ] and a sub-

set of column indexes K ⊆ I = {1, . . .Nθ } of S. Then
let SK the sub-matrix of S containing the columns
specified by indices in K, i.e. SK := cat({si | i ∈ K})

2: Generate all combinations of pairs of parameter
indexes: I2 = {(i, j) | i, j ∈ I , i < j)}

3: Compute the collinearity index for each element of
the set: CI2 = {CI(SK ) | K ∈ I2}

4: Find sets with small collinearity: I∗
2 = {K | K ∈

I2, CI(SK ) < CI∗}
5: for setSize = 3 to nθ do
6: generate all the extension sets IsetSize = {K ∪ i | K ∈

I∗
setSize−1, i ∈ I , i /∈ K}

7: Compute the collinearity index for each element:
CIsetSize = {CI(SK ) | K ∈ IsetSize}

8: Find sets with small collinearity: I∗
setSize = {K | K ∈

IsetSize, CI(SK ) < CI∗}
9: if cardinality(I∗

setSize) = 0 then
10: report I∗

setSize−1 and CIsetSize−1
11: break;
12: end if
13: end for

Partitioning the non-identifiable parameters
The two procedures presented above can be used for find-
ing (i) the largest, least collinear subset of parameters,
and (ii) all the largest subsets; in both cases, restricted
to those subsets whose collinearity falls below a thresh-
old. However, it is often important to understand why
certain parameters are not identifiable. For example, a
parameter may be unidentifiable because the model out-
put has very low sensitivity to changes in its value. But it
could also be because it is highly correlated with another
parameter, even when both parameters have high sensi-
tivities. Finding small groups of highly collinear param-
eters can be helpful in determining the exact source of
unidentifiability.
The collinearity of a subset always increases when a new

parameter is added to the set. For example, considering
three parameters, the collinearity of the triplet is always
higher than the collinearity of any pairs. Therefore, if a
larger set of parameters contains a collinear pair, then the
collinearity index of the large set is also large.
If we are interested in finding the smallest groups of

highly collinear parameters, we can proceed as follows.
First we generate all possible pairs of parameters, and
compute the collinearity of the corresponding sensitiv-
ity vectors. Then we evaluate all possible triplets. The
procedure can be extended for the analysis of larger

sets. However, due to the combinatorial explosion of the
computational cost, this method can be applied only to
models of moderate size (with a maximum of roughly
20 parameters).

Visualization of identifiable subsets
It can be useful to represent the identifiability results
graphically, because such visualization can provide mod-
ellers with insight about how to reformulate their models
and/or design new experiments in order to avoid non-
identifiable parameters.
With this aim, we display the model structure in the

natural network visualization technique. An example is
shown in Fig. 1c. The model structure is represented
as a graph whose nodes are state variables, observables,
stimuli, and model parameters. The edges – which can
be directed (arrows) or undirected – have the following
meaning: an arrow from node A to node B indicates that
node B appears in the equation of A. For example, if the
dynamic equation of a state x1 is ẋ1 = p1 · x2, the cor-
responding graph would show two arrows x2 → x1 and
p1 → x1.
More formally, we determine how the state, input vari-

ables, stimuli and parameters are connected and influence
each other through symbolic manipulation of the model
Eq. (1). For this purpose we compute: (i) the Jacobian
matrix with respect to the states: Jssi,j = ∂ fi

∂xj , (ii) the Jacobian
of the observation functions with respect to the states:
Jsoi,j = ∂gi

∂xj , (iii) the Jacobian of the systems dynamics with

respect to the stimuli Jsii,j = ∂ fi
∂uj , and (iv) the Jacobian with

respect to the parameters Jspi,j = ∂ fi
∂θj

. All these matrices
are evaluated symbolically, and then the expressions are
converted to a logical 1 (if the symbolic expression is non
zero) or 0 when the symbolic result is zero.
Additionally, we can connect parameters by undirected

edges if their collinearity is larger than the collinearity
threshold.

Implementation: the VisId software tool
We implemented the techniques proposed in subsec-
tions “Practical identifiability analysis” and “Visualization
of identifiable subsets” as a MATLAB software package
called VisId, which is provided as Additional file 1 and can
also be downloaded from GitHub (https://github.com/
gabora/visid). It is free software, made available under the
terms of the GNU General Public License version 3. The
VisId toolbox relies on three other MATLAB toolboxes,
which are also freely available: AMIGO2 [59] (https://
sites.google.com/site/amigo2toolbox/download), which
is used to to store, simulate and calibrate the models;
MEIGO [56] (http://www.iim.csic.es/~gingproc/meigo.
html), which implements the Variable Neighbouring

https://github.com/gabora/visid
https://github.com/gabora/visid
https://sites.google.com/site/amigo2toolbox/download
https://sites.google.com/site/amigo2toolbox/download
http://www.iim.csic.es/~gingproc/meigo.html
http://www.iim.csic.es/~gingproc/meigo.html
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A B

C D

Fig. 1 TGF-β model: panel a shows the model sensitivities with respect to the parameters in logarithmic scale. In panel b the maximum number of
identifiable parameters is depicted depending on the collinearity threshold. The group-size does not change much by the threshold. The red vertical
line indicates our choice (CI= 20) for the further analysis. In panel c the mathematical model is depicted. Nodes indicate states (yellow), identifiable
(green) and not identifiable (red) parameters, and observables (blue). In panel d the interplay among the collinear parameters are indicated. There are
5 groups of parameters: in the first 4 groups triplets of parameters show large collinearity, while in the fifth group 5 parameters are collinear

Search (VNS) optimization method; and (optionally)
RRQR (https://www.mpi-magdeburg.mpg.de/1094756/
rrqr), which performs the rank revealing QR decompo-
sition used to initialize the global optimizer. Network
visualization is performed with Cytoscape [60] (http://
www.cytoscape.org/). Further details can be found in
Section 4 of Additional file 2.

Results
In this section we demonstrate the application of the
methodology presented in the previous section using sev-
eral dynamic systems biology models of different type
and complexity. Their main characteristics are given in
Table 1. First we present detailed results of identifiabil-
ity analysis and visualization for a model of the TGF-β

signalling pathway. We also provide similar results for
the genetic network that controls the circadian clock in
Arabidopsis thaliana. Due to their complexity and yet rel-
atively moderate size, these models are well suited as case
studies for illustrating the identifiability methodology in
depth.
Then we study two large scale benchmark problems

included in the BioPreDyn-bench collection [23]. Since
the analysis of these latter models is more challenging
due to their larger size, we start by demonstrating the
performance improvements that can be achieved during
parameter estimation using the model calibration pro-
cedure proposed in Section “Parameter estimation with
regularization and global optimization”. Then we per-
form identifiability analysis and report the corresponding

https://www.mpi-magdeburg.mpg.de/1094756/rrqr
https://www.mpi-magdeburg.mpg.de/1094756/rrqr
http://www.cytoscape.org/
http://www.cytoscape.org/


Gábor et al. BMC Systems Biology  (2017) 11:54 Page 10 of 16

Table 1 List of models used as case studies and their characteristics

TGF-β Circadian B2 B4

Description TGF-β signaling Gene network, Central Carbon Metabolic model,

pathway A. thaliana Metabolism, E. coli Chinese Hamster Ovary

Reference [61] [62] [23, 63] [23, 64]

Parameters 18 27 116 117

States 21 7 18 34

Outputs 16 2 9 13

results, including the graphical representation of the iden-
tifiable subset using the natural network visualization.

TGF-β signalling pathway
The dynamic model of the TGF-β signaling pathway was
presented in [61] as a tutorial example for model calibra-
tion. It has 18 dynamic states and 21 kinetic parameters
(k1–k21), of which 18 need to be estimated. Following [61],
we assumed that all the concentrations, except the Smad
RNAs (CI_Smad_mRNA1 and CI_Smad_mRNA2), can be mea-
sured in the experiments. The algebraic Equations of the
reaction kinetics and the dynamic equations are provided
in the Additional file 2.
For the purpose of testing the methodology we gener-

ated a training dataset by simulating the model equations
using the nominal values of the parameters k1–k21
(numerical values are listed in Additional file 2: Table S1).
Then we sampled the simulated trajectories at equidis-
tant time points, and added normally distributed ran-
dom numbers to the data to mimic measurement errors.
Finally, we estimated the model parameters from the gen-
erated data set. This approach is widely used for testing
calibration methods and assessing the extent to which
they recover the nominal parameters. It should be noted
that, as the amount of noise in the dataset increases, the
information/signal ratio decreases, making the estima-
tion problem more ill-conditioned. This makes it more
difficult to recover the correct value of the parameters,
but has a small effect in computation times. The numer-
ical values of the estimated parameters are reported in
Additional file 2: Table S2.
We started the identifiability analysis by computing the

sensitivities of the observations with respect to the esti-
mated model parameters, according to Algorithm 1. We
found that all the parameters have a non-negligible influ-
ence on the model outputs, thus there are no individually
non-identifiable parameters (see Fig. 1a).
Next, following Algorithm 2, we applied QR decom-

position and ranked the parameters according to their
orthogonality. We then solved the optimization prob-
lem (23)–(27) by initializing the variable neighboring
search method with the results of the QR decomposi-
tion (Algorithm 3). Setting the threshold level for the

collinearity index to CI = 20 yielded 14 identifiable
parameters, which are shown as green nodes in the net-
work in Fig. 1c. Parameters not present in the identifiable
subset are shown as red nodes. Parameters are con-
nected by arrows to state variables (represented by yellow
nodes) if they appear in the equation of the corresponding
dynamic equation. States which directly influence each
other are also connected by directed edges in the same
manner. Blue squares represent measurements; a state is
connected to a blue square if it appears in the correspond-
ing observation function.
To see how the size of the identifiable subset is influ-

enced by the choice of the collinearity index threshold
(CI), we solved the optimization problem for a range of
threshold values. The results are depicted in Fig. 1b. As the
collinearity index threshold decreases, less parameters are
considered identifiable. We can see that the identifiabil-
ity results are quite robust to the choice of threshold level:
the number of identifiable parameters is always between
12 and 15, and it is constant (= 14) for a very wide range
of CI, 15 ≤ CI ≤ 25.
The results presented so far tell us that the 14 param-

eters are not correlated. However, they do not inform of
the relationships among identifiable and non-identifiable
parameters. To investigate this point, we computed
the smallest correlated subsets as described in Section
“Partitioning the non-identifiable parameters”, up to
groups of 6 parameters. Figure 1d shows such groups;
parameters are depicted as blue circles connected with
group identifying nodes (white squares). These nodes are
labeled as GX(Y), where X indicates the number of param-
eters in the group and Y is the group index for a given
number of parameters (e.g. G3(2) stands for the second
group of three correlated parameters). We found that the
large pairwise collinearity between k14 − k18 and k17 − k19
explains the non-identifiability of the model parameters
only partially. There are 4 groups of triplets and a group of
5 parameters which are highly correlated. The members
of the groups and the corresponding collinearity index are
reported in Table 2.
It is important to note that collinearity might arise

among multiple parameters, even if they are pairwise
independent. For example, despite the fact that none of
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Table 2 TGF-β model: highly collinear parameter sets. A set ID
indicates the number of parameters involved in the collinearity
group. They are also depicted in Fig. 1d

Set ID. CI Parameters

G2(1) 2.87e+07 k14 k18

G2(2) 41.4 k17 k19

G3(1) 110 k14 k16 k19

G3(2) 1.37e+03 k14 k16 k17

G3(3) 1.37e+03 k16 k17 k18

G3(4) 110 k16 k18 k19

G5(1) 22.9 k8 k9 k10 k11 k12

the pairs in the group of k14, k16 and k17 has a high pair-
wise collinearity, the collinearity index of the triplet is
extremely large.
Algorithm 4 found 40 different sets of identifiable

parameters with collinearity index ranging between 12.4
and 16, less than the threshold (CI = 20). The sets are
reported with the corresponding collinearity index in
Additional file 2: Table S3. We can see that parameters
{k1 − k7, k13, k15} are members of all the groups, and they
do not participate in any of the small correlated groups in
Fig. 1d. From each correlated group of size K, only K − 1

A B

C D

Fig. 2 Circadian clock in Arabidopsis thaliana: panel a shows the model sensitivities with respect to parameters in logarithmic scale. In panel b the
maximum number of identifiable parameters is depicted as a function of the collinearity threshold. The red vertical line indicates our choice of
threshold (CI = 20) used for further analysis. In panel c the interplay among the collinear parameters is indicated up to groups of 3 parameters. In
panel d the mathematical model is depicted. Nodes indicate states (yellow), identifiable (green) and not identifiable (red) parameters, and
observables (blue). Highly correlated parameter pairs are connected by undirected edges
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parameters can participate in the largest set of identifiable
parameters.
The aforementioned identifiability procedures can be

carried out in a few seconds. Detailed computational costs
are shown in Table S6 of the Additional file 2 for all the
case studies considered in this paper.

Circadian clock in Arabidopsis thaliana
Locke and co-authors [62] described the genetic network
controlling the circadian clock in Arabidopsis thaliana;
the dynamic equations of this model are provided in the
Additional file 2.
We generated training data by simulating the model

equations with the nominal parameters (Additional file 2:
Table S4) in two experimental conditions. In the first one,
the model input was kept constant (θlight = 1), represent-
ing continuous light stimulation of the plant. In the second
experiment the input was changed pulse-wise in 12-hour

cycles, repeated 5 times. As in the previous example, the
trajectories were sampled at equidistant time-points and
disturbed by pseudo-random noise. Only two states, CTm
and CLm, were observed. The estimated model parame-
ters are collected in Additional file 2: Table S4.
Although themodel outputs showed sensitivity to all the

parameters (Fig. 2a), i.e. there were no zero sensitivity
vectors, we found that most of the model parameters are
non-identifiable due to heavy collinearities. The largest
identifiable subset contains only 6 of the 27 parameters,
depicted in Fig. 2d by green nodes. The enumeration of
the largest sets of identifiable parameters by Algorithm 4
identified 1331 parameter sets.

Benchmarks B2 and B4 from the BioPreDyn-bench
collection
In this subsection we analyze two large scale benchmark
problems taken from the BioPreDyn-bench collection

Fig. 3 Representation of the connections in the B2 model using the network diagram formalism. Nodes indicate states (yellow), identifiable (green)
and not identifiable (red) parameters, observables (blue), and inputs (grey). The source file of this figure is provided with the VisId toolbox; using
Cytoscape, the user can navigate through it and zoom on different areas to improve the visibility
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[23]: the metabolic models of Escherichia coli (B2) and
Chinese Hamster Ovary cells (B4). They are highly
non-linear, partially observed systems with more than
100 unknown parameters, which pose serious challenges
for parameter identification. In B4 the calibration
data was generated by model simulation and dis-
turbed by random noise, while in B2 it was experi-
mentally measured. Further details about the models
and the parameter estimation challenge can be found
in [23].

First we use these benchmarks to illustrate the benefits
of the parameter estimation strategy proposed in subsec-
tion “Parameter estimation with regularization and global
optimization”, comparing it with the one used in [23].
Both approaches use a hybrid method, eSS [21], which
combines a global optimization algorithm (scatter search)
with a local search. In [23] the local method of choice
was FMINCON; here we compare that configuration with
NL2SOL (with and without regularization). Global opti-
mization algorithms use pseudo-random numbers. Hence

Fig. 4 Representation of the connections in the B4 model using the network diagram formalism. Nodes indicate states (yellow), identifiable (green)
and not identifiable (red) parameters, observables (blue), and inputs (grey)
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their performance changes at every run, and the calibra-
tion problem should be solved several times to obtain
more robust results. Since each optimization takes several
hours we limited the number of runs to five for each prob-
lem. We used the approximate computation time (CPU
time) reported in [23] as the stopping criterion for the
model calibration. Convergence curves depict the best
objective function value found versus CPU time, and can
be used to compare the performance of different algo-
rithms. An optimization method is preferred if it achieves
a lower objective function value at earlier CPU time. The
best convergence curves (out of 5) corresponding to B2
and B4 are shown in the Additional file 2 for 3 algo-
rithms: (1) eSS-FMINCON, as reported in [23]; (2) eSS-
NL2SOL; and (3) eSS-NL2SOL using regularization as
recommended in Section “Parameter estimation with reg-
ularization and global optimization”. From those curves
we see that the algorithm (3) proposed here converged
earlier than the others to the optimal objective function
value (note that log-log scale is used in these curves). We
stress that the main purpose of regularization is to avoid
overfitting: we do not wish to obtain an excessively good
fit, which would indicate that we are reproducing noise
instead of the true dynamics. Therefore, regularization
should not achieve a smaller objective function value.
Next, we apply the identifiability analysis procedures

presented in subsections “Practical identifiability analysis”
and “Visualization of identifiable subsets” to these two
models. For B2 they yield an identifiable subset of size 29,
and for B4 of size 13 (recall that bothmodels have a total of

116 parameters). The corresponding networks are shown
in Figs. 3 and 4, respectively. It is also possible to find
small groups of highly correlated parameters for mod-
els of this size; e.g. for B4 we obtained those depicted in
Fig. 5.
The aforementioned results show that both models are

poorly identifiable in practice for the considered datasets;
more informative data would be needed in order to obtain
accurate estimates of their parameters.

Discussion and conclusions
In this paper we have presented a workflow to effi-
ciently estimate the parameters of dynamic models and
analyze their practical identifiability. Our approach com-
bines an advanced optimization technique, which reduces
computation times in parameter estimation, and several
identifiability analysis procedures, which can find sub-
sets of identifiable and unidentifiable parameters. Results
are visualized using network diagrams, which provide an
intuitive representation of the findings and facilitate their
analysis and understanding.
Many approaches have been applied to study identifia-

bility of kinetic models, but they suffer from lack of scal-
ability. An advantage of the integrated method presented
here is its moderate computational cost, which enables its
application to large-scale models; complete results can be
obtained in a few hours for models of more than a hun-
dred parameters. Another important aspect is the inte-
gration of identifiability analysis with visualization, which
presents the results in a way that is easily interpretable for
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Fig. 5 Visualization of the relationships among highly collinear parameters in the B4 model. The figure shows small groups, whose sizes range
between 2 and 10 parameters. Unidentifiable parameters are shown in red; identifiable parameters in green. Highly correlated pairs are connected
by lines
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modelers and experimentalists. Currently, its main limi-
tation arises when trying to find all the different existing
groups of highly correlated parameters: the combinatorial
explosion of this particular task makes it feasible only for
models of moderate size, i.e. of a few dozens of param-
eters. However, all the remaining steps of the workflow
presented in this manuscript scale up well up to several
hundred parameters.
The usefulness of the methodology and workflow pre-

sented here goes beyond basic parameter identifiability
analysis. The procedure not only (i) determines the largest
subset of identifiable parameters, but also (ii) informs
about the characteristics of the space of non-identifiable
parameters, reporting small groups of highly correlated
parameters, and (iii) presents all these results in a coher-
ent and scalable way using visualization techniques, facil-
itating the understanding of the underlying complex
interactions. Uncovering these higher order relationships
helps in determining the causes of unidentifiability and
provides guidelines for remedying them, e.g. by reformu-
lating the model or by collecting new data through a new
experimental design. All this information can be readily
used to improve the iterative model-building cycle.
A MATLAB implementation of the identifiability and

visualization methodology, which we have called the
VisId software package (Additional file 1), is available
from GitHub (https://github.com/gabora/visid) as free,
open source software. This distribution includes the case
studies discussed above.

Additional files

Additional file 1: VisId toolbox. This compressed folder contains the VisId
MATLAB toolbox. (ZIP 1030 KB)

Additional file 2: Supplementary material. This document contains
detailed descriptions of the case studies and of the VisId toolbox, as well as
additional details about the results. (PDF 306 KB)
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